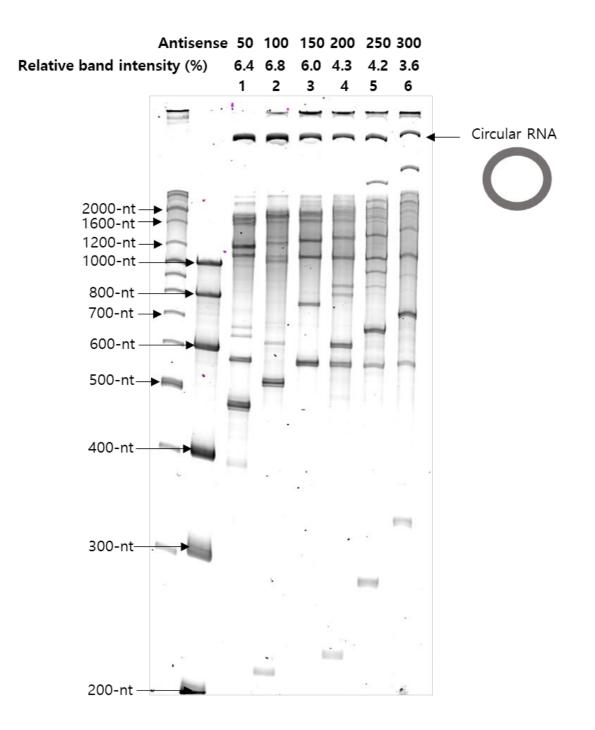
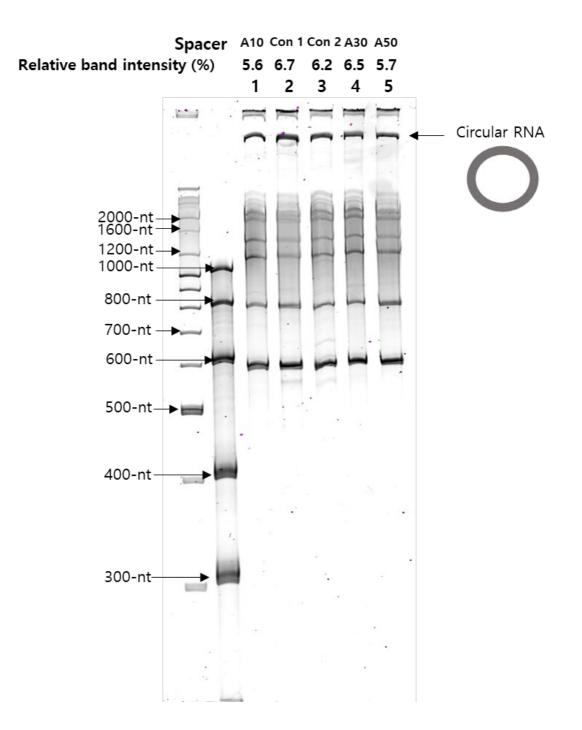
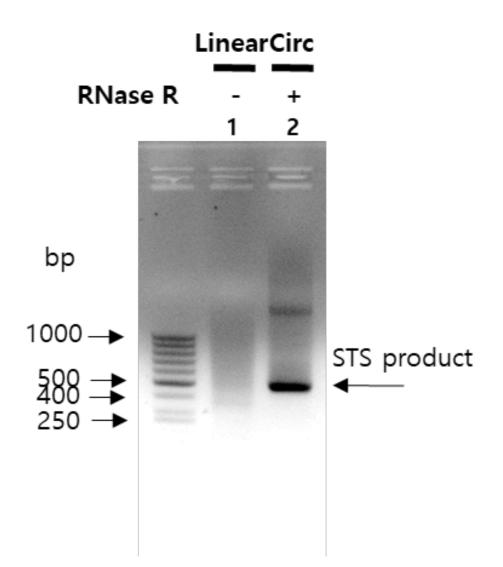
OMTN, Volume 33

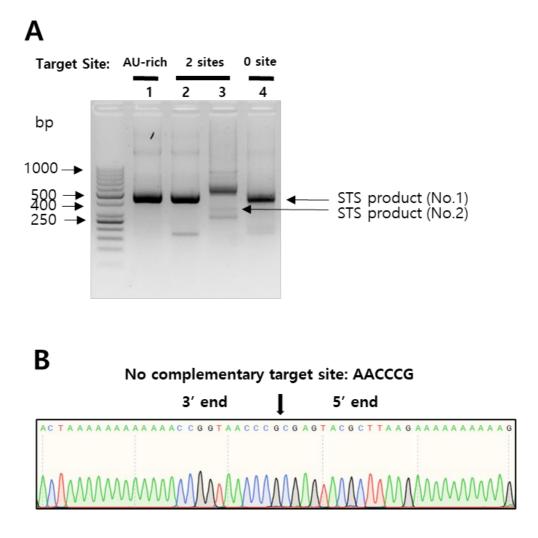

Supplemental information

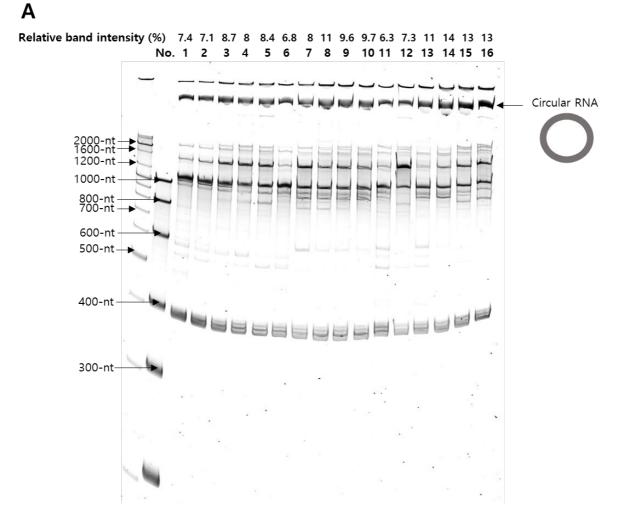
Efficient circular RNA engineering by end-to-end


self-targeting and splicing reaction

using Tetrahymena group I intron ribozyme


Kyung Hyun Lee, Seongcheol Kim, Jaehwi Song, Seung Ryul Han, Ji Hyun Kim, and Seong-Wook Lee


Figure S1. Results of 4% denatured PAGE analysis of IVT samples of self-circularization RNA construct (GOI: EMCV IRES-Gaussia Luciferase) with different sizes of antisense sequence and antisense binding sequence (lane 1: 50-nt, lane 2: 100-nt, lane 3: 150-nt, lane 4: 200-nt, lane 5: 250-nt, lane 6: 300-nt long antisense sequence and antisense binding sequence). Relative band intensity of circRNA is shown as a percentage of whole intensity of each lane.


Figure S2. Results of 4% denatured PAGE analysis of IVT samples of self-circularization RNA construct (GOI: EMCV IRES-Gaussia Luciferase) with various spacers (linkers) between group I intron and IRES (lane 1: A10, lane 2: control 1, lane 3: control 2, lane 4: A30, lane 5: A50 spacer). Relative band intensity of circRNA is shown as a percentage of whole intensity of each lane.

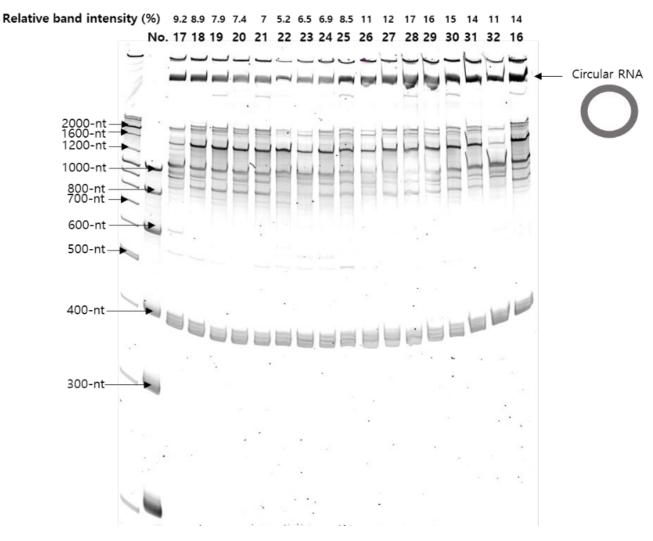

Figure S3. Results of 1.5% agarose gel analysis of RT-PCR products using STS primers listed in Table S3 for circRNA detection for control linear RNA without RNase R digestion (lane 1) and circular RNA IVT samples (P1 construct of Figure 3, GOI: EMCV IRES-Gaussia luciferase) with RNase R digestion (lane 2). Designed STS primers only amplify circular RNA. Arrow indicates the expected circRNA band.

Figure S4. RT-PCR and sequencing analysis of selected P1 constructs of Figure 4 (GOI: EMCV IRES-Gaussia luciferase) with different target sequences. (**A**) Results of 2% agarose gel analysis of RT-PCR products using STS primers for circRNA detection (lane 1: AU-rich target site, lane 2: target No. 1 site present at 3' end of RNA construct with 2 target sites, lane 3: target No. 2 site present in the middle of GOI for RNA construct with 2 target sites, lane 4: no complementary target site). STS F and R primers were used for lane 1, 2, and 4. STS F2 and R was used for lane 3. Lane 2 and 3 are from same self-circularization RNA, but amplified by different primer sets. (**B**) Sequencing analysis of RT-PCR band from circRNA prepared by P1 construct without complementary target site. Ligation junction region is shown.

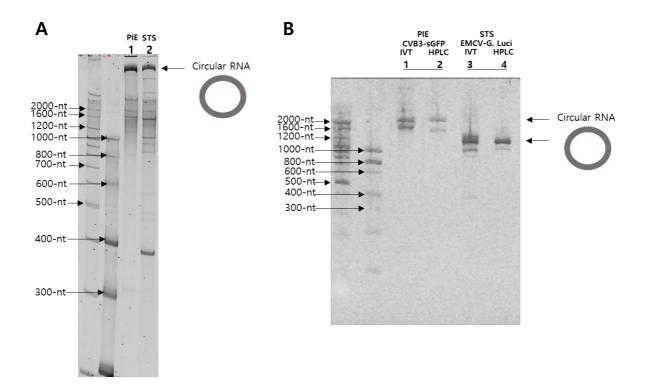
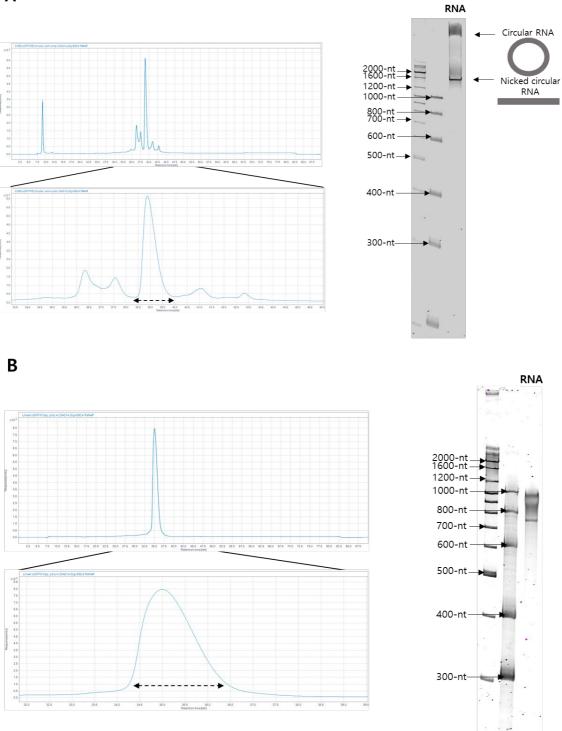


Figure S5. Results of 4% denatured PAGE analysis for IVT samples of self-circularization RNA P1 construct (GOI: EMCV IRES-Gaussia luciferase) with different AU-rich target sequences. (A) AU-rich No. 1 to 16 RNA constructs. Target sequence of each No. of AU-rich RNA construct is listed in Table S2. Relative band intensity of circRNA is shown as a percentage of whole intensity of each lane.


Figure S5. Results of 4% denatured PAGE analysis for IVT samples of self-circularization RNA P1 construct (GOI: EMCV IRES-Gaussia luciferase) with different AU-rich target sequences. (**B**) AU-rich No. 17 to 32 and AU-rich No. 16 RNA constructs. Target sequence of each No. of AU-rich RNA construct is listed in Table S2. Relative band intensity of circRNA is shown as a percentage of whole intensity of each lane.

В

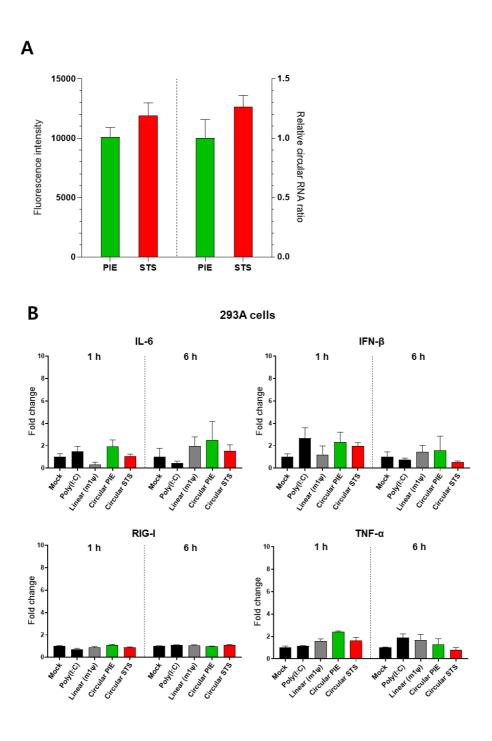


Figure S6. Comparison of circularization efficacy between PIE and end-to-end STS reaction. (**A**) Results of 4% denatured PAGE analysis for IVT samples of PIE construct (lane 1) and end-to-end STS P1 RNA construct (GOI: CVB3 IRES-sGFP) (lane 2). (**B**) Result of 2% E-gel electrophoresis using Ex 1% - 2% program for IVT samples of PIE construct (GOI: CVB3 IRES-sGFP) and end-to-end STS P1 RNA construct (GOI: EMCV IRES-Gaussia luciferase). (lane 1: PIE, lane 2: HPLC-purified PIE circRNA, lane 3: STS, lane 4: HPLC-purified STS circRNA).

Figure S7. IP-RP HPLC purification of circRNA prepared by PIE or control linear RNA. (**A**) HPLC chromatogram (left) of IVT sample prepared by PIE (GOI: CVB3 IRES-sGFP) and 4% denatured PAGE analysis of the purified circRNA (right). (**B**) HPLC chromatogram of linear m1 ψ -modified sGFP with 5' cap and 3' polyA (left) and 4% denatured PAGE analysis of the purified linear RNA (right). Eluted region is indicated by a double-headed arrow.

Figure S8. Correlations of protein expression with circRNA quantity and innate immunity induced by circRNA in HEK293A cells. (**A**) Fluorescence intensities of cells (left) and relative quantities of intracellular circRNAs by qRT-PCR using STS primers (right) at 24 h after transfection with equimolar amounts of circRNAs (GOI: CVB3 IRES-sGFP) generated through PIE or end-to-end STS reaction. (**B**) qRT-PCR analysis using specific primers for innate immunity markers with RNAs extracted from transfected HEK293A cells. Poly(I:C) and linear RNA with m1 ψ -modified base were used as controls. RNA levels were indicated relative to those in mock-transfected cells. Data are presented as mean ± SEM (n = 3).

Spacer (linker)	Sequences (5' to 3')
A10	АААААААА
A30	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ
A50	ААААААААААААААААААААААААААААААААААААААА
Control 1	GGUAGUGGUGCUACUAACUUCAGCCUGCUGAAGCA
Control 2	GGUAGUAAACUACUACAACCUGCUGAAGCA

 Table S1. Sequences of spacers (linkers) between Tetrahymena group I intron and IRES.

Table S2. A total of 32 AU-rich target site sequences (No. 1 – No. 32). No. 17 and 18 target sites exist in ribozyme sequences.

No.	A5 or A4U1
1:	AAAAAU-3'-end
2:	UAAAAU-3'-end
3:	AUAAAU-3'-end
4:	AAUAAU-3'-end
5:	AAAUAU-3'-end
6:	AAAAUU-3'-end

_		
	U5 or U4A1	
3'-end	- 000000 -	 7:
3′ -end	-AUUUU <mark>U</mark> -	 8:
3′ -end	-UAUUUUU-	 9:
3′ -end	-UUAUUU-	 10:
3'-end	-UUUAUU-	 11:
3'-end	-UUUUAU-	 12:

	U2A3
23:	UUAAAU-3'-end
24:	UAUAAU-3'-end
25:	UAAUAU-3'-end
26:	UAAAUU-3'-end
27:	AUUAAU-3'-end
28:	AUAUAU-3'-end
29:	AUAAUU-3'-end
30:	AAUUAU-3'-end
31:	AAUAUU-3'-end

32: ----AAAUUU-3'-end

	A2U3
13:	AAUUUU-3'-end
14:	AUAUUU-3'-end
15:	AUUAUU-3'-end
16:	AUUUAU-3'-end
17:	<u>UAAUUU</u> -3'-end
18:	UAUAUU-3'-end
19:	UAUUAU-3'-end
20:	UUAAUU-3'-end
21:	UUAUAU-3'-end
22:	UUUAAU-3'-end

Г

 Table S3. PCR primers used in experiments.

Primers	Sequences (5' to 3')			
For DNA construct of circular RNA and RT-PCR of STS product				
T7 F for DNA template	GGGATTCGAACATCGATTAATACGACTCACTATAGGGGCATCGAT TGAATTGTCGA			
T7 R for DNA template	AGATCTCTCGAGCAGCGCTGCTCGAGGCAAGCTT			
T7 F for P1&P10 DNA template	ATAATACGACTCACTATAGGGCGTACTCCGCCCAAAAAAGTTATC A			
T7 R for P1&P10 DNA template	CCCACCCAAACCGGTTTTTTTTTTTTTTTTTTAGTCAC			
T7 F for P1 DNA template	ATAATACGACTCACTATAGGGGNNNNNAAAAGTTATCAGGCATG CACCTGGT			
T7 R for P1 DNA template	ANNNNACCGGTTTTTTTTTTTTTTTAGTCACCACCG			
STS F (GOI: EMCV-G. Luci)	CAAGGACTTGGAGCCCATGGAGCAG			
STS F2 (GOI: EMCV-G. Luci)	ATGGGAGTCAAAGTTCTGTTTGCCCTGA			
STS R (GOI: EMCV-G. Luci)	TGTGCCGCCTTTGCAGGTGTATC			
STS F (GOI: CVB3-sGFP)	AGGATGGCAGCGTGCAGCTGGCTGA			
STS R (GOI: CVB3-sGFP)	GTCCGGGGTAACAGAAGTGCTTGAT			
For qRT-PCR of inflammatory cytok	ne genes			
18S F	CTTAGAGGGACAAGTGGCG			
18S R	ACGCTGAGCCAGTCAGTGTA			
ΤΝFα F	TCCCCAGGGACCTCTCTCA			
TNFa R	AGGGTTTGCTACAACATGGGC			
IL6 F	AGCCACTCACCTCTTCAGAAC			
IL6 R	GCCTCTTTGCTGCTTTCACAC			
RIG-I F	TGTGGGCAA TGTCA TCAAAA			
RIG-I R	GAAGCACTTGCTACCTCTTGC			
IFNβ F	TCTAGCACTGGCTGGAATGAG			
IFNβ R	GTTTCGGAGGTAACCTGTAAG			