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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors longitudinally investigated the gut microbiome metagenomic and metabolomic profiles 

in children diagnosed with 4 distinct allergies (atopic dermatitis, asthma, food allergy and allergic 

rhinitis) and in healthy children. They considered a total of 1115 samples, as part of the CHILD study 

cohort, which includes extensive metadata for the first 5 years of life. The authors found that 

impaired gut microbiome development at 1 year of age was associated with the development of a 

multiple allergies in scholar age (5yrs). The dysregulation in terms of microbial composition was 

reflected also in the microbiome functional capacity. Overall, the impaired multi-omic signatures 

were ubiquitous to all allergic diseases investigated in this study. 

 

Major comments: 

There are no major comments. The study is a relevant addition to the field, the study design is solid 

and the analysis is well executed. 

 

Minor comments: 

 

• The authors should provide a study design overview figure, to help the reader quickly understand i) 

how many samples from each condition and from healthy children were included in the analysis, ii) 

the sampling timepoints (3 months, 1 year, 5 years?) and how many samples per timepoint, and iii) 

which analysis (metaG and/or metaB) was performed on how many samples at each timepoint. 

• The authors should consider expanding their comments on the species that were found to be 

decreased or increased in infants that got later diagnosed with allergic disease. A. hadrus and E. hallii 

are both known to be important SCFA producers, while E. coli, E. faecalis and C. innocuum have the 

potential to be pathogenic (or at least some strains do). 

• Figure 1A: this panel should be a table instead, with the plot showing only the adjusted odds ratio 

and associated p-values. 

• Figure 5C: upper and lower panel are not aligned 

 

 

 

 



 

Reviewer #2 (Remarks to the Author): 

 

The authors report comprehensive gut microbiome data from a well-characterized birth cohort, i.e. 

the CHILD cohort in Canada (n=1,115). Four allergic diagnoses at 5 years: atopic dermatitis (AD, 

n=367), asthma (As, n=165), food allergy (FA, n=136), and allergic rhinitis (AR, n=187) were assessed 

by study physicians or highly trained health care professionals under their supervision. In a subset of 

about half the population (n=589) shotgun metagenomic and metabolomics profiling of fecal 

samples at ages 3 and 12 months was performed. Impaired 1-year microbiota maturation was 

related to risk of all allergic outcomes and a core set of functional and metabolic features was 

identified mediating the effect. 

Comments: 

1. There is a long-standing debate whether all so called atopic diseases which have very distinct 

clinical features (skin or upper and/or lower respiratory tract involvement with and without 

concomitant allergic sensitization to food and/or aeroallergens) can be lumped together or whether 

they show divergent underlying pathomechanisms. One feature that may be common to many but 

not all of them is allergic sensitization which was assessed with a low cut-off (skin prick test >/= 2mm 

after subtraction of the negative control). Given that in the overall cohort “The majority of parents 

reported a history of ever having allergies and atopic diseases (77.0%)….”(Reference 45) such 

enrichment for a family history of allergies may have contributed to a high proportion of allergic 

sensitization in this population which may be the common feature of all assessed allergic outcomes. 

The authors should therefore show in the Venn diagram in supplemental figure 1 the additional 

overlap with allergic sensitization. If there is a strong overlap, then it will be very hard to disentangle 

the single clinical disease entities from allergic sensitization and the true association with delayed 

microbiota maturation may be with allergic sensitization rather then all the mentioned diseases. 

Given the smaller sample size (n=589) with the MetaCyc and metabolomics data, the number of 

subjects with clinical diagnoses without allergic sensitization will likely be too small to allow robuts 

statistical analyses. Alternatively, stratification of analyses by allergic sensitization at any of the three 

assessed time points may help, but may suffer from the same limitation. 

2. Any underlying other feature common to all allergic outcomes such as a family history, 

breastfeeding and antibiotic usage as shown in figure 1 A/B or persistent sensitization as defined in 

the LCA in reference 45 rather than any sensitization may be the true factor associated with 

microbiome maturation. In this case, mediation analyses between the potential underlying tertium 

comparationis and the outcomes would be more appropriate. 

3. Further along this line of reasoning: T which life style factors (family history, breastfeeding, 

antibiotic use) determined the 9 taxa associated with allergy development and protection, 

respectively? 

4. The CHILD cohort followed 3495 enrolled subjects. The authors must report if any selection bias, 

e.g. further enrichment of a positive family history or of allergic sensitization/outcomes occurred in 

the subsample of n=589. 

 



5. The methods section does not report allergic sensitization to pollen, yet in reference 45 SPTs to 

also aeroallergens are mentioned for age 3 years. How many children were ONLY sensitized to tree 

and/or grass but not to other allergens ?`In other words, how many children would have been non-

atopic at age 3 years when excluding the children ONLY sensitized to tree and/or grass ? 

6. The authors report a decrease in Shannon diversity at age 3 and age 12 month – was such 

association also seen for other measures of alpha diversity ? 

7. Most of the manuscript focuses on the maturation at age 12 months. The investigators however 

also collected fecal samples at age 3 month. Was there any association between microbiome 

features, in particular alpha-diversity at age 3 month at the maturation as assessed by age 12 month 

? 

8. According to figure 5c tryptamine measured in fecal samples was strongly positively correlated to 

most of the 11 Metacyc-annotated gene pathways. Yet, in figure 6 they appear as independent 

contributors in the structural equation modeling diagram. How can individual independent effects 

be disentangled for each individual contributing factor ? This also applies to the discussion section 

where much emphasis is put on the trace amines. 

9. Line 185: I assume this relates to 12 mo fecal samples ? 

 

 

Reviewer #3 (Remarks to the Author): 

 

Hoskinson et al have studied the differences in gut microbiota between children with allergic disease 

and compared them to a control group. The study is interesting and creative in the way it has 

addressed the problem and I think will be of interest to Nature Comms readers. I very much enjoyed 

reading it. 

I have concentrated on the metabolomics analysis as my area of expertise. The reasoning of the 

paper is clear, although more details on how the technical aspects of metabolomics may be 

influencing the results should be considered. The conclusions have been drawn on a single 2 mL 

aliquot of stool. This is common practice in this field, but there is good evidence to suggest that 

certain metabolites may not be homogenously spread throughout the stool. In addition, the 

methods for stool preparation are not well described, but according to their cited paper Moraes et 

al, may have been refrigerated for up to three days. This will certainly affect the metabolome, and 

may also have affected the microbiome. Was any attempt made to assess and control for length of 

refrigerated storage? What data have you to show that your method gives reliable, repeatable 

results? 

The metabolomics protocol does not contain enough information to allow the experiment to be 

repeated. Specifically, it does not give any information on extraction methods. There should be more 

details provided in the supplementary on the extraction techniques and the metabolites which were 

detected by NMR and MS and whether any overlapped. The results cannot be reliably assessed 

 



without more information on number of batches, inter and intra batch effects and assessment of 

technical biases in the datasets. 

Supp methods section: 

For Stool preparation methods, please include the following details: 

Number of batches run for each method 

Batch differences – how they were assessed and corrected 

Carryover or background levels of metabolites – how were they assessed and corrected for. 

Number of metabolites targeted with each method 

Number found for each method 

Number which were measured in the quantitative range for each method. 

LC-MS analysis supp method 

Red PEEK tubing – this is not very informative since different companies use different colours to 

denote different internal diameters.Please include company and internal diameter and length of 

tubing. 

LC-MS analysis – please give more details about the calibration concentration ranges, number of 

calibration points and whether standards were run as individual standards or as mixed standard 

calibrants. What was the matrix that the calibrants were analysed in and how was background and 

carryover checked and accounted for. How was identification carried out? 

DFI – unexplained acronym 

NMR analysis supp method 

“Typically all of visible peaks were assigned” – this is described in the methods as a targeted method, 

but this appears to be untargeted. Please clarify. Also give an indication of background subtraction 

methods if used, how many peaks were discovered in the average sample and what level of 

matching similarity was required for identification. 

 

Main paper: 

 

1) How was this selection of stool samples chosen: randomly, a select group or was there any known 

bias in the selection. 

2) How much stool was used, and what efforts were made to make sure it was a representative 

sample, especially in the original collection period. 

 



3) The variance is relatively small, percentage wise. Given the inherent difficulties with achieving 

representative faecal samples, what measures were taken to validate this result with an 

independent cohort. 

 

Line 247: you make a correlation between number of significant metabolites found and relative 

importance of the pathways they map to. However, whether metabolite concentrations change can 

also be a function of rate limiting steps in the metabolic pathway. This is more difficult to measure in 

a mixed microbial environment, but was it considered when analysing the results? 

 

Line 411 unclear – “water content stool weight” – do you mean wet weight of stools? 

Has the method been specifically validated for stool, and are the concentrations accurate, especially 

if the standards are run in a matrix free solvent. 

 

413: missing values can bias a dataset: how many missing values were there as a percentage of the 

dataset, and were they missing at random or missing not at random. 

 

I think you have used a standard approach to absolute quantification, using an internal standard to 

correct for technical variation and then assessing the result against a calibration curve. However, the 

way it is written here sounds as if you are calculating a ratio and then assessing it against a non-ratio 

measurement to determine the concentration. Perhaps reconsider the wording. 

 

I think to publish in a journal such as Nature Communications, there is a clear expectation that data 

should be freely available on a site such as Metabolytes and not require the reader to contact the 

author. This should preferably include the raw data since this is important to assess batch effects, 

contaminations, incorrect identifications etc. 

 

Author contributions: it should be more clearly set out who carried out the metabolomics analyses. 
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POINT-BY-POINT RESPONSE TO REVIEWER COMMENTS 

Comments from Reviewer 1 
Reviewer #1 (Early life microbiome, metagenomics, mother-infant, longitudinal): 
 
The authors longitudinally investigated the gut microbiome metagenomic and metabolomic profiles in 
children diagnosed with 4 distinct allergies (atopic dermatitis, asthma, food allergy and allergic rhinitis) 
and in healthy children. They considered a total of 1115 samples, as part of the CHILD study cohort, 
which includes extensive metadata for the first 5 years of life. The authors found that impaired gut 
microbiome development at 1 year of age was associated with the development of a multiple allergies 
in scholar age (5yrs). The dysregulation in terms of microbial composition was reflected also in the 
microbiome functional capacity. Overall, the impaired multi-omic signatures were ubiquitous to all 
allergic diseases investigated in this study. 
 
Major comments: 
There are no major comments. The study is a relevant addition to the field, the study design is solid and 
the analysis is well executed. 

We thank the reviewer for their kind sentiment. 
 
Minor comments: 
 
• The authors should provide a study design overview figure, to help the reader quickly understand i) 
how many samples from each condition and from healthy children were included in the analysis, ii) the 
sampling timepoints (3 months, 1 year, 5 years?) and how many samples per timepoint, and iii) which 
analysis (metaG and/or metaB) was performed on how many samples at each timepoint. 

Thank you for your comment and suggestion. We have taken your advice and amended our original 
Supplementary Fig. 1 and moved it to the main manuscript as new Figure 1. In this figure we include a 
timeline of sample and clinical variable collection. We also have clearly defined the participant and 
sample numbers for our clinical, metagenomics and metabolomics analyses. We additionally added a 
Venn diagram for each analysis that shows the breakdown of the 4 allergy diagnoses. We hope that this 
provides sufficient clarification on the study design. The reviewer’s comment has significantly improved 
the study design overview. Please see the new Figure 1 below.   
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New Fig 1. Clinical evaluation of CHILD participants and data collection from biological samples. a 
Timeline of CHILD enrolment and clinical evaluations from gestion through 5-year evaluations. b 
Consort diagram of CHILD participants and samples included in this study, including the composition 
of participant allergic diseases and their interrelated diagnoses.  

CHILD Study

Complete data at all visits

No atopic/allergic symptoms at 1, 3, & 5 
years 

n = 523
• Repeated negative skin prick tests
• No history of wheeze
• No diagnoses of atopic dermatitis, 

asthma, food allergy, or allergic rhinitis

5-year diagnosis of allergy
n = 592

• Atopic dermatitis (n = 367)
• Asthma (n = 165)
• Food allergy (n = 136)
• Allergic rhinitis (n = 187)

1-year stool 
shotgun 

metagenomics
n = 236

1-year stool 
metabolome

n = 204

1-year stool shotgun 
metagenomics

n = 353
• Atopic dermatitis (n = 212)
• Asthma (n = 103)
• Food allergy (n = 75)
• Allergic rhinitis (n = 113)

1-year stool metabolome
n = 305

• Atopic dermatitis (n = 182)
• Asthma (n = 90)
• Food allergy (n = 65)
• Allergic rhinitis (n = 96)

Controls Cases

1-year samples

3-month stool shotgun 
metagenomics

n = 344
• Atopic dermatitis (n = 211)
• Asthma (n = 100)
• Food allergy (n = 71)
• Allergic rhinitis (n = 108)

3-month samples

5-year allergy diagnosis

3-month stool 
shotgun 

metagenomics
n = 305

1-year samples3-month samples

a

b

 



3 

• The authors should consider expanding their comments on the species that were found to be decreased 
or increased in infants that got later diagnosed with allergic disease. A. hadrus and E. hallii are both 
known to be important SCFA producers, while E. coli, E. faecalis and C. innocuum have the potential to 
be pathogenic (or at least some strains do). 

Thank you for this comment. We completely agree that these species deserve more discussion, 
particularly with regards to SCFA abundance. We had originally had a difficult time pulling out a clear 
SCFA signal with our metabolomics data. However, thanks in part to the 3rd reviewer’s recommended 
improvements to how we were addressing technical variation on our metabolomic profiles, we are now 
able to see a clear connection between butyrate abundance and predicted age. Supporting your comment, 
butyrate is also significantly associated with F. saccharivorans, A. hadrus, and sulfur oxidation pathways 
(Fig. 6c). These results have now been added to the results section of the manuscript within our newly 
revised Fig. 6 and we also added the additional comments within the Discussion section on Line 305-
316. Thank you again for the push to dig a little deeper. 

 
• Figure 1A: this panel should be a table instead, with the plot showing only the adjusted odds ratio and 
associated p-values. 

Thank you for this comment. We do prefer the current forest plot that combines numbers, statistics, and 
a visual representation all in one handy plot. However, we have created a new table as requested. It is 
currently in the supplemental tables, but we will replace the forest plot with this table if the 
reviewer/editor feel this will improve the manuscript.  Please see the new table below. 
 
 

Variable Adjusted odds ratio Adjusted odds ratio confidence 
interval 

P-value 

Sex (male) 1.84 (1.36, 2.49) 6.8E-05 

Ethnicity (Non-Caucasian) 2.26 (1.64, 3.1) 5.1E-07 
C-section (with labor) 0.71 (0.45, 1.12) 0.14 

C-section (without labor) 1.56 (0.96, 2.53) 0.075 
Breastfeeding status at 6 
months 

0.66 (0.45, 0.99) 0.043 

Season of birth (Summer) 0.89 (0.59, 1.34) 0.59 

Season of birth (Fall) 1.28 (0.83, 1.97) 0.27 
Season of birth (Winter) 0.99 (0.65, 1.5) 0.96 

Paternal atopy 1.56 (1.13, 2.15) 0.007 
Maternal atopy 1.56 (1.14, 2.12) 0.0054 

Older sibling 0.95 (0.7, 1.3) 0.75 
Antibiotics by 1 year 2.25 (1.55, 3.27) 2E-05 

Birthweight Z-score 1 (0.85, 1.17) 0.98 
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New Supplementary Table 2. Clinical and environmental factors linked to the development of allergic 
diagnoses at 5 years. 

 
• Figure 5C: upper and lower panel are not aligned. 

Thank you for pointing this out. We have aligned the heatmap panels in what is now Figure 6. In addition, 
please note that the revised figure (shown below) also includes all changes made on the recommendation 
of other reviewers’ comments regarding our metabolomics analysis and includes the new significant 
associations with butyrate and SCFA-producing microbes. Thank you again for all of your helpful 
feedback. 

Nitrogen dioxide IQR 1.08 (0.66, 1.77) 0.76 
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Reviewer #2 (Microbiome maturation and allergy). 
 
Comments: 
1. There is a long-standing debate whether all so called atopic diseases which have very distinct clinical 
features (skin or upper and/or lower respiratory tract involvement with and without concomitant 
allergic sensitization to food and/or aeroallergens) can be lumped together or whether they show 
divergent underlying pathomechanisms. One feature that may be common to many but not all of them 
is allergic sensitization which was assessed with a low cut-off (skin prick test >/= 2mm after 
subtraction of the negative control). Given that in the overall cohort “The majority of parents reported a 
history of ever having allergies and atopic diseases (77.0%)….”(Reference 45) such enrichment for a 
family history of allergies may have contributed to a high proportion of allergic sensitization in this 
population which may be the common feature of all assessed allergic outcomes. The authors should 
therefore show in the Venn diagram in supplemental figure 1 the additional overlap with allergic 
sensitization. If there is a strong overlap, then it will be very hard to disentangle the single clinical 
disease entities from allergic sensitization and the true association with delayed microbiota maturation 
may be with allergic sensitization rather then all the mentioned diseases. Given the smaller sample size 
(n=589) with the MetaCyc and metabolomics data, the number of subjects with clinical diagnoses 
without allergic sensitization will likely be too small to allow robust statistical analyses. Alternatively, 
stratification of analyses by allergic sensitization at any of the three assessed time points may help, but 
may suffer from the same limitation. 

Thank you for this comment. We agree with the reviewer, and the potential shared underlying 
pathophysiological mechanism is in part what inspired the study. Our aim was not to disentangle 
microbiome signals unique to disease entities but instead to identify common microbiome signals across 
all these diseases, strengthening the argument that they may all have similar origins in abnormal immune 
education during infancy. We have clarified this aim within our introduction in the Introduction at Lines 
77-80. 

The suggestion to parse out participants with allergic diagnoses by their atopic sensitization (as defined 
by positive SPT tests) is an excellent one. As requested, we have now included allergic sensitization 
(+SPT) in Supplemental Figure 1.  

Within the clinical cohort (Supplemental Figure 1a), 59.4% of participants diagnosed with asthma also 
had a +SPT at one of their 1-, 3-, or 5-year visits, 55.8% of participants diagnosed with atopic dermatitis 
also a +SPT at one of their 1-, 3-, or 5-year visits, 66.8% of participants diagnosed with allergic rhinitis 
also had a +SPT at one of their 1-, 3-, or 5-year visits and 91.2% of participants diagnosed with food 
allergy also had a +SPT at one of their 1-, 3-, or 5-year visits.  

The numbers within the metagenomic cohort are quite similar to the larger clinical one (Supplemental 
Figure 1b). 54.4% of participants diagnosed with asthma also had a +SPT at one of their 1-, 3-, or 5-year 
visits, 59.0% of participants diagnosed with atopic dermatitis also had a +SPT at one of their 1-, 3-, or 5-
year visits, 70.0% of participants diagnosed with allergic rhinitis also had a +SPT at one of their 1-, 3-, 
or 5-year visits and 89.3% of participants diagnosed with food allergy also had a +SPT at one of their 1-, 
3-, or 5-year visits.  

To look more closely at the underlying commonality of allergic sensitization within our diagnoses, we 
parsed out children with a 5-year diagnosis by whether they had a recorded +SPT response at any of the 
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1y, 3y, or 5y visits (Supplemental Figure 1c). We then compared microbiota maturation at 1 year, 
measured by predicted age. What we found was that a lower predicted age at 1 year accompanied a later 
allergic diagnosis, regardless of skin prick test response. We also detected no significant difference (p-
value = 0.6774) in predicted age between children with a 5-year diagnosis based on their SPT responses.  

To look at overlap in another way, we also compared only children with a single 5-year diagnosis (n=251 
children) to children with no diagnosis (Supplemental Figure 1d). We found that children with a single 
diagnosis had a significantly lower predicted age than children with no diagnosis (p-value = 0.002332). 

We have now referenced these new analyses within the manuscript within Lines 118-120. 

Additionally, please see below our new Supplemental Figure 1. 

 

We thank the reviewer for their insightful comments, and we feel these additional analyses significantly 
improve our overall findings. We acknowledge that disentangling different signals of the allergic diseases 
based on underlying allergic sensitization is worthwhile and have noted this as a future direction in Lines 
372-377 in the Discussion section. 

 
2. Any underlying other feature common to all allergic outcomes such as a family history, breastfeeding 
and antibiotic usage as shown in figure 1 A/B or persistent sensitization as defined in the LCA in 
reference 45 rather than any sensitization may be the true factor associated with microbiome maturation. 
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In this case, mediation analyses between the potential underlying tertium comparationis and the outcomes 
would be more appropriate. 

Thank you for this interesting comment. We agree that both the underlying features during early life 
common to allergic outcomes play a clear role in microbiome development, and that proneness to 
persistent sensitization may also be reflective of microbiome maturation. Within this study, we focused 
on studying the relationship between maturation and allergic diseases at 5 years. We were not powered 
to limit our analyses to persistent sensitization at 1y, 3y, and 5y and still perform shotgun metagenomics 
and metabolomics.  

To address your comment, we compared the effects of early-life exposures and microbiome maturation 
on the development of a 5-year allergic disease and have now included this in Supplementary Fig. 2. 
Similar to our previous Figure 1 (now current Figure 2) we performed a conditional logistic regression 
that included microbiota-predicted age in addition to known clinical/environmental features associated 
with allergic sensitization. Predicted age remained significantly protective against the development of 
one or more allergic diseases with adjustment for other covariates. In this multivariable model, maternal 
atopy and antibiotic usage remained significant risk factors. This was similarly the case for breastfeeding. 
The relationship between breastfeeding and allergies was reduced in the smaller, less powerful shotgun 
metagenomic cohort without predicted age included (aOR=0.74 (0.41, 1.32); p-value = 0.3) and this 
remained the same when predicted age was added.  

While our current available clinical and environmental variables cannot explain the observed reduction 
in predicted age, we agree that further exploration of linking specific environmental influences and/or 
clinical diagnoses with microbiota maturation is important. We added a comment to this effect on Lines 
376-378 in the Discussion section. 

 
3. Further along this line of reasoning: T which life style factors (family history, breastfeeding, antibiotic 
use) determined the 9 taxa associated with allergy development and protection, respectively? 

Thank you for this inquiry.  

Within the subset of metagenomics samples used within this study, the following are the results of models 
between microbes and antibiotic usage, breastfeeding, and family history (no species were significantly 
associated with maternal atopy). 

Species Variable Cefficient St. err. P-Value FDR 

Megasphaera 
micronuciformis 

Breastfeeding at 6 months 0.71 0.10 0.00 0.00 

Veillonella atypica Breastfeeding at 6 months 0.64 0.11 0.00 0.00 

Tyzzerella nexilis Breastfeeding at 6 months -0.55 0.11 0.00 0.00 

Clostridium innocuum Breastfeeding at 6 months -0.45 0.10 0.00 0.00 

Intestinibacter bartlettii Breastfeeding at 6 months -0.37 0.10 0.00 0.00 

Ruminococcus gnavus Breastfeeding at 6 months -0.33 0.09 0.00 0.00 

Sellimonas intestinalis Breastfeeding at 6 months -0.41 0.12 0.00 0.00 
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Erysipelatoclostridium 
ramosum 

Breastfeeding at 6 months -0.29 0.11 0.01 0.01 

Eggerthella lenta Breastfeeding at 6 months -0.20 0.07 0.01 0.02 

Enterococcus faecalis Breastfeeding at 6 months -0.22 0.09 0.02 0.03 

Escherichia coli Breastfeeding at 6 months 0.29 0.12 0.02 0.03 

Gordonibacter pamelaeae Breastfeeding at 6 months -0.19 0.09 0.04 0.07 

Ruminococcus bromii Breastfeeding at 6 months -0.25 0.12 0.04 0.07 

Clostridium innocuum Paternal atopy -0.60 0.24 0.01 0.05 

Erysipelatoclostridium 
ramosum 

Paternal atopy -0.56 0.25 0.02 0.07 

Bifidobacterium longum Antibiotic usage by 1 year -1.54 0.40 0.00 0.00 

Tyzzerella nexilis Antibiotic usage by 1 year 1.01 0.27 0.00 0.00 

Clostridium innocuum Antibiotic usage by 1 year 0.73 0.25 0.00 0.01 

Veillonella atypica Antibiotic usage by 1 year -0.80 0.27 0.00 0.01 

Sellimonas intestinalis Antibiotic usage by 1 year 0.81 0.29 0.01 0.02 

Hungatella hathewayi Antibiotic usage by 1 year 0.78 0.30 0.01 0.02 

Megasphaera 
micronuciformis 

Antibiotic usage by 1 year -0.53 0.24 0.03 0.06 

Supplementary Table. 4. Microbiota associated with important clinical features in allergic disease. 
MaAsLin2 results indicating the microbe identified as significant, the variable and comparison group, 
coefficient of association, standard deviation, p-value, and FDR-corrected p-value.  

While none of these features accounted for all the bacterial alterations that we observed in relation to 
both allergic disease diagnoses and predicted age, we have added these results in Supplementary Fig. 4 
as well as Lines 188-192 in the Results section of the manuscript. 

We believe that this analysis provides meaningful context to our original findings, as it relates the 
microbiome species’ signals back to participant clinical and familial information. We thank the reviewer 
for this question and appreciate that improvement to our manuscript as a result of these additional 
analyses. 

 
4. The CHILD cohort followed 3495 enrolled subjects. The authors must report if any selection bias, e.g. 
further enrichment of a positive family history or of allergic sensitization/outcomes occurred in the 
subsample of n=589. 

Thank you for this important comment. The general cohort of the CHILD study included 3,264 infants 
eligible at birth. In order to achieve our aim of creating a clear comparator group we did exclude 
individuals if they did not have a 5-year diagnosis AND a recorded negative SPT response AND no history 
of wheeze data for all three of the visits (1y, 3y, and 5y). For example, this meant that if a child was 
considered non-allergic by physician diagnosis at 5 years but had a positive SPT response at 1 year, then 
they were excluded. Furthermore, we required documented SPT and wheeze data for every visit (1y, 3y, 
and 5y), so this meant that children with no diagnosis and no history of allergic sensitization or wheeze 
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could still be eliminated if they had missed a single visit. Because of this stringent selection, the clinical 
cohort used in our study is understandably different from the larger general cohort as we eliminated a 
number of sub-clinical atopic children. Furthermore, the requirement to attend every visit also likely 
introduced some bias towards families with the available time and resources to achieve perfect adherence 
to the study.  

Based on your suggestion, we have now added Supplemental Table 2. When comparing the clinical 
cohort in our study to the larger general cohort, we measure a difference in breastfeeding (4% increase) 
and maternal atopy prevalence (1.2% increase). Importantly, the samples in metagenomic and 
metabolomic analysis did not significantly differ from our clinical analysis. We have now added this as 
Supplementary Table 1 (Line 140).  

Variable 
Overall 
CHILD 

Population 
Clinical 

p value 
(Clinical vs. 

Overall) 
Metagenomic 

p value 
(Metagenomic 

vs. Clinical) 
Metabolomics 

p value 
(Metabolomics 

vs. Metagenomic) 
No. patients 3264 1115   589   509   
Male, n(%)     0.68   0.57   0.9 

  1717 
(52.6%) 595 (53.4%)   323 (54.8%)   281 (55.2%)   

Ethnicity of Child, n(%)     0.35   1   0.85 

Caucasian White 2043 
(63.6%) 689 (62.1%)   365 (62.1%)   312 (61.4%)   

Non-Caucasian 1167 
(36.4%) 421 (37.9%)   223 (37.9%)   196 (38.6%)   

Delivery Mode, n(%)     0.79   0.57   0.99 

Vaginal 2412 
(74.8%) 814 (74%)   421 (71.7%)   363 (71.6%)   

C-Section with labor 425 (13.2%) 146 (13.3%)   87 (14.8%)   74 (14.6%)   
C-Section without labor 387 (12%) 140 (12.7%)   79 (13.5%)   70 (13.8%)   
Breastfeeding status at 6 
months, n(%)     0.0091   0.95   1 

  2323 
(76.4%) 884 (80.2%)   473 (80.4%)   408 (80.3%)   

Season of birth, n(%)     0.85   0.79   0.9 
Spring 889 (27.2%) 293 (26.3%)   165 (28%)   146 (28.7%)   
Summer 830 (25.4%) 297 (26.6%)   145 (24.6%)   130 (25.5%)   
Fall 755 (23.1%) 259 (23.2%)   137 (23.3%)   120 (23.6%)   
Winter 790 (24.2%) 266 (23.9%)   142 (24.1%)   113 (22.2%)   
Atopy of father, n(%)     0.84   1   0.94 

  1663 
(67.7%) 622 (67.2%)   330 (67.3%)   289 (67.7%)   

Atopy of mother, n(%)     0.068   0.29   1 

  1727 
(57.7%) 668 (60.9%)   371 (63.5%)   321 (63.6%)   

Having older sibling, n(%)     0.89   0.3   0.86 

  1452 
(45.9%) 500 (45.6%)   282 (48.3%)   247 (49%)   

Antibiotics use in the first year 
of life, n(%)     0.11   0.8   0.65 

  605 (18.5%) 231 (20.7%)   125 (21.2%)   102 (20%)   
NO2 in the first year of life     0.23   0.33   0.87 

Median (Range) 9.1 (0.5, 
30.5) 

8.8 (1.2, 
29.1)   9.1 (1.2, 29.1)   9 (1.2, 29.1)   

IQR (Q1,Q3) 4.6, 13.3 4.5, 12.9   4.7, 13.3   4.6, 13.2   
Birth weight Z-score     0.76   0.47   0.74 

Median (Range) -0.1 (-3.1, 
4.3) 

-0.1 (-3.1, 
3.7)   -0.1 (-2.6, 3.7)   -0.1 (-2.6, 3.7)   

IQR (Q1,Q3) -0.7, 0.5 -0.7, 0.6   -0.7, 0.6   -0.7, 0.7   
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Again, we thank the reviewer for flagging the importance of this comparison. We have also added a 
note in the Discussion section at Lines 345-349 outlining the inherent differences between the CHILD 
cohort and our analysis sub-cohorts. 

 
5. The methods section does not report allergic sensitization to pollen, yet in reference 45 SPTs to also 
aeroallergens are mentioned for age 3 years. How many children were ONLY sensitized to tree and/or 
grass but not to other allergens ?`In other words, how many children would have been non-atopic at age 
3 years when excluding the children ONLY sensitized to tree and/or grass ? 

Thank you for pointing this out. We apologize for the confusing language. We have updated the methods 
to replace the original term “environmental inhalant allergens” to include each pollen source in the 
Methods section at Lines 416-420 to be more specific.  

 
6. The authors report a decrease in Shannon diversity at age 3 and age 12 month – was such association 
also seen for other measures of alpha diversity ? 

Thank you for this inquiry. The following analyses are our reported changes of Observed and Faith’s PD 
alpha diversity. 

3-month sample diversity stratified by allergic disease diagnoses at 5 years:  

Diversity 
measure 

Allergic disease Mean P-value 

Observed    
 Healthy controls 17.81 Ref 
 Atopic dermatitis 17.10 0.93 
 Asthma 16.43 0.39 
 Allergic rhinitis 17.55 0.64 
 Food allergy 16.58 0.48 
 One or more 17.22 0.56 
 Two or more 16.65 0.03 
Faith’s PD    
 Healthy controls 4.02 Ref 
 Atopic dermatitis 3.94 0.94 
 Asthma 3.93 0.94 
 Allergic rhinitis 4.02 0.57 
 Food allergy 3.85 0.47 
 One or more 3.97 0.80 
 Two or more 3.92 0.16 

Notably, alpha diversity is consistently not significant across all comparisons, except from two or more 
allergic diseases for observed diversity, for the samples collected at 3 months, when looking at these 
two additional measures of alpha diversity.  
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1-year sample diversity stratified by allergic disease diagnoses at 5 years:  

Diversity measure Allergic disease Mean P-value 
Observed    
 Healthy controls 37.7 Ref 
 Atopic dermatitis 34.8 0.0013 
 Asthma 34.6 0.005 
 Allergic rhinitis 35.5 0.026 
 Food allergy 34.35 0.013 
 One or more 35.27 0.0015 
 Two or more 34.27 0.0066 
Faith’s PD    
 Healthy controls 7.05 Ref 
 Atopic dermatitis 6.71 0.0037 
 Asthma 6.70 0.011 
 Allergic rhinitis 6.79 0.046 
 Food allergy 6.67 0.028 
 One or more 6.77 0.0048 
 Two or more 6.63 0.0067 

In contrast to the results of analyses of the microbiota communities at 3 months, the significance reported 
in the original analyses using Shannon diversity continues for a number of comparisons using Observed 
and Faith’s alpha diversity. This includes significance between the healthy subset of participants and 
participants with atopic dermatitis, asthma, one or more diagnoses, and two or more diagnoses at 5 years. 
In addition, the 1-year samples of participants with two or more diagnoses at 5 years are also significant 
for differences in Faith’s PD alpha diversity. This is interesting in that having two or more allergic 
diagnoses at 5 years corresponds to the most severe alterations in diversity at 1 year.  

Overall, these additional comparisons support our further exploration of alterations within the 1-year 
samples as they reflect the biological imbalances that may be a source or a reflection of immune system 
dysregulation.  

 
7. Most of the manuscript focuses on the maturation at age 12 months. The investigators however also 
collected fecal samples at age 3 month. Was there any association between microbiome features, in 
particular alpha-diversity at age 3 month at the maturation as assessed by age 12 month ? 

We thank the reviewer for this thoughtful question. We performed this analysis with the 3-month samples 
included in this study. Although it is not significant, 3-month Shannon diversity tends to be associated 
with predicted age by age 12 months, with adjustment for exact age and random factor of collection site 
(p = 0.0553).  

                 Value   St. Error  DF  t-value  p-value 
(Intercept)  0.9086076  0.02350310  604  38.65906  0.0000 
Shannon      0.0204377  0.01064297  604  1.92030  0.0553 
exact_age    0.0164659  0.06521477 6 04  0.25249  0.8008 
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While this link between 3-month sample diversity and 1-year sample predicted age is interesting, we 
have opted not to include these statistics within the manuscript to instead focus on results with 
significance. We again thank the reviewer for this thoughtful question and hope that these findings are 
sufficient answers to their inquiry.  

 
8. According to figure 5c tryptamine measured in fecal samples was strongly positively correlated to 
most of the 11 Metacyc-annotated gene pathways. Yet, in figure 6 they appear as independent 
contributors in the structural equation modeling diagram. How can individual independent effects be 
disentangled for each individual contributing factor ? This also applies to the discussion section where 
much emphasis is put on the trace amines. 

Thank you for this comment. The fact that the trace amines were strongly correlated with the Metacyc-
annotated pathways indicated that they were acting in a similar direction within the gut. We interpreted 
this as them being involved in an increased risk for allergic disease due to decreased predicted age and 
hypothesized that they were working in concert to effect or reflect an imbalance in the gut. As SEMs are 
based upon hypotheses, we hypothesized that, together, these features were mediating the relationship 
between microbiota-predicted age at 1 year and the development of allergic disease at 5 years.  

Thus, within the structural equation model, we combined the pathways and metabolites into a latent 
variable using confirmatory factor analysis, which allows the researcher to test the hypothesis that a 
relationship between observed variables and their underlying latent constructs. At its core, the purpose 
of latent variables is to translate that multiple observed variables are potentially imperfect manifestations 
of one underlying cause. Given the fact that microbiome data is interrelated and sparse, the combination 
of features may therefore offer a more appropriate underlying representative variable across the proposed 
variables.  

To further clarify this, we provide a sensitivity analysis with an SEM including only the metabolites and 
not the Metacyc-annotated pathways. Moreover, we have now included butyrate within our SEM due to 
its association with microbiome features in the revised correlation heatmap, as well as its biological 
relevance to the bacteria that were depleted in participants who went on to be diagnosed with allergic 
diseases at 5 years.  

When only using the trace amines tryptamine, tyramine, and phenylethylamine, and butyrate, the 
following is the output of the SEM lavaan model: 

Comparative Fit Index (CFI)                    0.855       
Defined Parameters: 
                     Estimate   Std.Err   z-value   P(>|z|)    Std.lv        Std.all 
    indirect_all      -0.200     0.113    -1.773     0.076    -0.200      -0.023 
    direct_all        -1.775     0.543    -3.271     0.001    -1.775      -0.205 
    total_all         -1.976     0.531    -3.723     0.000    -1.976      -0.229  

The latent variable including only the metabolomic features tends to be a significant mediator. Again, 
given that the indirect effect of metabolites is not powerful enough to be significant by themselves, we 
continue to deem the integration of the metabolites with the significant pathways as a meaningful 
mediating factor within the current manuscript. 
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We found that in addition to these Metacyc-annotated pathways, the indirect effect is significant with a 
high comparative fit index.  

Comparative Fit Index (CFI)                    0.949      
Defined Parameters: 
                     Estimate   Std.Err   z-value   P(>|z|)    Std.lv  Std.all 
    indirect_all      -1.825     0.523    -3.491     0.000    -1.825   -0.211 
    direct_all        -0.151     0.744    -0.203     0.839    -0.151   -0.017 
    total_all         -1.976     0.531    -3.723     0.000    -1.976   -0.229 

Thus, we have continued to include the metabolites of interest as identified within our analyses, as well 
as the functional pathways that may be underlying the relationship between the species-derived predicted 
age of the samples. 

9. Line 185: I assume this relates to 12 mo fecal samples ? 

Yes, our follow-up analyses are performed using the 12-month fecal samples. We have clarified this on 
Lines 172 - 175 prior to these points.  
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Reviewer #3 (Remarks to the Author): 
 
Hoskinson et al have studied the differences in gut microbiota between children with allergic disease 
and compared them to a control group. The study is interesting and creative in the way it has addressed 
the problem and I think will be of interest to Nature Comms readers. I very much enjoyed reading it. 
 
We thank the reviewer for their positive feedback. 
 
I have concentrated on the metabolomics analysis as my area of expertise. The reasoning of the paper is 
clear, although more details on how the technical aspects of metabolomics may be influencing the results 
should be considered.  
 
The conclusions have been drawn on a single 2 mL aliquot of stool. This is common practice in this field, 
but there is good evidence to suggest that certain metabolites may not be homogenously spread 
throughout the stool. In addition, the methods for stool preparation are not well described, but according 
to their cited paper Moraes et al, may have been refrigerated for up to three days. This will certainly 
affect the metabolome, and may also have affected the microbiome. Was any attempt made to assess and 
control for length of refrigerated storage?  
 
Regarding stool homogeneity: Stool was scooped from diapers into a single collection tube that was then 
aliquoted into smaller freezer tubes depending on the amount prior to long-term storage by research staff 
without any homogenizing steps.  
 
Regarding short-term storage: We thank the reviewer for this insightful comment. We had not accounted 
for storage preprocessing steps prior to the reviewer’s comment, but we completely agree that it could 
introduce technical variability into our results. We appreciate that our new analysis accounting for the 
time between collection and long-term storage substantially improves the validity of our findings. 
Between sample collection and long-term -70°C storage, samples were placed at 4°C for varying lengths 
of time, and this period of short-term storage was recorded by CHILD study investigators and staff.  
 
Our initial analysis incorporating this storage processing time can be seen in the following figure. To 
summarize, when we correlated Predicted age and processing time, we saw no association (panel a: 
spearman rho= -0.13, p=0.76). While microbiome DNA abundances would be much slower to shift at 
4°C, we wanted to alleviate your (and subsequently our) concerns that processing time had not resulted 
in artifacts when quantifying either the microbiome-derived predicted age or differences in 5-year allergy 
diagnosis.  
 
We also interrogated whether there were any differences in processing time between infants who would 
receive a 5-year allergy diagnosis or not (panel b and c). Encouragingly, we found no significant 
difference between the processing times for our primary groups of interest, the healthy, non-allergic 
controls and participants with one or more allergic diseases (p = 0.44). Further, as seen in the histogram, 
the vast majority of samples were placed into long-term in the first 24-36 hours, but our data shows a 
handful of samples that were kept in short-term storage for up to 72 hours and one in particular that 
extended to 96 hours.  
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As you rightfully point out, metabolite concentrations could change due to volatility or breakdown in 
this period, so we looked at the effect of processing time on metabolites using our Maaslin2 analysis 
(while continuing to adjust for exact age and treating the site as a random effect). Similar to what has 
been shown in other literature, processing time does indeed affect concentrations of certain metabolites 
as shown below.  

R = −0.013, p = 0.76

6

8

10

12

14

0 25 50 75 100
Processing time (hours)

Pr
ed

ic
te

d 
ag

e 
(m

on
th

s)
0.44

0

25

50

75

100

No diagnoses One or more diagnoses
Group

Pr
oc

es
sin

g 
tim

e 
(h

ou
rs

)

at_least_1_focus_5year_annotated
No diagnoses

One or more diagnoses

0.000

0.025

0.050

0.075

0.100

0 25 50 75 100
Processing time (hours)

D
en

si
ty

100

a b

c

 



17 

 
 
 
Because of this, we have now added processing time to the variables that we adjust for in all of our 
analyses that include metabolic profiles (current Figure 6 and Figure 7). This has also been added to our 
manuscript in Lines 241-243. 
 
We have also clearly outlined our steps within our revised Methods section at Lines 490-507.  
 
Encouragingly, when we adjust for processing time, our results stayed consistent. Our primary findings 
remain. Furthermore, thanks to the reviewer’s suggestion, we now observe a significant association 
between Butyrate (a volatile SCFA that is sensitive to processing time but has been linked to a number 
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of important biological processes, including allergies) and our microbiome features associated with 
predicted age. Our newly generated figures can be viewed within our revised manuscript Fig. 6 and in 
Supplemental Fig. 6, both shown below. 
 

 
Fig. 6. Relating significant microbiome features with metabolic profiles in the gut. a Principal 
component analysis (PCA) plot of variance within the 1-year gut metabolome and colored by predicted 
age distribution. b Weighted gene co-expression analysis (WGCNA)-determined modules and 
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interactions of metabolites in the 1-year gut, mapped using Cytoscape. c Spearman correlation heatmap 
of the relationship between metabolites, WGCNA clusters, and microbiome features of interest 
identified in Fig. 3 and 4. (*) q < 0.05. 
 

 
Supplementary Fig. 6. Metabolites linked to predicted age and allergic disease. MaAsLin2 results of 
metabolites associated with a predicted age and b one or more allergic disease. 
 
In addition, we have adjusted the text of the manuscript to reflect our findings, ranging from Lines 231 
– 284. 
 
 What data have you to show that your method gives reliable, repeatable results? 
 
In addition to our robust CHILD cohort dataset, including n = 204 healthy control samples and n = 305 
case samples, including participants with atopic dermatitis (n = 182), asthma (n = 90), food allergy (n = 
65), and allergic rhinitis (n = 96), all metabolic processing was performed by The Metabolomics 
Innovation Centre (TMIC) which is a nationally funded metabolomics core facility spanning 4 Canadian 
Universities (https://metabolomicscentre.ca) that has contributed to hundreds of peer-reviewed 
publications. The methods used in our analyses have thus been previously published 1-4. Both NMR and 
LC-MS assays are validated for fecal samples. The core also cross-checks the concentration values for 
overlapping metabolites by these two orthogonal methods, confirming the accuracies of the reported 
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concentration values. As a measurement of reliability, TMIC verified assay precision by calculating the 
coefficient of variability (CV%) for both NMR (CV< 5%) and LC-MS/MS (CV<10%) analyses.   
 
This has been updated within the methods section in Lines 466-474. 
 
The metabolomics protocol does not contain enough information to allow the experiment to be repeated. 
Specifically, it does not give any information on extraction methods. There should be more details 
provided in the supplementary on the extraction techniques and the metabolites which were detected by 
NMR and MS and whether any overlapped. The results cannot be reliably assessed without more 
information on number of batches, inter and intra batch effects and assessment of technical biases in the 
datasets. 
 
Thank you for this comment and for the detailed consideration of the metabolomics methods. We have 
worked with TMIC to amend our main methods section with additional details of the primary 
methodology for our metabolomics analysis. We have also added comprehensive details to the 
supplementary information of the metabolomics data collection.  
 
We have outlined our responses in our point-by-point responses to the reviewer’s comments below and 
have noted the lines in which we have altered the main Methods and Supplementary Files of 
metabolomics protocols.  
 
Supp methods section: 
 
For Stool preparation methods, please include the following details: 
Number of batches run for each method 
 
62 batches for NMR; 27 batches for LC-MS/MS (Lines 466-474). 
 
Batch differences – how they were assessed and corrected 
 
We had originally adjusted for batches within our Maaslin2 analysis, but have since improved our batch 
correction methods based on your comments. We now use the R package ComBat to separately correct 
the NMR dataset and the LC-MS/MS dataset by their respective batches. This is outlined within the main 
text and Lines 490-507. 
 
Carryover or background levels of metabolites – how were they assessed and corrected for. 
 
Whether or not there was a significant carry-over was observed by comparing the Cal7 injection and the 
following double blank injection for LC-MS/MS data evaluation while background subtraction methods 
were not used for NMR, as blanks were checked properly before analyzing the samples (both points 
added to the Supplementary Methods file). 
 
Number of metabolites targeted with each method 
Number found for each method 
Number which were measured in the quantitative range for each method. 
31 metabolites were targeted for NMR; and 590 metabolites were targeted for LC-MS/MS, and we 
received data for each of these metabolites from TMIC including whether values fell below the limit of 
detection (LOD).  
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All of the NMR metabolites were used for downstream statistical analyses.  
 
For LC-MS/MS: We eliminated 244 metabolites that were detected in less than 20% of either 3 month 
or 1-year samples. Additionally, we eliminated another 132 metabolites with low variance defined by 
standard deviation of less than 0.005.  
 
This resulted in 245 total metabolites used for our downstream analyses (31 detected via NMR and 214 
detected via LC-MS/MS). This is outlined within the main text and Lines 490-507. 
 
LC-MS analysis supp method 
Red PEEK tubing – this is not very informative since different companies use different colours to 
denote different internal diameters.Please include company and internal diameter and length of tubing. 
 
Thank you for your inquiry, the tubing information can be found below (and in the LC-MS/MS 
Supplementary Methods file):  
Company: Sigma-Aldrich 
O.D. × I.D. 1/16 in. × 0.005 in 
Length: 50 cm 
 
LC-MS analysis – please give more details about the calibration concentration ranges, number of 
calibration points and whether standards were run as individual standards or as mixed standard calibrants. 
What was the matrix that the calibrants were analysed in and how was background and carryover checked 
and accounted for.  
 
We thank the reviewer for their comment. The following are more details of the calibration concentration 
ranges, the number of calibration points, and the subsequent analysis of matrix calibrants and background 
carryover (added to Supplementary Methods file). 
 
Firstly, there were 7 calibration points and the calibrants were run as a mixture. Calibrants were prepared 
in a matrix-free solution. Whether or not there was a significant carry-over was observed by comparing 
the Cal7 injection and the following double blank injection. The calibration ranges were as follows: 

 
Metabolite Calibration range 

1,3-Diaminopropane 0.15~12 
1-Methylnicotinamide 1.875~150 
3-Methoxytyramine 0.2~16 

5-Hydroxylysine 0.75~60 
5-Methoxytryptamine 0.05~4 

5-Methyluridine 0.25~20 
7-Methylguanine 0.5~40 

AABA 0.8~64 
Adenine 0.125~10 

Adenosine 0.5~40 
Agmatine 0.1~8 

Ala 200~16000 
Allantoin 3.75~300 

alpha-Aminoadipic acid 2.5~200 
Arg 15~1200 
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Asn 25~2000 
Asp 30~2400 

beta-Alanine 2.5~200 
Betaine 5~400 

Carnosine 0.2~16 
Choline 2~160 

cis-4-Hydroxyproline 0.6~48 
Citrulline 30~2400 
Creatine 1~80 

Creatinine 6~480 
Cystathionine 1~80 

Cytidine 1.6~128 
Cytosine 1~80 

Deoxyadenosine 1~80 
Deoxycytidine 1.5~120 

Deoxyguanosine 1.6~128 
Deoxyinosine 1.5~120 
Deoxyuridine 4~320 

Diacetylspermine 0.3~24 
Dimethylamine 3~240 

DOPA 0.3~24 
Dopamine 0.2~16 

Epinephrine 0.1~8 
Ethanolamine 12.5~1000 

GABA 3.2~256 
Gln 100~8000 
Glu 250~20000 
Gly 125~10000 

Guanine 0.5~40 
Guanosine 2~160 

His 12~960 
Histamine 0.2~16 

Homoarginine 0.6~48 
Homocitrulline 2.5~200 
Hypoxanthine 28~2240 

Ile 12.5~1000 
Indole 0.25~20 

Indole-3-acetamide 0.2~16 
Inosine 1.6~128 

Kynurenine 0.5~40 
Leu 20~1600 
Lys 200~16000 
Met 40~3200 

Methionine sulfoxide 5~400 
Methylamine 7.5~600 

Methylhistidine 4~320 
N1-Acetylspermidine 1~80 

N2-Acetyl-Orn 0.5~40 
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N-Acetylputrescine 7.5~600 
Nicotinamide ribotide 3~240 

Nitro-Tyr 0.625~50 
Norepinephrine 0.15~12 
Nudifloramide 1.5~120 

Orn 10~800 
Phe 50~4000 

Phenylethylamine 0.1~8 
Pro 30~2400 

Putrescine 0.5~40 
Sarcosine 0.2~16 

Ser 50~4000 
Serotonin 0.1~8 

Spermidine 1.35~108 
Spermine 0.25~20 
Taurine 2~160 

Thr 50~4000 
Thymidine 5~400 
Thymine 0.4~32 
TMAO 1~80 

total DMA 2~160 
trans-4-Hydroxyproline 0.6~48 

Trimethylamine 5~400 
Trp 12.5~1000 

Tryptamine 0.5~40 
Tyr 25~2000 

Tyramine 0.5~40 
Uracil 25~2000 

Uridine 4~320 
Val 100~8000 

 
  

Xanthine 25~2000 
Uric acid 20~1600 

p-Cresol sulfate 3~240 
4-Ethylphenyl sulfate 0.125~10 

Indoxyl sulfate 4.5~360 
Lactic acid 12.5~1000 

3-Aminoisobutyric acid 4~320 
Dimethylglycine 0.625~50 

2-Hydroxybutyric acid 0.5~40 
2-Hydroxyisobutyric acid 0.5~40 

3-Hydroxybutyric acid 0.25~20 
3-Hydroxyisobutyric acid 0.2~16 

Glyceric acid 2~160 
Guanidoacetic acid 12.5~1000 

N-Acetyl-Gly 4~320 
2-Hydroxy-2-methylbutyric acid 1.25~100 
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2-Hydroxyisovaleric acid 0.3125~25 
3-Hydroxyisovaleric acid 0.5~40 
3,4-Dihydroxybutyric acid 6~480 

Benzoic acid 0.5~40 
5-Oxoproline 250~20000 
Pipecolic acid 1.6~128 

Guanidinopropionic acid 0.3~24 
N-Acetyl-Ala 10~800 

2-Hydroxy-3-methylvaleric acid 0.5~40 
Phenylacetic acid 25~2000 

Threonic acid 3.75~300 
4-Hydroxybenzoic acid 0.625~50 

Salicylic acid 0.8~64 
N-Acetyl-Ser 1.25~100 
Xanthosine 0.5~40 

2-Hydroxyphenylacetic acid 2.5~200 
3-Hydroxyphenylacetic acid 5~400 
4-Hydroxyphenylacetic acid 3~240 

Orotic acid 1.5~120 
N-Acetyl-Pro 2~160 
Tiglylglycine 0.8~64 
N-Acetyl-Val 0.5~40 

Indoxyl glucoside 2.5~200 
Indole-3-carboxylic acid 0.5~40 

Quinoline-4-carboxylic acid 0.25~20 
N-Acetyl-Leu 0.5~40 
Quinaldic acid 0.25~20 
N-Acetyl-Ile 6.25~500 
Shikimic acid 0.8~64 
N-Acetyl-Asn 2~160 

3-Indoleacetic acid 25~2000 
Argininic acid 2.5~200 
Hippuric acid 5~400 
Caffeic acid 1.25~100 

Homovanillic acid 2.5~200 
HPHPA 0.25~20 

N1-Acetyl-Lys 2.5~200 
N6-Acetyl-Lys 6.25~500 
N-Acetyl-Gln 5~400 

Kynurenic acid 0.5~40 
Indole-3-propionic acid 0.5~40 

5-HIAA 1.6~128 
N-Acetyl-Met 0.5~40 

2-Methylhippuric acid 0.25~20 
cAMP 0.25~20 

p-Hydroxyhippuric acid 1.25~100 
N-Acetyl-His 1.25~100 

Indolelactic acid 0.5~40 
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N-Acetyl-Arg 5~400 
Pyruvic acid 2.5~200 
N-Acetyl-Tyr 1.25~100 
Oxalic acid 10~800 

Acetoacetic acid 12.5~1000 
Malonic acid 1.5~120 
N-Acetyl-Trp 0.625~50 

alpha-Ketoisovaleric acid 0.6~48 
Fumaric acid 5~400 
Maleic acid 5~400 

Methylmalonic acid 1~80 
Succinic acid 12.5~1000 

Phenylacetylglutamine 5~400 
2-oxoisocaproic acid 2.4~192 

5-Aminolevulinic Acid 2.5~200 
Ethylmalonic acid 0.5~40 

Glutaric acid 6.25~500 
Malic acid 12.5~1000 

N-Methyl-Asp 5~400 
2-hydroxyglutaric acid 3.125~250 

Tartaric acid 5~400 
FDCA 0.5~40 

2-oxoadipic acid 12.5~1000 
3-Methyladipic acid 1.25~100 
3-Deoxyglucosone 6.25~500 

Quinolinic acid 0.5~40 
Indoxyl glucuronide 0.5~40 

N-Acetyl-Asp 5~400 
4-Hydroxyphenylpyruvic acid 1~80 

N-Acetyl-Glu 10~800 
CMPF 0.125~10 

Oxalacetic acid 50~4000 
alpha-Ketoglutaric acid 2.5~200 

cis-Aconitic acid 1.25~100 
Isocitric acid 2.5~200 
Citric acid 10~800 

 
 
How was identification carried out? 
 
Individual standards were used for all reported metabolites. Identifications were done with respect to 
standards and MRM transitions (added to Supplementary Methods file).  
 
DFI – unexplained acronym 
 
DFI stands for direct flow injection (added to Supplementary Methods file).  
 
NMR analysis supp method 
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“Typically all of visible peaks were assigned” – this is described in the methods as a targeted method, 
but this appears to be untargeted. Please clarify.  
 
We apologize for the awkward wording. The NMR analysis indeed satisfies the term “targeted”; the 
spectra were profiled against a known metabolite library. Regarding the assignment of all visible peaks, 
this applies to when, within this targeted assay, very low abundant peaks are not visible for manual 
assignment and are therefore not reported (as those are hard to quantify via a targeted method) (added to 
Supplementary Methods file) and updated within the Methods section Lines: 476-488.  
 
Also give an indication of background subtraction methods if used, how many peaks were discovered in 
the average sample and what level of matching similarity was required for identification. 
 
Background subtraction methods were not used, as blanks were checked properly before analyzing the 
samples (added to Supplementary Methods file). 
 
Main paper: 
 
1) How was this selection of stool samples chosen: randomly, a select group or was there any known 
bias in the selection. 
 
Thank you for this inquiry. For this paper, any participants from the clinical analyses in Figures 1 and 2 
that had available metagenomic or metabolomic data were analyzed. We did not apply any additional 
selection. This is reflected in Supplemental Table 1 demonstrated that they had similar demographics to 
the clinical analysis used in this paper.  
 
The full metagenomic cohort was recently published in Med and contains 3 month and 1 year sequencing 
data from nearly 1500 infants 5. All of those sequenced stool samples were also sent to TMIC for 
metabolic profiling, with the only eliminating criteria being not enough sample mass or the presence of 
diaper fibers. Any subsequent metagenomic or metabolomic data from participants used in the clinical 
analysis from Figures 1 and 2 were analyzed for Figures 3-7.   
 
2) How much stool was used, and what efforts were made to make sure it was a representative sample, 
especially in the original collection period. 
 
During the original collection period, stool was scraped off of diapers and no additional homogenization 
of the stool sample was performed. We have now added an additional sentence within the discussion on 
Lines 354-360 to clarify this for readers. 
 
For the metabolomics analysis, steps to make sure it was a representative sample included powdering the 
feces in liquid nitrogen and quickly transferring the samples to individual Eppendorf tubes, this was 
noted in the NMR and LC-MS/MS protocols. Six hundred microliters of ice-cold HPLC water were 
added to the fecal powder (60-65 mg) and vortexed vigorously for 5 min. Then it was shaken for 25 min 
at 1000 rpm at 40C on a shaker followed by sonication at 4°C for 15 min. The sonicated sample tubes 
were centrifuged at 14000 rpm for 20 min at 40C or in the cold room. 500 uL of the supernatant was then 
transferred to the pre-washed 3 KDa cut-off centrifugal filter units (Amicon Microcon YM-3) and 
centrifuged at 11000 rpm for 20 min at 40C or in the cold room. A 200 μL filtrate was then transferred 
to a new Eppendorf tube and 50 uL buffer (54% D2O:46% 1.75 mM KH2PO4 pH 7.0 v/v containing 
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5.84 mM DSS (2,2-dimethyl-2-silcepentane-5-sulphonate), 5.84 mM 2-chloropyrimidine-5 carboxylate) 
was added to it.   
 
3) The variance is relatively small, percentage wise. Given the inherent difficulties with achieving 
representative faecal samples, what measures were taken to validate this result with an independent 
cohort. 
 
At this point in our work, we have not validated metabolite concentrations and associations within an 
independent cohort apart from CHILD; and we support this as a future investigative step. We have added 
additional lines within our Discussion section to highlight the necessity of such a study at Lines 356-362.  
 
One note regarding the variance could be the fact that infants have a rather homogenous diet compared 
to older humans and thus may have less variation in their gut metabolomes.   
 
Line 247: you make a correlation between number of significant metabolites found and relative 
importance of the pathways they map to. However, whether metabolite concentrations change can also 
be a function of rate limiting steps in the metabolic pathway. This is more difficult to measure in a mixed 
microbial environment, but was it considered when analysing the results? 
 
Thank you for this interesting comment. This is a meaningful point in that metabolite concentrations can 
indeed change according to the slowest step in the related metabolic pathway, thereby determining the 
overall rate of the other reactions in the pathway and the metabolic output. We agree that it is worthwhile 
to parse out individual enzymatic steps with metabolite biosynthesis and breakdown. However, this is 
outside the scope of our study and also difficult to appropriately analyze using our current dataset. Rate-
limiting steps control the rate of a series of biochemical reactions; however, it is likely that there are 
multiple steps that control the rate of each of the pathways measured and each controlling step controls 
the rate to varying degrees. This, in addition to the mixed microbial environment, makes it difficult to 
attribute individual rate-limiting steps using ‘omics’ technologies within the uncontrolled environment 
of the infant's gut. We did not intend to attribute changes in particular metabolites to pathways or 
metabolites, and we have to use careful language that reflects this. Instead, our aim was to identify 
specific metabolites that, together with alterations in the microbiome, might be indicative of an 
imbalanced gut environment and therefore influence the development of allergic disease. Using the 
associations identified within this study, we hope that future validation studies can link specific gut 
metabolites with species-specific enzymatic steps, but this is outside of the scope of this current study. 
To incorporate this point into the manuscript, we have now included a section on this topic within the 
discussion, beginning at Lines 368-380. 
 
 
Line 411 unclear – “water content stool weight” – do you mean wet weight of stools? 
 
Water content was measured by weighing the fecal samples before and after lyophilization, the mass 
difference of the two weights was considered as the amount of water. The unclear language has been 
updated to reflect that the concentrations were normalized to dry weight measured after lyophilization. 
This has been included in the paper in Lines 476-488.  
 
Has the method been specifically validated for stool, and are the concentrations accurate, especially if 
the standards are run in a matrix free solvent. 
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Both NMR and LC-MS assays are validated for fecal samples. The core also cross-checks the 
concentration values for overlapping metabolites by these two orthogonal methods, confirming the 
accuracies of the reported concentration values. These details have been included in the manuscript's 
main Methods section at Lines 466-474, as well as in the Supplementary files  
 
413: missing values can bias a dataset: how many missing values were there as a percentage of the 
dataset, and were they missing at random or missing not at random. 
 
The original library of 590 targeted metabolites included a large proportion of lipid metabolites. Some 
of these metabolites (e.g. triglycerides) are naturally absent or found at trace levels in stool and so were 
detected below the limit of detection. Please see below piecharts. As far as other missing metabolites (we 
are defining missing as metabolites detected below the limit of detection), this was largely random and 
mostly relates to the interindividual variation between participants. To account for natural variability 
while still making sure that we were only analyzing metabolites whose effects could meaningfully be 
applied to the larger cohort, we required metabolites to be present in only 20% of either 3-month or 1-
year samples or have variation of at least a standard deviation of 0.005µmol/gram.  
 
 

 
 
I think you have used a standard approach to absolute quantification, using an internal standard to 
correct for technical variation and then assessing the result against a calibration curve. However, the 
way it is written here sounds as if you are calculating a ratio and then assessing it against a non-ratio 
measurement to determine the concentration. Perhaps reconsider the wording. 
 
Thank you for this comment. We have adjusted the wording to the following on Lines 476-488:  
 
I think to publish in a journal such as Nature Communications, there is a clear expectation that data 
should be freely available on a site such as Metabolytes and not require the reader to contact the author. 
This should preferably include the raw data since this is important to assess batch effects, 
contaminations, incorrect identifications etc. 
 
We have uploaded all of our NMR and LC-MS/MS data to MetaboLights and this will be made 
publicly available. The new accession number is MTBLS7919. Line 604. 
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Author contributions: it should be more clearly set out who carried out the metabolomics analyses. 

We thank the reviewer for pointing this out. We have now adjusted Lines 793-795 to state who carried 
out these analyses.  
 
“Investigation & Formal Epidemiological, Metagenomic, and Metabolomic Analysis, C.H, D.L.Y.D, 

and C.P.” 

 
 
1 Vergara, A. et al. Urinary angiotensin-converting enzyme 2 and metabolomics in COVID-19-mediated 

kidney injury. Clinical Kidney Journal 16, 272-284, doi:10.1093/ckj/sfac215 (2023). 
2 Bridgman, S. L. et al. Childhood body mass index and associations with infant gut metabolites and 

secretory IgA: findings from a prospective cohort study. International Journal of Obesity 46, 1712-1719, 
doi:10.1038/s41366-022-01183-3 (2022). 

3 Drall, K. M. et al. Clostridioides difficile Colonization Is Differentially Associated With Gut Microbiome 
Profiles by Infant Feeding Modality at 3-4 Months of Age. Front Immunol 10, 2866, 
doi:10.3389/fimmu.2019.02866 (2019). 

4 Zheng, J., Zhang, L., Johnson, M., Mandal, R. & Wishart, D. S. Comprehensive Targeted Metabolomic 
Assay for Urine Analysis. Analytical Chemistry 92, 10627-10634, doi:10.1021/acs.analchem.0c01682 
(2020). 

5 Azad, M. B. et al. Breastfeeding, maternal asthma and wheezing in the first year of life: a longitudinal 
birth cohort study. European Respiratory Journal 49, 1602019, doi:10.1183/13993003.02019-2016 
(2017). 

 

 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors addressed all comments. 

Figure 1A can remain as it is, but please keep also the table with the associated p-values and OR 

available as supplementary table to allow the reader to easily re-order the rows based on values. I 

recommend this manuscript for publication. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have made substantial efforts to revise their manuscript and I am pleased for them that 

it has resulted in an additional finding. 

I have only one remaining issue: that of treatment of missing values. “Missing not at random” can 

refer to the distribution across samples, but it commonly is also used to describe the phenomenon 

that features with much lower average intensity are more likely to be missing than those with strong 

intensities. This can bias statistical results, especially where the missingness is more due to technical 

issues rather than true biological differences. The authors have not referred to this scenario in their 

analysis and therefore I don’t know if they have considered it. 

The authors may therefore like to do a sanity check and just ensure that none of their reported 

important metabolites are affected by this issue. I don’t think that this should necessitate an 

additional round of review unless requested by the editor.  



POINT-BY-POINT RESPONSE TO REVIEWER COMMENTS 
 
Comments from Reviewer #1 
Reviewer #1 (Remarks to the Author): 
 
The authors addressed all comments. 
Figure 1A can remain as it is, but please keep also the table with the associated p-values and 
OR available as supplementary table to allow the reader to easily re-order the rows based on 
values. I recommend this manuscript for publication. 
 
We thank the reviewer for their recommendation of this manuscript for publication.  
 
The table and associated p-values will be included for the now Figure 2A to ensure 
accessibility for readers.   
 
Comments from Reviewer #3 
Reviewer #3 (Remarks to the Author): 
 
The authors have made substantial efforts to revise their manuscript and I am pleased for 
them that it has resulted in an additional finding. 
 
We again thank the reviewer for their input in helping us revise the metabolomics portion and 
the manuscript and believe that it has substantially improved the article.  
 
I have only one remaining issue: that of treatment of missing values. “Missing not at random” 
can refer to the distribution across samples, but it commonly is also used to describe the 
phenomenon that features with much lower average intensity are more likely to be missing 
than those with strong intensities. This can bias statistical results, especially where the 
missingness is more due to technical issues rather than true biological differences. The 
authors have not referred to this scenario in their analysis and therefore I don’t know if they 
have considered it. 
The authors may therefore like to do a sanity check and just ensure that none of their reported 
important metabolites are affected by this issue. I don’t think that this should necessitate an 
additional round of review unless requested by the editor. 
 
We thank the reviewer for sharing their thoughtful concern.  
 
As recommended, we have now tested all excluded metabolites (both missing and those with 
low variance and found that none of them were statistically associated with allergies at 5 
years, suggesting that they are truly missing at random and did not skew our analysis.  
 
We have included both the result table and code used to run the analysis in the supplemental 
data of the manuscript.  
 
Further, we have added the following sentence to the Methods section of our paper at Lines 
510-512 indicating that all excluded metabolites were confirmed to not be significantly 
associated with an allergic disease:  
 
“All excluded metabolites were confirmed to not be significantly associated with the presence 
of a 5-year allergy diagnosis (Supplementary Table 7).” 
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