
1

Supplementary information

A. Tracking COVID-19 outbreaks and interventions

A.1 Data collection for outbreaks and public-health measures

From 1 April 2020 to 31 May 2022, we collected daily reports of COVID-19 cases and

suspected sources, start and end dates, and strains of 261 outbreaks in the mainland of

China (23 provinces, 5 autonomous regions, and 4 municipalities) (see supplementary

Figure 1). The data was obtained from local government websites, reports from the local

Centers for Disease Control and Prevention, as well as updates from official social media

accounts of local authorities or health departments. The start date was marked by the first

reported index case, while the end date was determined by the last reported case for each

outbreak. Additionally, we recorded the number of daily new infections identified among

close contacts who had been isolated and quarantined during the outbreaks, based on

available records reported by local governments. In order to have an adequate sample size

for evaluating the effects of interventions, we excluded outbreaks that involved fewer

than 50 cases or lasted for less than 7 days. As a result, there are 131 outbreaks that were

eventually included in this study.

Further, the daily data of nine public-health measures for 131 outbreaks were also

collected in this study, including stay-at-home order (SO), business premises closures

(BPC), public transportation closures (PTC), gathering restrictions (GR), workplace

closures (WC), school closures (SC), facial masking (FM), mass screening (MS) using

Polymerase chain reaction (PCR) tests, medicine management (MM), and contact tracing
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(CT) (supplementary Table 1). We coded the stringency for each measure under the zero-

COVID policy in China from no interventions (0) to the strictest level represented by the

highest ordinal value, such as the lockdown of the whole city (stay-at-home mandate). As

the implementation of COVID-19 intervention policy might vary in stringency across

geographic areas/administrative division within a city (prefecture level), we also used

another ordinal metric to denote the geographic range (1 - Administrative divisions level,

2 - Township level, 3 - District/county level, 4 - City/prefectures level) for BPC, PTC,

GR, WC, SC and MM measures, where the most stringent NPI was presented. During the

pandemic, cities in China typically manage administrative divisions or villages as the

basic units. Several geographically adjacent administrations/villages form a street or

township, and several neighboring streets/townships constitute a district or county.

Cities/prefectures usually encompass multiple urban districts and surrounding counties.

Therefore, a higher value of the geographic scope indicator means that a larger area or

population would be affected by the measures implemented.

Furthermore, we documented the temporal frequency of MS as an integer ranging

from 1 to 7, denoting the number of tests for each person per week. CT was recorded on a

continuous scale, described as the ratio of the number of cases detected in isolated close

contacts to the total number of cases in daily reports, representing the intensity of contact

tracing. To avoid overestimating the close contacts actually tracked, CT was multiplied

by a confounding factor of 0.8, indicating an upper limit on tracking capacity. Please note

that we only focused on how to achieve the initial containment by implementing different

measures when a new outbreak occurs. Therefore, this study did not include the measures

that had been implemented consistently for preventing reintroduction of the virus during
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the study period in China, such as inter-city and international travel restrictions and

quarantine for incoming travellers from other countries or other high-risk Chinese cities

with ongoing community transmission 1,2 . To ensure accuracy, the intervention data for

each outbreak were collected independently by two authors, and then the data were cross

checked and decided following discussion between the authors, with full agreement

required prior to inclusion. Datasets and detailed sources are available via

https://github.com/wxl1379457192/Zeroing_out_emerging_contagions/blob/main/Datase

t.zip.

Considering NPIs as binary indicator variables have been commonly used, which can

help us to quantify the stringency and effects of measures 3–5 . However, outbreaks were

reported at the city or prefectural level, but interventions were often deployed at a smaller

administrative unit such as community or district level in China. Moreover, when

quantification was based on the ordinal levels of NPIs, we encountered situations where

specific geographic areas or intensity policies only existed during certain periods of

variant circulations. This makes it challenging to compare the effects of one policy across

different time periods. For example, Medicine Management measures of mid-stringency

(Require PCR tests for purchasers) were implemented after the emergence of the Delta

variant. Therefore, to longitudinally evaluate the impact of NPIs on variants, we

assembled the data of deployment geographical scope, thus combining them with the

stringency of NPIs and transforming the space-varying interventions into a variable

ranging from 0 to 1.
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Supplementary Fig 1. Spatial distribution of the 131 study outbreaks, with colours

representing the predominant variants. Areas with multiple outbreaks of multi-

variants were also marked by red (pre-Delta and Delta variants), green (pre-Delta and

Omicron variants), pink (Delta and Omicron variants), and blue (pre-Delta, Delta and

Omicron variants) separately.

Supplementary Table 1. Data of public-health measures for each outbreak collected

in this study.

ID Name Description Measurement Coding of stringency
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SO Stay-at-home
order

Record orders to restrict the
movement of people within the
certain regions, with residents
required to stay at home or
government-approved self-
isolation sites except for
essential needs like medical
appointments.

Ordinal scale 0-No measures

1-Require not leaving
house or assisted self-
isolation site for contacts
with high risk of exposure

2-Require not leaving
house for compounds with
high risk of exposure

3-Require not leaving
house for subdistricts with
high risk of exposure

4-Require not leaving
house for districts or
county with high risk of
exposure

5-Require not leaving
house for the whole city
(only urban guaranteed
personnel can leave)

BPC Business
premises
closure

Record orders to the temporary
access control or shutdown of
non-essential businesses or
public places, like shopping
malls, cinemas, bars, restaurants
and other entertainment venues.
The access control or restriction
is usually implemented with the
help of health codes, which
designate individuals as green,
yellow, or red based on their
potential exposure to the virus.

Ordinal scale 0-No measures

1-Require health code

2-Require restricted
numbers of visitors

3-Require closing some
entertainment place (e.g.,
cinemas, karaoke houses,
underground natatoria, etc)

4-Require closing all
business premises (except
grocery store, medical
institution, etc)
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PTC Public
transportation
closure

Record orders to the routine
environmental disinfection,
boarding control and temporary
suspension or reduction of public
transportation services. In some
cases, entire regions or cities
were placed under strict
lockdown, and all public
transportation services were
suspended. This meant that
buses, subways and other forms
of public transportation were not
running. In other areas, less
severe measures were
implemented, such as limiting
the frequency or capacity of
public transportation services, or
requiring commuters to provide
proof of a negative COVID-19
test or green health code before
boarding.

Ordinal scale 0-No measures

1-Require environmental
disinfection

2-Require health code or
restricted number of
passengers

3-Reduce volume/route of
transport available

4-Require closing public
transport

GR Gathering
restriction

Record orders on limiting the
number of people who could
gather in public or private spaces
to slow the spread of the virus. In
high-risk areas, gathering
restrictions were often
implemented as limiting
gatherings to fewer than 10
people, or banning all public
gatherings entirely. In other
areas, less severe measures were
implemented, such as limiting
the capacity of public venues
like restaurants, cinemas, and
shopping malls, or
recommending people to
maintain a certain distance from
each other in public spaces. In
addition to these public gathering
restrictions, there were also
restrictions on private gatherings,
particularly during holidays and

Ordinal scale 0-No restrictions

1-Recommend restriction

2-Restriction on gathering
between 11-500 people

3-Restriction on gathering
of 10 people or less
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family gatherings when people
are more likely to gather in large
groups.

WC Workplace
closure

Record the temporary shutdown
of non-essential business, and
the limitation on the number of
employees allowed to work on-
site. This means that some
employees may be required or
recommended to work from
home depending on the specific
measures implemented, followed
by some social distancing
measures in the workplace, or
facial mask wearing requirement
and other personal protective
equipment.

Ordinal scale 0-No measures

1-Recommend work from
home

2-Require work from home
for all-but-essential
workplaces

SC School closure Record closings of some certain
or all levels of schools, from
kindergarten to universities.
During the school closures,
students were required to stay
home and continue their studies
through online or remote
learning platforms. The
government also worked with
schools to implement safety
measures, such as regular
disinfection of classrooms and
requiring students to wear masks
while on campus

Ordinal scale 0-No measures

1-Require closing schools
at certain levels (e.g.,
elementary school, middle
school, high school, etc)

2-Require closing all levels

FM Facial masking Record policies for encouraging
or requiring mask use outside the
home, especially in high-risk
areas such as hospitals, public
transportation, and crowded
places. As the outbreak
continued, the policy would also
be expanded to require the use of
masks in all public places,
including shopping malls,

Ordinal scale 0-No policy

1-Recommend in all public
space

2-Required in all public
space
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supermarkets, and office
buildings.

MS Mass screening Record government’s policy on
PCR testing, which was a key
tool used to diagnose and tract
infections. During the early
stages of the outbreak, PCR
testing was primarily conducted
for some high-exposure risk
individuals. As the outbreak
grew, this policy would be
extended to some high-risk
areas, like neighbourhoods and
communities with confirmed
cases. Furthermore, the Chinese
official also implemented a
policy of “universal screening”,
requiring all residents to be
tested.

Ordinal scale 0-No testing

1-Testing of people who
meet specific criteria (e.g.,
key careers, key industries,
returned from overseas or
high-risk areas) or have
high risk of exposure

2-Testing of people within
certain areas (e.g.,
communities, subdistricts)

3-Testing of people within
large areas (districts,
county, suburbs)

4-Testing of anyone within
a city (each district is tested
in order)

5-Testing of anyone within
a city (all districts are
tested at the same time)

MM Medicine
management

Record management of non-
COVID specific medication
(e.g., antiviral medication, cough
suppressant, fever reducer, etc).
Local authorities may require
individuals who buy these
medications to report to
designated hospitals or to be
tested for COVID-19. In some
cases, the sale of these
medications may be restricted to
designated hospitals only.

Ordinal scale 0-No measures

1-Require registration of
usage information

2-Require PCR tests for
purchasers

3-Prohibition on sale

CT Contact tracing Record the intensity of contact
tracing, a public health measure
used to identify and notify

Continuous
scale

Number of cases detected
in isolation/ Number of
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people who may have been in
contact with an infected person.
They would also be required to
self-quarantine or isolated in
designated government shelters.

daily reported cases*0.8

A.2 Processing public-health measure data

In the post-Delta era, China is dedicated to implementing more precise zero-COVID

policies to minimise societal impacts. Hence, geographic scope was taken into account in

the normalization of measures, calculated as:

�� = (�� − 1) +
��

��� ��

��
' =

��

��� ��

Where �� is the intervention with additional information on geographic scope, �� indicates

the intensity of each measure, �� is the size of its geographic scope, and ��
' is the

normalized measure. Other measures without additional information were normalized by

min-max normalization, ranging from 0-1. For PCR-based mass screening, the results

were weighted by the frequency of testing performed per week (= total number of tests/7

days). The normalized value, corresponding intensities and additional information

including geographic scope and testing frequency for all ordinal variables can be found in

Supplementary Table 2. In addition, interventions usually have a lag between

implementation and being effective 6,7 . Following the method used in Qiu et al (2022) 7 ,

we tested the relationship between �� and the intensity of each measure at a 1- to 7-day

lag using Spearman’s rank correlation coefficient, to determine the minimum time

required for each intervention to generate their maximum effect. For each individual
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measure, we selected the time lag with the highest correlation coefficient and used it

accordingly as the final model input.

Supplementary Table 2. Normalized NPI Lookup - Intensity and Geographic scope.

Coding of additional information indicates geographic scope for business premises

closures (BPC), public transportation closures (PTC), gathering restrictions (GR),

workplace closures (WC), school closures (SC), facial masking (FM), and medicine

management (MM), while indicates the total number of tests per week for mass screening

(MS).

ID Normalize
d intensity

Coding of
stringency

Coding of
additional
informati
on

ID Normalize
d intensity

Coding of
stringency

Coding of
additional
informati
on

SO

0.00 0

NA

SC

0.00 0 0
0.20 1 0.13

1

1
0.40 2 0.25 2
0.60 3 0.38 3
0.80 4 0.50 4
1.00 5 0.63

2

1

BPC

0.00 0 0 0.75 2
0.06

1

1 0.88 3
0.13 2 1.00 4
0.19 3

FM
0.00 0

NA0.25 4 0.50 1
0.31

2

1 1.00 2
0.38 2

MS

0.00 0 0
0.44 3 0.03

1

1
0.50 4 0.06 2
0.56

3

1 0.09 3
0.63 2 0.11 4
0.69 3 0.14 5
0.75 4 0.17 6
0.81

4

1 0.20 7
0.88 2 0.23

2

1
0.94 3 0.26 2
1.00 4 0.29 3

PTC
0.00 0 0 0.31 4
0.06 1 1 0.34 5
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0.13 2 0.37 6
0.19 3 0.40 7
0.25 4 0.43

3

1
0.31

2

1 0.46 2
0.38 2 0.49 3
0.44 3 0.51 4
0.50 4 0.54 5
0.56

3

1 0.57 6
0.63 2 0.60 7
0.69 3 0.63

4

1
0.75 4 0.66 2
0.81

4

1 0.69 3
0.88 2 0.71 4
0.94 3 0.74 5
1.00 4 0.77 6

GR

0.00 0 0 0.80 7
0.08

1

1 0.83

5

1
0.17 2 0.86 2
0.25 3 0.89 3
0.33 4 0.91 4
0.42

2

1 0.94 5
0.50 2 0.97 6
0.58 3 1.00 7
0.67 4

MM

0.00 0 0
0.75

3

1 0.08

1

1
0.83 2 0.17 2
0.92 3 0.25 3
1.00 4 0.33 4

WC

0.00 0 0 0.42

2

1
0.13

1

1 0.50 2
0.25 2 0.58 3
0.38 3 0.67 4
0.50 4 0.75

3

1
0.63

2

1 0.83 2
0.75 2 0.92 3
0.88 3 1.00 4
1.00 4

A.3 Vaccination data

China’s COVID-19 vaccination program officially started in December 2020, after the

Chinese government granted conditional approval for vaccines developed by the
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Sinopharm8 . For our study, we collected daily data on vaccination rate, fully vaccination

rate and booster rate for each provincial region in mainland China, from the onset of the

vaccination program to May 2022 (see supplementary Fig 2). We obtained the data from

the website of the National Health Commission of China (http://www.nhc.gov.cn/). Fully

vaccination rate refers to the fraction of the total population who have received at least

two doses of COVID-19 vaccines. Then, we processed the full vaccination rate into

practical vaccination rate which accounts to the efficacy of the used COVID-19 vaccines

in China, i.e., Sinovac-CoronaVac and Sinopharm. This allowed us to estimate the

proportion of the population that has received at least some level of protection against the

infection, even if the effectiveness of vaccination was not as high as expected9,10. Next, as

the outbreaks occurred at city scale, we further allocated the practical vaccination rate to

cities according to the ratio of their population to the corresponding province. Finally, the

practical vaccination rate for each city � at day � was defined as:

��
� =

��

��
(���

�

�=1

2

��
�� + ���

�

�=1

2

��
�� )

where ��
� is the efficacy of full doses against symptomatic COVID-19 for vaccine �, ��

� is

the effect of booster dose against symptomatic COVID-19 for vaccine � from clinical

trials (see supplementary Table 3). ���
� is the fully vaccination rate of province � at day �,

���
� is the booster vaccination rate of province � at day � . �� is the total population of

city �, �� is the total population of province � where city � belongs to.
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Supplementary Fig 2. Daily vaccination rate in China. Total vaccination rate indicates

the fraction of the total population who have received one dose. Fully vaccination rate

indicates the fraction of the total population who have received at least two doses of

COVID-19 vaccines in China. Boost dose rate indicates the proportion of the fully

vaccinated population who have received a booster dose.

Supplementary Table 3. Efficacy of vaccine against symptomatic COVID-19 after

full doses (��) and booster dose (��). The mean value and 95% confidence interval

(95% CI) are shown below.

Vaccine �� �� Reference

Sinovac-
CoronaVac

51%

(36-62%)

79%

(66-87%)

11World Health Organization. Interim
recommendations for use of the inactivated COVID-
19 vaccine, CoronaVac, developed by Sinovac:
interim guidance, first issued 24 May 2021, updated
21 October 2021, updated 15 March 2022.
https://apps.who.int/iris/handle/10665/352472
(2022).
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Sinopharm 50%

(49-52%)

86%

(80-91%)

12World Health Organization. Interim
recommendations for use of the inactivated COVID-
19 vaccine BIBP developed by China National
Biotec Group (CNBG), Sinopharm: interim
guidance, first issued 7 May 2021, updated 28
October 2021, updated 15 March 2022.
https://apps.who.int/iris/handle/10665/352470
(2022).

A.4 A note on zeroing out China’s COVID-19 outbreaks

From December 2019 to March 2020, China invested significant financial and human

resources, mainly based on non-pharmaceutical measures, to effectively contain the first

wave of COVID-19 in the country 13,14 . However, as COVID-19 spread across countries

and cases surged globally, the importation of viruses and new variants presented new

challenges. After a successful nationwide containment strategy was adopted in the first

wave, China adopted a transitional zero-COVID policy to prevent the resurgence. The

core of this policy was to take effective and comprehensive measures to deal with

localized COVID-19 cases precisely, to quickly cut off the transmission chain and end

outbreaks (to “find one, end one”) within one or two maximum incubation periods (i.e.,

14 or 28 days 15). In other words, China aimed to quickly find, control, and cure infected

people in each outbreak within a specific geographical region, so as to minimise the

impact of COVID-19 on the social and economic development in other regions.

During the Pre-Delta period, this strategy was strict, with limited travel to and

from the country, as well as restrictions on domestic movement. The use of masks in

public was required with the strictest level, but PCR testing was only regularly carried

out on key populations who were close contacts or worked in places with high-risk
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exposure risks, with an intensity level below 0.1 daily (Note that NPI intensity ranged

from 0 to 1, with 1 indicating the strictest and 0 indicating the least strict measures).

However, in the event of a new outbreak, local authorities carried out community PCR

mass testing with an intensity above 0.7. The infected residents were hospitalised and

isolated, and close contacts were centrally quarantined at facilities such as hotels, along

with targeted area lockdowns. Non-essential businesses were required to shut down, with

a business premises closure intensity generally above 0.5. In the affected areas of the

outbreak, schools were closed down and public transport was suspended with an intensity

above 0.6. Working from home was also encouraged to reduce contact in the workplace.

As the SARS-CoV-2 virus continued to evolve, the Chinese government upheld

its zero-COVID policy by prioritizing spatially refined prevention and control measures.

This was evidenced by a reduction in the intensity of stay-at-home order and contact

restrictions. For example, the intensity of stay-at-home order decreased from 0.5 to 0.4 in

South Central and Southwest China, while the intensity of business closure decreased

from 0.6 to 0.4 in North China. The 10-in-1 pooled testing was used as an alternative to

the original individual test, enabling cost-effective mass screening on a large scale.

However, the emergence of new, highly transmissible strains of COVID-19 led to the

implementation of stricter and more intensive policies. These included more frequent and

extensive mass PCR testing in communities/areas that reported local transmission, with

the overall intensity of mass screening rising above 0.2.

Since last March 2022, China’s healthcare system has faced increasing pressure

due to the spread of Omicron lineages, prompting the relaxation of some regulations.

Asymptomatic infections and mild patients no longer need to go to designated hospitals,
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but they still need to be isolated at centralized facilities. Lateral flow test kits were

available in both offline and online stores, although the results of PCR tests were only

accepted to confirm the infection or not. Workplace closures have decreased significantly,

with an average intensity dropping to 0 in Northwest China and 0.2 in Southwest China

during the Omicron era, compared to 0.6 and 0.4 respectively during the Delta era. In the

first 5 months of 2022, over 750,000 cases were detected in mainland China, leading to 2-

month-long lockdowns in many cities such as Shanghai. By the end of the study period,

China remained intent on zeroing out the infection via ongoing, mass PCR testing and

other measures.

B. Estimating the effectiveness of NPIs using Bayesian inference model

B.1 Estimation of instantaneous reproduction number

To estimate the instantaneous reproduction number ( �� ) for each outbreak, first, we

adjusted the lag from exposure to reporting, to account for the incubation period (i.e.,

time lag from infection to illness onset or the first positive test) and the reporting delay

(i.e. time lag from illness onset or the first positive test to reporting). Specifically, for

each case, we inferred a time-lag �', resulting in the infection occurring � − �' days before

being reported on day �. This time lag �' is the sum of the incubation period (��
' ) and the

reporting delay (��
' ). The incubation period for each case was sampled from a log-normal

distribution with varying means and standard deviations for four main SARS-CoV-2

variants (supplementary Table 4 and Fig 4). The reporting delay was also sampled from a

log-normal distribution with a mean of 0.82 days and standard deviation of 0.84 days (see
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supplementary Fig 5). Recognizing that large-scale screening following the reporting of

index cases might shorten the reporting delay, after the index case was reported, we re-

parameterized the onset-to-reporting lag according to a binomial distribution with a mean

of 1 day and a standard deviation of 0.3 days (see supplementary Fig 5). The total number

of infections on any given day was then counted by aggregating cases by day after

adjusting their exposure-to-report delays. We repeated this random sampling process 50

times to get more robustness results. The daily number of infections was calculated as the

daily mean value of the 50 samples.

Finally, we estimated �� using the daily infection numbers and the serial interval

of variants, based on the EpiEstim package in R 16 . The number of cases at time � was

assumed following the Poisson distribution that defined as:

�(��) = ��
�=1

�

��−����

Where ��−� is the incidence at time � − �, �� is the infectivity profile which depends on

the serial interval. Serial interval represents the time lag from the illness onset of

infectors to the illness onset of infectees. It is a reflection of the natural laws governing

the relationship between infectious agents and hosts, depending on the characteristics of

the pathogen itself. In practice, we set distinct values of the serial interval for each

SARS-CoV-2 variant (see supplementary Table 4 and Fig 3), with a sliding window of 7

days in the estimation. The adjusted reported cases and estimated �� are available at

https://github.com/wxl1379457192/Zeroing_out_emerging_contagions.

Supplementary Table 4. Serial interval and incubation period of each variant.
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Serial interval

Strains Mean
in days

Standard
deviation References

Original 5.80 3.20
17 Alene, M. et al. Serial interval and incubation period of COVID-
19: a systematic review and meta-analysis. BMC Infect Dis 21, 257
(2021).

Alpha 3.18 4.36
18 Geismar, C. et al. Household serial interval of COVID-19 and the
effect of Variant B.1.1.7: analyses from prospective community
cohort study (Virus Watch). Wellcome Open Res 6, 224 (2021).

Delta 2.30 3.40
19 Zhang, M. et al. Transmission Dynamics of an Outbreak of the
COVID-19 Delta Variant B.1.617.2 — Guangdong Province, China,
May–June 2021. China CDC Wkly 3, 584–586 (2021).

Omicron 2.90 1.60
20 Song, J. S. et al. Serial Intervals and Household Transmission of
SARS-CoV-2 Omicron Variant, South Korea, 2021. Emerg Infect
Dis 28, 756–759 (2022).

Incubation period: ��
' ~���������(�|µ, �)

Strains µ � References

Original 1.78 0.52
21 Paul, S. & Lorin, E. Distribution of incubation periods of COVID-
19 in the Canadian context. Sci Rep 11, 12569 (2021).

Alpha 1.50 0.46
22 Tanaka, H. et al. Shorter Incubation Period among COVID-19
Cases with the BA.1 Omicron Variant. Int J Environ Res Public
Health 19, 6330 (2022).

Delta 1.25 0.34

23 Ogata, T., Tanaka, H., Irie, F., Hirayama, A. & Takahashi, Y.
Shorter Incubation Period among Unvaccinated Delta Variant
Coronavirus Disease 2019 Patients in Japan. Int J Environ Res
Public Health 19, 1127 (2022).

Omicron 1.02 0.45
22 Tanaka, H. et al. Shorter Incubation Period among COVID-19
Cases with the BA.1 Omicron Variant. Int J Environ Res Public
Health 19, 6330 (2022).
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Supplementary Fig 3. The prior distribution of serial intervals for each variant.
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Supplementary Fig 4. The prior distribution of incubation period for each variant.

Supplementary Fig 5. The prior distribution of reporting delay (left) and the onset-to-
reporting lag (right).
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B.2 Basic reproduction number

When estimating the effectiveness of interventions in Bayesian inference models, the

basic reproduction number (�0) was used as a benchmark for comparing the impact of

different measures. The effect of a public health measure was evaluated by estimating the

reduction in �0 which results from implementing the intervention. To account for the

impact of different factors on �0, we set �0 as a hyperparameter obeying the Gamma

distribution (supplementary Table 5).

Supplementary Table 5. Basic reproduction number (��) of each variant

�0~�����(�, 0.1)

Strains � References

Original 3.32

24 Alimohamadi, Y., Taghdir, M. & Sepandi, M. Estimate of the Basic
Reproduction Number for COVID-19: A Systematic Review and Meta-
analysis. Journal of Preventive Medicine and Public Health 53, 151–157
(2020).

Alpha 4.28
25 Campbell, F. et al. Increased transmissibility and global spread of SARS-
CoV-2 variants of concern as at June 2021. Eurosurveillance 26, (2021).

Delta 4.90

26 Kang, M. et al. Transmission dynamics and epidemiological characteristics
of SARS-CoV-2 Delta variant infections in Guangdong, China, May to June
2021. Eurosurveillance 27, (2022).

Omicron 9.05
27 Liu, Y. & Rocklöv, J. The effective reproductive number of the Omicron
variant of SARS-CoV-2 is several times relative to Delta. J Travel Med 29,
(2022).
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B.3 Prior and posterior distribution of effect parameters

Supplementary Fig 6. The prior distribution of effect parameters of NPIs (left) and the
correlation parameter of the control factors (right).
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Supplementary Fig 7. The posterior distribution of effect parameters of NPIs (a) stay-at-
home order, (b) business premises closure, (c) public transportation closure, (d) gathering
restriction, (e) workplace closure, (f) school closure, (g) facial masking, (h) mass
screening, (i) medicine management, (j) facial masking, (k) contact tracing.

Supplementary Fig 8. The posterior distribution of the correlation parameter of the
control factors (a) air temperature, (b) vaccine, (c) population density.
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B.4 MCMC convergence

We calibrated our Bayesian inference model with the Markov chain Monte Carlo

(MCMC) sampling algorithm. R-hat statistics and relative effective sample size were

used to demonstrate the MCMC performance in our model calibration (see

supplementary Fig 9).

Supplementary Fig 9. The convergence of MCMC in our Bayesian model. (a) R-hat

statistic taken from a run using the model with default settings and values for all

parameters. Values are close to 1, indicating convergence. (b) Effective sample size taken

from a run using the model with default settings and values for all parameters. The value

of 1 indicates a perfect decorrelation between samples. Values above (below) 1 indicate

that the effective number of samples is higher (lower) than the actual number of samples

due to negative (positive) correlation, respectively.

B.5 Leave-one-out cross validation of Bayesian inference model

We used the leave-one-out method to validate our Bayesian inference model. In each run,

one outbreak was left out for validation and the rest were used for model training. Using

the root mean square error (RMSE) and R-squared, the performance of Bayesian

inference model was evaluated by the deviation between the predicted instantaneous

reproduction numbers (�� ) and the observed values for all outbreaks. In general, RMSE
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ranged from 0 to infinite, with 0 representing perfect predictive power. For example,

using this cross-validation approach, we found that the RMSE of the model for 92

Omicron outbreaks ranged from 0.29 to 2.86 (supplementary Fig 10). The average R-

squared was 0.68, with an interquartile range of 0.60 - 0.82. The validation results for

each Omicron outbreak were summarized in supplementary Table 6.

Supplementary Table 6. Results for the leave-one-out cross validation for Omicron

outbreaks.

City code City name Start date RMSE R squared

110000 Beijing 2020/6/11 1.88 0.51

2020/12/23 1.18 0.7

2022/1/15 0.76 0.86

2022/3/7 0.92 0.67

2022/4/20 1.20 0.59

120000 Tianjin 2022/1/8 1.32 0.64

2022/3/7 1.19 0.75

2022/5/12 1.01 0.86

130100 Shijiazhuang 2021/1/2 2.67 0.40

2021/10/23 0.76 0.96

130200 Tangshan 2022/3/19 1.75 0.66

2022/4/18 1.73 0.24

130400 Handan 2022/4/1 1.18 0.70

130600 Baoding 2022/3/28 1.34 0.95

130900 Cangzhou 2022/3/8 1.10 0.74

131000 Langfang 2022/3/9 1.51 0.84

140100 Langfang 2022/4/3 1.05 0.65

150100 Hohhot 2022/2/15 0.69 0.75



26

150700 Hulunbuir 2021/11/27 0.58 0.59

152900 Alxa 2021/10/19 0.55 0.87

210100 Shenyang 2022/3/6 0.64 0.77

210200 Dalian 2020/7/22 2.17 0.41

2020/12/15 0.83 0.78

2021/11/4 0.64 0.76

2022/3/14 1.13 0.92

210600 Dandong 2022/4/24 1.54 0.60

2022/5/24 1.62 0.17

210800 Yingkou 2022/3/13 1.03 0.89

211400 Huludao 2022/2/8 0.53 0.74

220100 Changchun 2021/1/11 0.89 0.73

2022/3/4 0.90 0.97

220200 Jilin 2022/3/1 0.71 0.88

220300 Siping 2022/3/10 0.88 0.83

220500 Tonghua 2021/1/12 1.63 0.64

220600 Baishan 2022/5/13 1.10 0.45

220800 Baicheng 2022/3/29 1.11 0.82

222400 Yanbian 2022/3/2 0.6 0.76

2022/4/15 0.97 0.63

230100 Harbin 2020/4/9 1.20 0.65

2021/9/21 0.63 0.81

2022/3/8 0.96 0.89

2022/4/13 1.66 0.00

230800 Jiamusi 2022/3/27 0.89 0.77

231000 Mudanjiang 2022/1/25 0.46 0.62

231100 Heihe 2021/10/27 0.58 0.86

310000 Shanghai 2022/2/26 0.92 0.8

320100 Nanjing 2021/7/20 0.53 0.78
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2022/3/10 0.79 0.73

320200 Wuxi 2022/3/29 0.57 0.81

320300 Xuzhou 2022/3/26 1.13 0.74

2022/4/16 1.71 0.21

320400 Changzhou 2022/3/13 1.33 0.75

320500 Suzhou 2022/2/10 0.48 0.84

2022/3/9 1.00 0.11

320600 Nantong 2022/3/21 0.85 0.74

320700 Lianyungang 2022/3/5 0.98 0.89

321000 Yangzhou 2021/7/28 0.59 0.86

321300 Suqian 2022/3/27 1.59 0.75

330100 Hangzhou 2022/1/26 1.59 0.39

2022/3/5 0.83 0.53

330200 Ningbo 2021/12/6 0.66 0.77

2022/3/28 0.73 0.58

330400 Jiaxing 2022/3/11 0.75 0.55

330600 Shaoxing 2021/12/7 0.71 0.81

330700 Jinhua 2022/3/26 0.95 0.64

330800 Quzhou 2022/3/7 0.83 0.82

340200 Wuhu 2022/3/24 0.93 0.74

340400 Huainan 2022/3/27 0.99 0.84

340700 Tongling 2022/3/14 0.92 0.85

341200 Fuyang 2022/3/27 1.17 0.68

341500 Lu'an 2022/4/2 1.45 0.77

350200 Xiamen 2021/9/12 0.66 0.81

350300 Putian 2021/9/10 0.76 0.82

2022/3/17 1.12 0.63

350500 Quanzhou 2022/3/13 1.3 0.92

350900 Ningde 2022/3/30 0.38 0.95
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360100 Nanchang 2022/3/13 0.95 0.83

360900 Yichun 2022/5/7 1.11 0.6

361100 Shangrao 2021/10/30 0.55 0.69

2022/4/20 1.70 0.75

370100 Jinan 2022/3/29 0.58 0.68

370200 Qingdao 2022/3/1 1.34 0.92

370300 Zibo 2022/3/8 0.94 0.77

370600 Yantai 2022/4/22 1.53 0.26

371000 Weihai 2022/3/7 0.92 0.84

371300 Linyi 2022/3/15 0.77 0.46

371400 Dezhou 2022/3/10 0.98 0.70

371600 Binzhou 2022/3/11 1.41 0.88

410100 Zhengzhou 2021/7/31 0.43 0.81

2021/11/3 0.83 0.81

2022/1/3 0.66 0.97

2022/4/8 0.93 0.80

410500 Anyang 2022/1/8 1.09 0.79

2022/4/8 0.41 0.73

411000 Xuchang 2022/1/2 0.63 0.83

2022/5/3 1.21 0.58

411600 Zhoukou 2022/3/22 0.85 0.76

2022/5/1 1.32 0.65

420100 Wuhan 2021/8/2 0.52 0.78

2022/4/1 0.57 0.90

420700 Ezhou 2022/3/27 1.03 0.78

430800 Zhangjiajie 2021/7/29 0.59 0.81

440100 Guangzhou 2021/5/23 0.3 0.83

2022/3/30 1.17 0.78

2022/4/28 1.55 0.05
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440300 Shenzhen 2022/2/12 1.06 0.62

440800 Zhanjiang 2022/5/6 1.09 0.53

441900 Dongguan 2022/2/25 0.9 0.7

450600 Fangchenggang 2022/2/23 0.85 0.5

2022/4/5 1.76 0.57

450700 Qinzhou 2022/3/13 1.08 0.72

451000 Baise 2022/2/5 1.43 0.59

451400 Chongzuo 2022/3/11 1.03 0.64

460200 Sanya 2022/3/31 1.38 0.52

500000 Chongqing 2022/3/12 0.85 0.75

510100 Chengdu 2022/3/28 0.96 0.85

511600 Guangan 2022/5/9 1.27 0.95

530900 Lincang 2022/2/23 0.91 0.56

533100 Dehong 2021/3/30 1.84 0.53

2021/7/4 0.64 0.40

2021/10/1 0.7 0.15

2022/2/16 0.55 0.53

610100 Xi'an 2021/12/12 0.59 0.84

2022/3/5 0.93 0.67

2022/4/2 1.27 0.79

620100 Lanzhou 2021/10/19 0.42 0.52

2022/3/7 0.81 0.74

630100 Xining 2022/4/3 0.65 0.60

650100 Wulumuqi 2020/7/15 2.04 0.60

2022/4/27 1.47 0.58

653100 Kashgar 2020/10/24 2.86 0.33
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Supplementary Fig 10. The results for leave-one-out validation of modelling 92

Omicron outbreaks. The overall R squared is 0.50.

B.6 Impact of temperature and vaccination

Due to the diversity among study regions, we considered air temperature (2 meters above

the surface), practical vaccination rate and population density as city-specific

confounders in the estimation of intervention effects. Their effects were visualized in

Supplementary Fig 11. Overall, both the vaccination (18%, 95%CI 6-30%) and air

temperature (23%, 95%CI 15-31%) showed a positive effect on containing the spread,
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with air temperature playing a more significant role. The results did not provide

substantial evidence indicating a significant effect of population density on virus

transmission.

Supplementary Fig 11. The relative effects of air temperature and vaccination on

reducing the transmission of COVID-19 under Pre-Delta, Delta and Omicron era.

The minimum, maximum, median, 25th percentile (Q1) and 75th percentile (Q3) of

estimates on the reduction in � � (%) are presented to illustrate more details about the

observed overall reduction in propagation.

B.7 Effect of China’s zero-COVID policy within each group

The 131 outbreaks were classified into four groups against each variant using the

geodetector model 28 , a geospatial analysing tool that helps identify spatial patterns of

events and their interactions with environment factors. Due to the stratified heterogeneity

of the infection rate across outbreaks (supplementary Fig 12), these outbreaks were

divided into four groups: small-scale outbreaks lasting for a short period of time (Group

1), large-scale outbreaks lasting for a short period of time (Group 2), small outbreaks of
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longer duration (Group 3) and large-scale outbreaks of longer duration (Group 4). We

started by analysing the variability in policy efficacy among outbreaks of varying scales

as shown in supplementary Fig 13. The effectiveness of social distancing measures

increased with the scale of outbreaks, reaching 31% (95%CI 22-39%) in small-scale,

short-duration outbreaks (Group 1) and 69% (95%CI 52-80%) in larger, long-duration

outbreaks (Group 4). Facial masking was found to be effective in reducing infection rates

by up to 67% (95%CI 32-86%) in long-duration outbreaks. Contact tracing was most

effective in groups with fewer cases, such as Group 1 (32%, 95%CI 28-36%) and Group

2 (9%, 95%CI -1-28%). To investigate the role of each NPI in outbreaks of varying

scales and strains, we also estimated their effects within groups under each variant

(supplementary Fig 14). Our results indicate that PCR mass screening was relatively

more effective in fighting against COVID-19 in groups with sustainable transmission

compared to the outbreaks that were rapidly curbed.

In the Pre-Delta era, social distancing measures had the highest contribution to

transmission reduction, especially in Group 2 with long duration and low transmission

(91%, 95% CI 77-98%). Facial masking showed its excellent transmission-blocking

ability in Group 3 (70%, 95% CI 29-88%), which has a long duration and small infection

size. The effectiveness of PCR screening increased with the severity of the outbreak, with

4% (95%CI 0-22%), 7% (95%CI 0-38%), 23% (95%CI 0-47%), 28% (95%CI -1-90%)

for each group. Contact tracing has demonstrated exceptional performance (13%, 95%CI

0-34%) in swiftly containing the spread of the pandemic, like Group 1.

During the Delta period, the effectiveness of social distancing measures in

containing pandemics began to decline. For example, the effect of social distancing
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measures decreased from 49% (95%CI 30-66%) to 23% (95%CI 0-46%) in Group 1,

91% (95%CI 77-98%%) to 40% (95%CI -1-92%) in Group 2, 37% (95%CI 0-65%) to

10% (95%CI -2-36%) in Group 3 and 77% (95%CI 14-95%) to 29% (95%CI -1-65%) in

Group 4. Facial masking had a more important role in reducing transmission, with an

increase of 18%, 42%, 9%, 20% in Group1, Group 2, Group 3, Group 4, respectively.

PCR testing remained effective when the infection persisted over a long period (over 6%),

otherwise when the pandemic was rapidly controlled (about 3%). Contact tracing had a

significant effect in Group 2 (20%, 95%CI -1-66%).

For Omicron variants, facial masking became the most effective NPI in long-term

outbreaks, where 83% (95%CI 67-92%) for Group 2. PCR screening is only effective in

wide-spread transmission, i.e. Group 4 (6%, 95%CI -1-31%), while social distancing

measures made notable contributions in completely eliminating the virus from Group 4

(60%, 95%CI 26-78%). Contact tracing outperformed in this era, especially in outbreaks

with only a short stay. And its effectiveness was shown as 36% (95%CI 31-40%) in

Group 1, 11% (95%CI -1-30%) in Group 2 and 2% (95%CI 0-16%) in Group 4.
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Supplementary Fig 12. Distribution of the 131 outbreaks in terms of infection rates and

durations under (a) Pre-Delta era, (b) Delta era, (c) Omicron era. The grey lines represent

the infection rate and duration thresholds.

Supplementary Fig 13. Effectiveness of NPIs on reducing the transmission of

COVID-19 within each group. PCR screening shows the synergistic effect of the mass

screening, the medicine management and the contact control. Social distancing measures
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show the synergistic effect of stay-at-home order, business premises closure, public

transportation closure, gathering restriction, workplace closure and school closure. The

effect estimates are computed by the coefficients of each individual NPI through 1 −

��� ( − �
� ��,���,�,�� ����� ) , where ��,�,�� ���� is the median value of the NPI implementation

intensity and the coefficients (��,�) is derived by fitting the data with the default settings

within each group for each variant. The minimum, maximum, median, 25th percentile

(Q1) and 75th percentile (Q3) of estimates on the reduction in �� (%) are presented to

illustrate more details about the observed overall reduction in propagation.
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Supplementary Fig 14. Effectiveness of NPIs on reducing the transmission of

COVID-19 under Pre-Delta, Delta and Omicron era within each group. PCR

screening shows the synergistic effect of the mass screening, the medicine management

and the contact control. Social distancing measures show the synergistic effect of stay-at-

home order, business premises closure, public transportation closure, gathering restriction,

workplace closure and school closure. The effect estimates are computed by the

coefficients of each individual NPI through 1 − ��� ( − �
� ��,���,�,�� ����� ), where ��,�,�� ���� is the
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median value of the NPI implementation intensity and the coefficients (��,�) is derived by

fitting the data with the default model settings under different variant eras. The minimum,

maximum, median, 25th percentile (Q1) and 75th percentile (Q3) of estimates on the

reduction in �� (%) are presented to illustrate more details about the observed overall

reduction in propagation.

C. ISEIRV model

C.1 Calibration of ISEIRV model

A Bayesian optimisation framework was developed to optimize quantization

hyperparameters in ISEIRV models, including 1) the baseline of transmission rate �0 , 2)

the baseline of recovery period �0 , 3) the coefficients, �1 , �1 , �2 , and �3 , 4) the initial

exposed population �(0) , and 5) the initial infectious population �(0) . The initial prior

distributions of the unknown parameters are listed in Supplementary Table 7. We set the

initial expect value of �0 as 7, 6 and 5 for the pre-Delta, Delta and Omicron era,

respectively. The upper bound for the prior distribution of �3 is outbreak specific as the

ongoing days of the outbreak.

First, these parameters were simultaneously sampled 2000 times from their prior

distributions. Second, the daily new infections were stimulated by the ISEIRV model

using each of 2000 sets of sampled parameters, and the mean squared error between the

simulated daily number of cases and the reported number was calculated then. Third, the

2000 samples of the parameter sets were ranked by the corresponding mean squared error,

where 400 samples of the parameter set with the smallest mean squared error were used

to fit a Gaussian distribution as the new prior distributions. The above procedure was
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iterated 15 times, and the last updated prior distributions were determined as the final

posterior distributions of the corresponding underestimated parameters.

Supplementary Table 7. The priori distributions of the unknown parameters.

Parameters Distribution

�0 ������(
�
�0

, 1)

�0 ������(�0, 1)

�1 �������(0, 3)

�1 �������(0, 3)

�2 �������(0, 1)

�3 �������(0, �����ℎ(�����)

�(0) �������(5, 15)

�(0) �������(1, 5)

C.2 Model validation against prediction accuracy

We split each outbreak into two successive time windows, the training set and the

validation set, to test the predictive accuracy of the ISEIRV model. The initial 85% days

in an outbreak were used to train the model and fit the parameters, and the following days

were used to validate the performance of the trained model. We set 5 days as the shortest

of the validation input, which means it will be extended to the last 5 days of an outbreak

when the validation set is shorter than 5 days. In terms of the number of cumulative cases

and daily new cases, the normalized root means square error (NRMSE) and r squared (R2)

were employed to estimate the performance of models under real-world scenarios.

Although the simulation error of 100 infected individuals differed more from each other
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than the error of 10 infected individuals in absolute values, this difference was relatively

small when compared to an outbreak with tens of thousands of cases. In this case,

NRMSE can facilitate the comparison of datasets or models with different scales, by

normalizing the root mean square error (RMSE). In this study, we used the mean value of

the daily reported number of cases that has been adjusted for the infection-to-report delay

to normalize the RMSE for each outbreak.

C.3 Robustness of ISEIRV model

The ISEIRV model was constructed for each of the 131 outbreaks in mainland China,

occurring from April 1, 2020 to May 31, 2022. We validated the model against the

observed epidemic timeline of each outbreak, confirming that the adopted parameter

scheme was acceptable. The observed cumulative cases were also compared with the

simulated data to indicate the robustness of our model, as shown in supplementary Fig 15.

The adjusted R2 is 0.47, highlighting the reasonable parameters assumption of our model.

In addition, the accuracy performance of the ISEIRV model in simulating the daily

infected individuals was also tested on the basis of the validation set for each outbreak.

Under the pre-Delta era, the simulations were the most robust, with NRMSE ranging

from 0.09 to 0.41 and mean R2 of 0.91. In the period of Delta and Omicron, the simulated

daily cases showed some deviations from the observed values in some outbreaks, but

most of them still reproduced the epidemic progressions ideally. Supplementary Fig 13b

summarized the details of point-by-point validation results of the ISEIRV model. The

mean NRMSE was 0.20 in the Delta period and 0.17 for Omicron outbreaks, respectively,

while the mean R2 was 0.89 in the Delta era and 0.88 in the Omicron era. This further
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confirmed that the ISEIR model proposed in our study has good performance in

simulating COVID-19 outbreaks. As the robustness of ISEIRV model has been validated,

we confirmed that the adopted parameter scheme was acceptable, as shown in

supplementary Table 8.

Supplementary Fig 15. The performance of the ISEIRV model in simulating

cumulative infections (a) and daily infections (b). The scatterplot (a) compared the
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simulated cumulative infections versus the observed cumulative infections for 131

outbreaks in each group for each variant. P-values are produced by two-sided Wilcoxon

test. The boxplot (b) summarized the NRMSE and R2 of the simulated daily infections

found from COVID-19 propagation modelling during the Per-Delta, Delta and Omicron

periods. The scatter in each box plot represented the point-to-point simulated precision of

each outbreak.

Supplementary Table 8. Estimated parameter values of the Intervention-SEIRV

model. �0 indicates the baseline of the transmission rate. �0 indicates the baseline of

recovery period. �1 is the effect of contact related NPIs on reducing individual-level

contact frequency. �1 is the effect of the infectious detection related NPIs on improving

detection rate. �2 and �3 are coefficients to portray the policy lag. �(0) indicates the

initial exposed population. �(0) indicates the initial infectious population.

Variant City
code City name Start date �0 �1 �0 �1 �2 �3 �(0) �(0)

Pre-
Delta

230100 Harbin 20200409 0.64 2.38 3.75 4.06 1.13 5.31 10.03 6.45

110000 Beijing 20200611 1.09 1.56 4.06 3.55 1.04 6.01 20.67 6.80

650100 Wulumuqi 20200715 1.31 2.30 7.89 0.65 0.46 10.69 14.07 4.28

210200 Dalian 20200722 0.90 1.08 4.39 3.99 1.10 4.07 14.19 6.94

653100 Kashgar 20201024 1.26 1.39 4.48 3.81 0.98 5.93 20.35 6.52

210200 Dalian 20201215 0.68 2.53 3.57 2.41 1.14 4.25 11.04 6.87

110000 Beijing 20201223 0.62 1.17 7.18 1.02 0.77 38.66 5.86 1.02

130100 Shijiazhuang 20210102 1.41 2.32 5.20 2.96 0.96 7.88 18.97 6.19

220100 Changchun 20210111 0.81 1.12 7.01 0.50 0.27 9.90 11.20 4.68

220500 Tonghua 20210112 0.99 1.86 5.22 2.45 0.93 5.79 16.45 5.61
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533100 Dehong 20210330 0.78 2.27 3.46 3.37 1.14 5.30 16.61 7.86

440100 Guangzhou 20210523 1.17 2.50 4.47 0.33 1.10 4.20 16.75 7.08

Delta

533100 Dehong 20210704 0.79 2.00 4.91 2.47 0.69 0.95 13.97 6.64

320100 Nanjing 20210720 1.07 2.60 2.55 4.98 1.11 6.20 20.57 7.22

321000 Yangzhou 20210728 1.75 2.22 5.76 2.36 0.39 8.06 14.37 4.70

430800 Zhangjiajie 20210729 0.96 1.20 6.64 0.75 0.79 17.88 6.55 3.04

410100 Zhengzhou 20210731 0.72 2.79 2.67 4.09 1.13 6.52 16.39 7.26

420100 Wuhan 20210802 0.92 2.51 3.49 2.82 1.07 4.39 9.30 6.05

350300 Putian 20210910 1.93 2.24 2.59 5.12 1.13 4.84 20.64 7.24

350200 Xiamen 20210912 2.23 2.26 4.16 2.80 0.92 4.01 17.55 6.41

230100 Harbin 20210921 1.34 2.35 3.61 3.19 1.02 3.82 10.85 6.52

533100 Dehong 20211001 1.48 1.44 6.47 1.39 0.78 45.19 5.45 3.84

152900 Alxa 20211019 1.05 1.23 6.30 0.29 0.49 2.09 8.66 5.37

620100 Lanzhou 20211019 1.87 2.39 5.63 2.33 0.76 5.93 10.82 4.97

130100 Shijiazhuang 20211023 2.11 1.62 3.19 4.33 1.06 2.76 9.23 6.22

231100 Heihe 20211027 2.14 2.11 4.06 2.29 0.99 3.72 17.75 6.13

361100 Shangrao 20211030 1.10 1.13 7.22 0.81 0.08 10.49 7.97 4.25

410100 Zhengzhou 20211103 1.79 1.77 4.37 3.40 0.95 4.40 9.87 5.80

210200 Dalian 20211104 3.53 0.01 3.47 4.11 1.09 4.11 13.45 7.22

150700 Hulunbuir 20211127 2.25 1.90 2.74 3.96 1.07 6.17 20.75 7.31

330200 Ningbo 20211206 2.00 2.39 3.68 2.47 0.99 2.90 12.76 6.66

330600 Shaoxing 20211207 2.61 1.69 4.36 2.74 0.89 5.20 18.34 6.27

610100 Xi'an 20211212 2.49 0.19 3.40 3.88 1.13 2.62 19.75 7.58

411000 Xuchang 20220102 2.37 1.49 5.80 1.30 0.69 4.47 15.54 5.64

410100 Zhengzhou 20220103 2.26 1.55 3.69 3.82 0.97 4.08 16.08 7.01

110000 Beijing 20220115 2.65 1.35 5.55 1.63 0.89 2.78 13.21 6.27
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231000 Mudanjiang 20220125 1.89 1.25 3.76 3.26 0.95 2.97 7.56 5.49

211400 Huludao 20220208 1.69 1.70 6.29 0.09 0.36 11.39 16.29 6.09

150100 Hohhot 20220215 2.82 1.13 4.59 1.58 0.93 5.05 20.21 6.96

Omicron

120000 Tianjin 20220108 3.03 1.42 2.58 3.34 1.04 5.30 18.36 6.34

410500 Anyang 20220108 3.00 2.45 3.30 2.90 0.80 5.65 17.12 6.16

330100 Hangzhou 20220126 3.04 0.83 2.37 3.93 1.13 3.53 13.67 6.71

451000 Baise 20220205 2.97 2.51 1.84 3.74 1.20 4.93 20.34 7.42

320500 Suzhou 20220210 2.65 2.52 2.31 4.42 1.13 4.26 14.50 7.12

440300 Shenzhen 20220212 3.07 0.40 3.39 2.91 1.00 12.26 11.45 3.99

533100 Dehong 20220216 4.85 0.23 2.87 3.64 1.17 4.43 24.04 8.69

450600 Fangchenggang 20220223 3.23 1.30 4.24 2.08 0.65 9.26 20.36 6.82

530900 Lincang 20220223 1.91 1.60 2.26 3.08 1.13 4.24 7.39 5.84

441900 Donggaun 20220225 1.23 1.13 5.42 0.99 0.79 42.92 6.49 3.10

310000 Shanghai 20220226 2.89 0.28 3.24 3.13 1.05 21.58 5.28 1.53

220200 Jilin 20220301 2.57 1.48 5.04 0.87 0.27 69.61 16.36 4.95

370200 Qingdao 20220301 3.87 1.04 4.40 2.40 0.27 20.18 18.06 5.72

222400 Yanbian 20220302 4.17 0.66 3.03 3.25 0.81 7.99 19.69 6.34

220100 Changchun 20220304 1.32 2.07 5.72 1.21 0.68 27.58 8.14 3.99

320700 Lianyungang 20220305 3.02 1.57 4.99 1.61 0.51 28.98 14.93 4.59

330100 Hangzhou 20220305 2.87 2.03 1.84 4.67 1.23 4.24 10.41 7.36

610100 Xi'an 20220305 3.72 0.10 2.97 3.52 1.06 6.41 14.19 6.32

210100 Shenyang 20220306 5.07 0.86 2.24 3.87 1.07 4.13 19.73 8.28

110000 Beijing 20220307 2.18 2.28 3.41 2.15 1.00 3.56 9.48 6.22

120000 Tianjin 20220307 2.90 1.59 5.98 0.39 0.28 12.57 11.23 4.24

330800 Quzhou 20220307 1.95 1.50 5.11 1.36 0.79 39.41 7.90 2.40

371000 Weihai 20220307 2.26 0.77 4.82 1.55 0.58 20.84 5.96 2.02
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620100 Lanzhou 20220307 2.90 1.01 4.46 1.96 0.71 4.80 7.47 5.21

130900 Cangzhou 20220308 3.36 0.54 4.23 2.18 0.74 17.66 15.04 4.76

230100 Harbin 20220308 2.86 2.14 3.78 0.91 0.95 6.59 16.43 5.70

370300 Zibo 20220308 3.22 1.08 4.67 2.45 0.81 10.12 6.63 2.97

131000 Langfang 20220309 3.40 1.38 5.09 1.02 0.91 9.05 12.54 4.37

320500 Suzhou 20220309 2.90 2.24 2.54 4.04 1.08 3.81 16.88 7.00

220300 Siping 20220310 3.13 2.10 3.46 1.36 0.98 3.97 15.47 6.37

320100 Nanjing 20220310 4.25 0.66 3.34 3.06 0.43 9.54 17.96 6.37

371400 Dezhou 20220310 2.01 1.88 5.66 0.89 0.38 39.84 9.69 2.99

330400 Jiaxing 20220311 2.51 2.55 2.55 3.17 1.05 5.97 9.29 5.81

371600 Binzhou 20220311 1.92 3.08 4.33 1.22 0.77 27.63 10.89 6.27

451400 Chongzuo 20220311 2.65 2.47 5.95 0.00 0.34 18.31 14.15 5.48

500000 Chongqing 20220312 2.59 1.92 2.34 2.81 1.11 3.32 12.73 7.12

210800 Yingkou 20220313 2.25 1.15 2.15 2.85 1.06 2.47 10.14 7.06

320400 Changzhou 20220313 5.11 0.75 2.11 1.53 1.02 7.57 24.11 8.39

350500 Quanzhou 20220313 4.78 1.17 2.67 3.36 0.97 2.48 18.54 7.90

360100 Nanchang 20220313 1.93 2.15 2.37 3.46 1.13 3.66 8.67 6.58

450700 Qinzhou 20220313 4.14 0.55 4.85 0.54 0.71 7.59 18.03 6.03

210200 Dalian 20220314 1.88 1.89 2.88 2.66 1.04 4.70 6.89 5.36

340700 Tongling 20220314 2.61 1.59 3.88 1.47 0.69 22.23 16.55 5.10

371300 Linyi 20220315 3.15 2.27 3.40 2.56 0.78 5.87 14.68 6.14

350300 Putian 20220317 3.75 1.13 4.92 0.86 0.67 8.63 17.93 5.65

130200 Tangshan 20220319 2.81 0.47 5.34 0.98 0.76 26.36 9.88 3.24

320600 Nantong 20220321 2.19 2.37 3.15 3.13 0.97 4.34 9.48 5.95

411600 Zhoukou 20220322 3.00 1.71 3.47 1.09 0.94 6.58 17.03 5.83

340200 Wuhu 20220324 1.98 1.97 5.63 0.81 0.07 6.10 8.01 4.41
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320300 Xuzhou 20220326 2.46 0.25 5.44 0.68 0.61 21.95 3.30 1.03

330700 Jinhua 20220326 2.73 1.32 2.09 3.36 1.09 1.64 12.90 7.14

230800 Jiamusi 20220327 3.50 1.48 4.75 1.34 0.81 6.00 16.67 5.58

321300 Suqian 20220327 1.88 2.53 5.82 0.37 0.56 31.39 8.18 4.57

340400 Huainan 20220327 2.19 1.13 4.24 1.31 0.77 16.28 7.97 2.96

341200 Fuyang 20220327 2.84 1.89 3.26 1.99 0.95 2.40 9.69 6.20

420700 Ezhou 20220327 2.99 1.90 5.15 0.21 0.14 8.46 11.38 6.00

130600 Baoding 20220328 4.62 0.62 2.20 4.31 1.14 6.01 19.99 7.29

330200 Ningbo 20220328 2.90 2.69 2.17 1.95 1.15 4.64 13.88 6.94

510100 Chengdu 20220328 3.55 0.45 3.81 2.72 0.89 5.63 13.11 5.39

220800 Baicheng 20220329 2.89 2.43 4.41 1.95 0.65 6.45 14.63 5.20

320200 Wuxi 20220329 2.76 1.78 2.42 3.41 1.11 4.34 9.40 6.47

370100 Jinan 20220329 2.40 1.93 5.01 1.51 0.49 5.76 13.15 4.77

350900 Ningde 20220330 3.54 1.57 4.41 2.73 0.63 8.10 14.75 4.93

440100 Guangzhou 20220330 2.19 1.43 6.11 0.92 0.05 12.27 6.33 4.73

460200 Sanya 20220331 2.47 2.13 2.03 2.66 1.22 3.39 9.54 6.94

130400 Handan 20220401 4.69 1.00 2.42 3.60 1.04 3.65 24.11 8.03

420100 Wuhan 20220401 2.87 1.00 5.21 2.21 0.77 28.59 11.30 3.29

341500 Lu'an 20220402 2.88 1.72 3.83 1.83 0.92 5.25 10.16 5.78

610100 Xi'an 20220402 3.58 0.43 2.02 4.09 1.17 3.84 21.73 7.50

140100 Langfang 20220403 3.58 0.58 4.33 2.73 0.89 11.27 10.34 3.34

630100 Xining 20220403 3.21 1.33 2.29 3.99 1.11 4.63 12.64 6.79

450600 Fangchenggang 20220405 3.09 0.94 3.19 2.94 1.00 10.77 5.12 2.87

410100 Zhengzhou 20220408 2.90 1.21 2.19 3.72 1.03 9.19 19.41 6.83

410500 Anyang 20220408 2.59 1.29 5.90 0.54 0.40 15.49 12.54 4.51

230100 Harbin 20220413 2.98 0.56 5.10 1.76 0.17 9.15 7.65 6.05
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222400 Yanbian 20220415 2.25 0.52 3.23 2.24 1.00 16.88 5.51 1.91

320300 Xuzhou 20220416 3.22 0.65 3.84 2.53 0.92 5.71 8.50 5.57

130200 Tangshan 20220418 3.23 0.29 2.20 3.65 1.22 6.59 23.68 7.94

110000 Beijing 20220420 2.15 1.83 5.23 1.76 0.03 7.39 14.55 5.66

361100 Shangrao 20220420 2.96 0.84 4.17 1.74 0.77 9.01 7.68 4.45

370600 Yantai 20220422 4.57 0.67 3.22 3.45 0.14 5.16 23.58 8.12

210600 Dandong 20220424 3.08 0.10 3.45 2.73 0.75 8.26 19.70 6.61

650100 Wulumuqi 20220427 2.01 2.07 3.03 2.79 1.04 3.76 10.61 6.26

440100 Guangzhou 20220428 3.62 0.28 1.65 4.71 1.06 12.80 22.40 7.36

411600 Zhoukou 20220501 3.06 0.33 2.14 2.42 1.11 6.89 19.32 6.28

411000 Xuchang 20220503 4.34 0.60 4.45 2.52 0.67 8.59 21.65 7.35

440800 Zhanjiang 20220506 3.11 0.45 5.61 0.69 0.16 30.31 17.77 5.80

360900 Yichun 20220507 3.21 1.00 1.93 4.20 1.15 5.13 20.54 7.39

511600 Guangan 20220509 3.79 1.51 2.40 3.49 1.08 5.89 21.53 7.40

120000 Tianjin 20220512 3.28 1.44 1.98 4.57 1.20 4.38 19.54 7.51

220600 Baishan 20220513 4.18 0.53 2.96 3.21 1.09 7.71 19.26 7.75

210600 Dandong 20220524 2.67 1.45 2.30 4.08 1.15 3.91 7.57 6.23

D. Scenario analysis of zeroing strategies

In this study, we assessed the independent and combined effects of zeroing strategies in

relation to their implementation phase and intensity. To assess the independent effect of

each NPIs, our focus is on analysing the impact pattern of implementation time-point and

intensity on various population-sized cities, with consideration of changes in virus

transmissibility. Considering potential delays in strategy development and disease

identified, we set 5, 10, 15, 20, 25 days after the index case was detected as the time
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points for NPIs implementation. We focused on four categories of NPI, including social

distancing measures, facial masking, PCR screening and contact tracing. Their intensities

were set to increment between 0-1 with a step of 0.1. The value of contact tracing

represented how many exposure individuals were controlled before they were detected.

Note that each NPI was set as a separate response in the simulations to avoid the

interaction of each combined option.

In view of the fact that the qualitative PCR technique was usually not available in

the early stages of an emerging contagion, our study assumed some scenario to the more

probable situations when assessing the NPIs combined effect. We were more concerned

about which combination of social distancing measures, facial masking and contact

tracing would curb the propagation in the 90 days. We conducted the simulation in which

facial masking was present at an intensity of 0.25, 0.5 and 0.75, and contact tracing was

combined with social distancing measures of various intensities (0, 0.25, 0.5, 0.75, 1) at

0.6, 0.7 and 0.8 intensity, respectively, with the onset of these NPIs set at days 7 and 14

of each outbreak. The criterion for evaluating the effectiveness of the combined strategies

was their ability to eradicate the outbreak within the specified target time.

The NPIs implemented by cities in mainland China have varied greatly depending

on the local COVID-19 situation. Some cities have implemented strict measures such as

lockdowns, while others have adopted more relaxed measures. For example, a cluster of

Omicron cases was reported in Beijing that was linked to a wholesale food market in

January 2022. The city quickly implemented strict control measures such as mass testing,

contact tracing, and targeted stay-at-home orders to contain the outbreak. However,

before a large-scale outbreak occurred in February 2022, Shanghai had generally adopted
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more relaxed measures compared to some other cities in China. As there were various

factors that may affect the pandemic, we selected 15 cities considering their population

density, healthcare capacity, the local economy, geographic location, the stringency of

the measures, and even cultural diversity. These also include cities where

unprecedentedly large-scale outbreaks have occurred, such as Jilin, Shanghai, Changchun,

etc.

Supplementary Table 9. Basic information of 15 cities for scenario simulation. All

these cities had Omicron outbreaks reported.

City category ID City name Resident population (Million)

Small city

450600 Fangchenggang 104.61

210600 Dandong 218.84

210800 Yingkou 231.2

340400 Huainan 304

220200 Jilin 362.37

Medium city

140100 Taiyuan 539.1

131000 Langfang 553.82

361100 Shangrao 643.7

220100 Changchun 906.69

210100 Shenyang 911.8

Large city

370200 Qingdao 1025.67

441900 Dongguan 1053.68

320500 Suzhou 1284.78

110000 Beijing 2188.6

310000 Shanghai 2489.43

D.1 Strategies for containing future emerging infectious diseases
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Supplementary Fig 16. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 3 and latent = 1.We assumed 50% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 17. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 3 and latent = 4.We assumed 50% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas
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Supplementary Fig 18. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 3 and latent = 7.We assumed 50% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas
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Supplementary Fig 19. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 8 and latent = 7.We assumed 50% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas
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Supplementary Fig 20. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 13 and latent = 7.We assumed 50% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 21. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 3 and latent = 1.We assumed 25% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 22. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 3 and latent = 4.We assumed 25% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 23. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 3 and latent = 7.We assumed 25% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 24. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 8 and latent = 1.We assumed 25% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 25. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 8 and latent = 4.We assumed 25% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 26. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 8 and latent = 7.We assumed 25% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 27. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 13 and latent = 1.We assumed 25% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 28. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 13 and latent = 4.We assumed 25% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 29. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 13 and latent = 7.We assumed 25% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 30. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 3 and latent = 1.We assumed 75% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 31. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 3 and latent = 4.We assumed 75% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 32. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 3 and latent = 7.We assumed 75% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 33. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 8 and latent = 1.We assumed 75% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 34. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 8 and latent = 4.We assumed 75% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 35. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 8 and latent = 7.We assumed 75% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 36. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 13 and latent = 1.We assumed 75% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 37. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 13 and latent = 4.We assumed 75% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.
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Supplementary Fig 38. Effective strategy combination options for NPIs in cities with

different population sizes under �� = 13 and latent = 7.We assumed 75% probability

that an individual wearing a mask amid contact with an infected person, considering the

realizability and the generalizability to the other countries/areas.

E. Sensitivity analysis

In order to evaluate the robustness of our Bayesian inference model, we designed several

sensitivity analyses using different settings. These sensitivity analyses were designed to

explore the impact of different model assumptions on the estimated effectiveness of NPIs

in controlling the spread of Covid-19 in China. Specifically, we designed four scenarios

(BS1-BS4 and DBS) that varied the prior distribution of the reproduction number (��)

and the prior variance of city-specific characteristics effect.

● BS1. The prior distribution of �� was set as Weibull distribution,
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● BS2. The prior distribution of �� was set as normal distribution,

● BS3. The prior variance of city-specific characteristics effect was set as 0.4,

● BS4. The prior variance of city-specific characteristics effect was set as 0.6.

● DBS. The prior distribution of �� was set as Gamma distribution, while the prior

variance of city-specific characteristics effect was set as 0.5.

The results of our sensitivity analyses showed that the outputs of the Bayesian

inference model were highly sensitive to the setting of the prior distribution of ��, rather

than the prior variance of city-specific characteristics effect (see supplementary Figure

39). In particular, we found that the choice of prior distribution for �� had a much greater

impact on the estimated effect. Given these findings, we decided to set the prior

distribution of �� as a gamma distribution in our main analysis, as this prior distribution

is more commonly used in related research29–32.

By conducting sensitivity analyses and carefully selecting our model settings, we

are confident in the validity and reliability of our Bayesian inference model for

estimating the effectiveness of NPIs. For ISEIRV model, we designed three scenarios

below, and these results showed that the model was robust and consistent.

● IS1. The efficiency of facial masking for preventing indoor transmission was set

as 0.1,

● IS2. The efficiency of facial masking for preventing indoor transmission was set

as 0.3,

● IS3. The efficiency of facial masking for preventing indoor transmission was set

as 0.5.
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● DIS. The efficiency of facial masking for preventing indoor transmission was set

as 0.25.

Supplementary Fig 39. Overall effects of social distance management, facial

masking, PCR screening and contact tracing on reducing COVID-19 transmission

under different model settings.
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Supplementary Fig 40. Estimated values of parameters for ISEIRV model. �0

indicates the baseline of the transmission rate. �0 indicates the baseline of recovery

period. �1 is the effect of contact related NPIs on reducing individual-level contact

frequency. �1 is the effect of the infectious detection related NPIs on improving detection

rate. �2 and �3 are coefficients to portray the policy lag. �(0) indicates the initial exposed

population. � 0 indicates the initial infectious population.
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