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SUPPLEMENTAL INFORMATION 

Estimation of model parameters 

We proceed to estimate the different motor-clutch model parameters shown in Tables 1 and 2 

(Main Text).  

 
Table 1 
 
A. We estimate the total number of myosin motors in the cellular protrusion by assuming that the 

cellular protrusion contains a similar motor surface density as that of the cytokinetic ring. At the 

onset of constriction, the well-characterized fission yeast contractile ring contains ρ!"#
$%&'~3.6 × 10( 

myosin-II polypeptides/µm) (1). Assuming that the protrusion geometry can be approximated as 

a cylinder of length ℓ*$#+~1	µm and diameter d*$#+~50	nm, the estimated number of motors in the 

protrusion is n!~550. Notice that motor activity levels can be modulated by the internal state of 

the cell as well as by environmental cellular conditions. 

B. The surface density of adhesion molecules reported is ρ,~3.1 × 10(	units/µm)	(2). The 

number of clutches can be approximated as (see legend A): n,~ρ,/(ℓ*$#+d*$#+π)~470. Elosegui-

Artola et al. reported similar integrin densities on the membrane ρ𝐜~[500 − 2500] units/µm) (3). 

Alternatively, one could estimate the cell-specific number of clutches available in the protrusion 

by fitting experimentally measured traction forces and actin retrograde flow speeds with model 

predictions. 



C. Direct single molecule quantification assays revealed a talin-vinculin clutch bond rupture force 

of F. = k/T ∆⁄ = 4.114	pN ∙ nm 2.4	nm⁄ ~1.7pN, where ∆ is the clutch transition distance that was 

estimated by fitting the force-dependent clutch rupture rate using Bell’s model. The work by Jiang 

et al. suggest that clutch bond rupture forces are of the same order of magnitude: F.~2pN (4). 

D. The stiffnesses of some clutch components such as talin (5), the molecular complex formed 

between α0β( and FN1112345 (6), and a talin-vinculin tandem (7), have been estimated in multiple 

studies, with reported values within the range κ,~[0.2 − 2]	pN ∙ nm34. Proteomic studies have 

identified hundreds of molecules associated with focal adhesions (8). Therefore, the effective 

clutch stiffness cannot just be reduced to single clutch-component stiffness values. The effective 

clutch stiffness has been estimated as the slope at low extensions of force-extension curves from 

AFM measurements by approaching the cell with an AFM coated probe, establishing contact with 

the cell surface and then pulling the probe away from the cell surface (9). Although in these 

experiments cell-probe mechanical interactions might be mediated by a single molecular clutch, 

it will be important in future studies to decouple clutch and whole-cell mechanical resistance to 

AFM pulling forces. Although existing data suggest that clutch effective stiffness lies within the 

pN/nm range, there is a need to better estimate effective clutch complex stiffnesses, characterize 

nonlinear mechanical clutch stiffness characteristics and identify the softest bonds within the 

molecular clutch complex that largely contribute to the effective clutch complex softening. 

E. The motor-clutch framework models the substrate as a one-dimensional linear spring. 

Assuming that the substrate behaves as a semi-infinite incompressible elastic material and that 

focal adhesions are far from each other, we can estimate the effective substrate stiffness κ6 from 

the equivalent substrate Young’s modulus E6 as κ6 = 2𝜋d6E6 9⁄  (10,11), where d6 is the focal 

adhesion diameter. With a typical focal adhesion diameter of d6~500	nm and a reasonable range 

of substrate Young’s modulus E6 = [0.01 − 100]	kPa, we get κ6 = [3.5 − 3.5 × 107]	pN ∙ µm34. The 



equivalence substrate stiffness-substrate Young’s modulus has also been studied for different 

focal adhesion sizes and force distributions (12).  

Table 2 
 
We have used the following dimensional parameter values to estimate the dimensionless motor-

clutch parameters: n! = 550, F! = 2	pN, v8 = 240 nm ∙ s34, n, = 470, k#& = 1	s34, k#99 = 1	s34, 

F. = 1.7	pN, κ, = 1	pN ∙ nm34, κ6 = [3.5 − 3.5 × 107]	pN ∙ µm34, F+: = 5	pN. Using the estimated 

values on Table S2, the developed model predicts traction forces within the range [59 − 145]	pN, 

with a maximum traction force for a substrate Young’s modulus of 2.7	kPa. Cell-specific data 

should be used to parameterize the model and accurately predict generated traction forces, actin 

retrograde flows and the regime at which the cell operates.  

 

Mean-field conservation equation of the probability density 

The Markovian nature of clutch dynamics allow us to relate the probability density P. at time t +

∆t to its value at an earlier time t with an integral equation of the form 

P.(x,, t + ∆t) = k#&(n, − n.)δ(x,)Δt − k#99
;#<=P.(x,, t)Δt	

+ T d(∆x,)
>

3>

P.(x, − ∆x,, t)ϕ(x, − ∆x,|∆x,, ∆t).																				(S1) 

The first term on the RHS of Eq. (S1) corresponds to clutch binding kinetics, where the Dirac delta 

function δ(x,) has been included to specify that the clutch length at the binding time is equal to 

its resting length. The second term on the RHS of Eq. (S1) accounts for clutch unbinding kinetics, 

where the clutch lifetime decreases exponentially by force according to Bell’s law  k#99;#<= =

k#99	e?!|A!|/C". The third term on the RHS of Eq. (S1) accounts for clutch extensions, where 

ϕ(x,|∆x,, ∆t) is the probability of clutches with extension x, undergoing an extension ∆x, during 

a time ∆t. Ignoring the binding/unbinding kinetic terms, Eq. (S1) says that the probability density 



of clutches to be with extension x, at time t + ∆t is given by the product of the probability density 

for clutches to be with extension x, − ∆x, at time t, multiplied by the probability of experiencing 

an extension ∆x, during a period of time ∆t, and integrated over all possible extensions. Notice 

that the probability of experiencing a clutch extension of any magnitude is normalized to 1: 

T d(∆x,)
>

3>

ϕ(x, − ∆x,|∆x,, ∆t) = 1.									(S2) 

We expand P.(x, − ∆x,, t) and ϕ(x, − ∆x,|∆x,, ∆t) in Taylor series about x,, and truncate the 

series to first order. We get, 

P.(x,, t + ∆t) = k#&(n, − n.)δ(x,)Δt − k#99
∗ P.(x,, t)Δt + P.(x,, t) −

∂
∂x,

(P.∆xZZZ,),						(S3) 

where the mean clutch extension during a time ∆t is 

∆xZZZ,(Δt) = T d(∆x,)
>

3>

∆x,ϕ(x,|∆x,, ∆t) = vE∆t,									(S4) 

The clutch deformation rate vE is equal to the difference between the actin retrograde flow velocity 

and the substrate deformation rate. Rearranging terms in Eq. (S3) and taking the limit Δt → 0 

allows us to obtain the conservation equation for the probability density 

∂P.
∂t

= k#&(n, − n.)δ(x,) − k#99	e?!A!/C"P.(x,, t) − vE
∂P.
∂x,

.					(S5) 

We have defined P.(x,, t) on an infinite domain of clutch extensions to guarantee numerical 

stability. A negative clutch extension means that the substrate binding domain of the clutch falls 

behind of its actin binding domain, a phenomenon that we rarely expect to occur in physiological 

conditions. An equivalent governing equation has been obtained in previous studies (13,14) by 

using standard mean-field approximations, where they explore steady-state solutions of single 

protrusions on noncompliant substrates. 

 

 



 

FIGURE S1. Traction force production of individual cellular protrusions exhibit three different 

regimes: a motor-dominated regime, an intermediate regime, and a clutch-dominated regime. 

Force transmission is sensitive to substrate compliance  — (A) Dimensionless time-averaged 

traction force, (B) fraction of bound clutches nZ.∗ = nZ./n,, and (C) cycling time t̅,",∗ = t̅,",k#99 as a 

function of the dimensionless substrate stiffness K for various values of the myosin activity 

parameter F. Solid lines are the numerical solution of the mean-field model equations (3) and (4), 

and circular solid symbols are the mean statistics obtained from the numerical solution of the 

stochastic model. There is a very good agreement between our mean-field model solution and 

stochastic model solution. Parameter values: τ = 10, ω = 2000. 
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FIGURE S2. Protrusions in the motor-clutch balanced regime display load-and-fail dynamics. 

Time-evolution of fraction of bound clutches (A) and clutch extension rate (B) obtained by our 

mean-field model for 4 different substrate stiffnesses. Parameter values: F = 1, τ = 10, ω =

2000.  

Derivation of the optimum substrate stiffness for maximum traction force  

When clutch bonds in the protrusion break before stall conditions are reached, i.e. t6!<A > t$8*+, 

the protrusion undergoes periods of clutch loading and unloading (load-and-fail behavior). If the 

substrate is too rigid, the characteristic time for clutches to bind t.%&= is much larger than the 

characteristic time for clutches to rupture due to load t$8*+ (t.%&= ≫ t$8*+), and clutch bonds break 

before they have enough time to form large stable adhesions. An early clutch failure cascade thus 

results in traction forces that are far below their optimum values. If the substrate is too soft, t.%&= ≪

t$8*+, most of the available clutches mechanically link the actin cytoskeleton with the substrate 

long before the clutch bonds break by force. Yielding substrates undergo high strain rates that 

decrease clutch deformation rates, and the protrusion spends most of the clutch loading cycle in 

a state of low traction force production and high retrograde flow, leading to force transmission far 

below its optimum value. Therefore, there must exist an intermediate substrate stiffness that 

maximizes mean traction force production (15,16). An expression for the optimum substrate 

stiffness was previously derived in (16), where the probability density function of bound clutch 

forces was assumed to obey a gamma distribution. However, the final expression for the optimum 

stiffness was only valid for protrusions with balanced number of motors and clutches and was left 

as a function of an unknown parameter e, the fraction of the theoretical maximum load that a 

protrusion can generate.  In this work, we relax the adjustable parameter assumption made in 

(16) and derive a more general expression for the optimum substrate stiffness that is applicable 

to all motor-clutch ratio regimes. We proceed to estimate the clutch binding time t.%&= and clutch 

rupture time t$8*+ to obtain an analytical expression for the optimum substrate stiffness that 



maximizes traction forces. We carry out the mathematical derivation in dimensional form so as 

not to lose physical intuition throughout the process. We take the zeroth moment of Eq. (1) to 

obtain the approximated time evolution of the number of bound clutches before clutch bonds 

break due to load 

dn.
dt

≈ k#&n, − (k#& + k#99)	n.,										t < t$8*+																																	(S6) 

The number of bound clutches thus scales as n.~(k#& k#& + k#99⁄ )n,. The clutch binding time — 

that is, the characteristic time at which the number of clutches that link the actin cytoskeleton to 

the extracellular medium reaches equilibrium, scales as t.%&=~1 k#& + k#99⁄ . We define the clutch 

rupture time t$8*+ as the ratio between the characteristic clutch rupture length ℓ$8*+ = F. κ,⁄  and 

the characteristic clutch extension rate vE,: t$8*+ = ℓ$8*+ vE,⁄ . We now proceed to estimate vE,. 

Before clutches dissociate due to force, the first-order moment and the clutch extension rate 

approximately satisfy the following relations 

dℓ.
dt

≈ vEn. − k#99ℓ.,								t < t$8*+,																																																									(S7) 

(κ6 + n.κ,)vE ≈ v8κ6 − e
v8κ6
n!F!

− k#99f κ,ℓ.,																t < t$8*+				(S8) 

where we have used Eq. (2). We take the derivative of Eq. (S8) with respect to time, use Eqs. 

(S6) and (S8), and rearrange terms to get the following ordinary differential equation for the clutch 

elongation rate, valid for t < t$8*+, 

dvE
dt

+
n.κ,

(κ6 + n.κ,)
hk#& e

n, − n.
n.

f +
v8κ6
n!F!

+ k#99 e
κ6
n.κ,

− 1fi vE ≈
n.κ,κ6k#99v8
(κ6 + n.κ,))

e1 −
κ6
n.κ,

f.					(S9) 

After a small transient from the onset of loading and for not very rigid substrates, it is expected 

that enough clutches are mechanically linking substrate and actin filaments so that the substrate 

rigidity is much smaller than the ensemble clutch stiffness (κ6 ≪ n.κ,). Under this assumption, 

Eq. (23) simplifies as 



dvE
dt

+ hk#& e
n, − n.
n.

f +
v8κ6
n!F!

− k#99i vE ≈
κ6k#99v8
n.κ,

,						t < t$8*+																										(S10) 

We address the motor-dominated regime and the intermediate regime separately.  

 

Motor-dominated regime 

Motor-dominated protrusions operate at optimum conditions when most of the elastic energy in 

the clutches-substrate axis is taken up at the beginning of the cell cycle by the substrate. 

Mathematically, this can be expressed as κ6 ≫ κ,. Under these conditions, the substrate deforms 

at a rate approximately equal to the retrograde flow, the unloaded myosin velocity: dx6/dt	~v8 

(see Eq. (S17)). The instantaneous traction forces produced at time t therefore scale as T~v8κ6t. 

This implies that first-bound clutch extension evolves as x,~(v8κ6 κ,⁄ )t (see Eq. (S82)), and 

reaches an extension value equal to its characteristic rupture length ℓ$8*+ = F. κ,⁄  at a time 

t$8*+
6%&';E~F./v8κ6. Notice that the clutch rupture time is independent of clutch stiffness since both 

rupture length and clutch elongation rate scale inversely to clutch stiffness. The effective clutch 

binding rate is initially t.%&=
6%&';E~1/n,k#&. We can determine an upper bound limit of the optimum 

substrate stiffness that maximizes traction forces κ6
#*+ by realizing that the necessary condition 

for the protrusion to operate at its optimum is that clutch binding rates are faster than clutch 

rupture rates: t$8*+
6%&';E > t.%&=

6%&';E. Thus, κ6
#*+ < n,F.k#&/v8. We now proceed to estimate κ6

#*+. A 

careful scaling analysis of Eq. (S10) suggests that in the limit of high motor activity, the clutch 

extension rate scales as vE,~κ6v8(k#& + k#99) n,κ,k#&⁄  where we have used Eq. (S6). An 

increase in the number of available clutches n,, the clutch stiffness constant κ,, or the ratio 

k#&/k#99 reinforces clutches augmenting the clutch resistance against myosin pulling forces, 

resulting in lower clutch deformation rates. Also, an increase in the load-free velocity of myosin 

motors results in stronger actin retrograde flows, giving rise to higher clutch extension rates. 

Because softer substrates undergo higher deformations than more rigid substrates, lower clutch 



extension rates are expected for more compliant substrates, as predicted by scaling analysis and 

in agreement with previous studies (15,17). Our scaling for vE, implies that the clutch rupture time 

t$8*+ scales as t$8*+~k#&n,F. κ6v8(k#& + k#99)⁄ . We apply the optimal condition t.%&=~t$8*+ to 

determine the substrate stiffness that maximizes traction forces in a motor-dominated protrusion 

κ6,!
#*+ 	= C)

n,F.k#&
v8

,																																																																											(S11) 

Our scaling analysis allows us to obtain the optimum substrate stiffness up to an unknown 

constant C). The upper limit calculated earlier for κ6,!
#*+ indicates that C) < 1. We estimate the 

constant C) by fitting Eq. (S11) to our numerical results. We get C) = 0.4, consistent with our 

upper limit calculation. We find very good agreement between our theoretical prediction (Eq. 

(S11)), the numerical solution of the mean-field model and the solution of the dimensionless 

version of the stochastic motor-clutch model (17), as shown in Fig. S3, right. According to Eq. 

(S11), the optimum substrate stiffness is proportional to the characteristic maximum clutch elastic 

force n,F. and inversely proportional to the distance that unloaded actin filaments translocate 

within the characteristic clutch binding time v8/k#&. Our theoretical solution also suggests that in 

the high-motor regime, the optimum substrate stiffness is myosin-insensitive and independent of 

clutch stiffness κ,.  
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FIGURE S3. Dimensionless optimum substrate stiffness K#*+ = κ6
#*+/n,κ, as a function of the 

dimensionless myosin load-free velocity ω, for two different values of the myosin activity 

parameter F. Solid lines correspond to our derived analytical solution (Eq. 6), open symbols 

correspond to the numerical solution of the mean-field model (Eqs. (3) and (4)), and closed 

symbols correspond to the numerical solution of the stochastic model.  

 

Motor-clutch balanced regime 

In this section, we aim to obtain an expression for the optimum substrate stiffness that maximizes 

traction forces for protrusions that lie in the intermediate balanced regime. As clutches get 

stronger either by an increase in the clutch elastic force capacity n,F. or an increase in the ratio 

k#&/k#99, and/or myosin motors get weaker by a reduction in the total myosin stall force n!F!, 

time-averaged actin retrograde flows get weaker, and the characteristic clutch rupture time t$8*+ 

increases. This rise in clutch rupture time can be compensated by an increase in substrate 

stiffness, so that optimum conditions for maximum traction force t.%&=~t$8*+ are met. Therefore, 

we expect that as clutches become dominant over motors, the optimum substrate stiffness for 

traction force will shift towards higher stiffnesses, as previously reported (15,18). We indeed 

observe this in Fig. 4 as well as in Eq. (6). We go ahead and estimate t$8*+ from Eq. (S10). Before 

clutches rupture under load, the clutch strain rate scales as 

vE~κ6k#99v8 kk#&(n, − n.)κ, +
&"?!G#?$
&%C%

lm . The characteristic clutch rupture time t$8*+ = F. κ,vE,⁄  

scales as t$8*+~
H&'

H&'IH&((
n,F.

4
?$G#

n1 + C(
?$G#

H&((&%C%
o, where C( is an unknown parameter. Notice 

that our scaling analysis does not allow us to determine this unknown parameter analytically. We 

apply the condition t.%&=~t$8*+ to determine the substrate stiffness that maximizes traction forces 

in a motor-clutch balanced protrusion: 



κ6,%
#*+ 	= C)

n,F.k#&
v8

1

1 − C(
k#&
k#99

n,F.
n!F!

,																																																						(S12) 

which corresponds with Eq. (6) in the main text. The value of C( is obtained by fitting Eq. (S12) 

with our numerical results. We get C( = 0.05. Figures 1F and S3 show that our theoretical 

expression is in very good agreement with our numerical results for all the motor-clutch 

dimensionless parameters. The optimum substrate stiffness in a protrusion that belongs to the 

intermediate regime, κ6,%
#*+, is myosin sensitive and independent of the effective clutch stiffness κ,. 

The optimum substrate stiffness in the motor-dominated regime κ6,!
#*+ (Eq. (S11)) is recovered in 

Eq. (S12) by taking the limit C(k#&n,F./k#99n!F! → 0. The optimum stiffness for maximum 

traction force has been previously estimated and left as a function of an unknown parameter ε, 

the fraction of the theoretical maximum load that a protrusion can generate (16). This unknown 

parameter depends on some of the motor-clutch parameters. Equating Eq. (30) in reference (16) 

with Eq. (S12) in the current study, we find ε = 𝑒3;&&! (K3L)M)⁄ . In this derivation, we have assumed 

that clutch dissociation rates increase exponentially by force according to Bell’s law. Protrusions 

with clutches that have a different lifetime-extension dependence will, in principle, operate at 

optimum substrate stiffnesses that depend on clutch stiffness. 

Critical motor activity parameter that sets the boundary between protrusions in the stalled 

regime and balanced regime on soft substrates 

The boundary between the clutch-dominated stalled regime and the balanced regime is set by 

the condition t6!<A~t$8*+ — that is, the time required to reach stall conditions matches the time 

needed for clutch bonds to break due to force. The time-evolution of the substrate deformation 

rate obeys the following ordinary differential equation: 

dx6
dt

=
κ,

κ6 + n.κ,
rv8n. e1 −

κ,ℓ.
n!F!

f − k#99 	 T x,e?!|A!|/C"P.dx,

>

3>

s.			(S13) 



To estimate the time required for the substrate to reach its maximum deformation t6!<A, we 

approximate the time-evolution equation of the substrate deformation rate for times shorter than 

the clutch rupture time 

dx6
dt

≈
n.κ,

κ6 + n.κ,
v8 h1 − e1 +

n!F!k#99
n.κ,v8

f
x6
x6!<A

i 						t < t$8*+															(S14) 

where the maximum substrate deformation is x6!<A = n!F!/κ6. After a small transient from the 

onset of loading, we expect that in the clutch dominated regime n.κ,v8 ≫ n!F!k#99. Under this 

assumption, Eq. (S14) reduces to 

dx6
dt

≈
n.κ,

κ6 + n.κ,
v8 e1 −

x6
x6!<A

f 	,							t < t$8*+																																											(S15) 

which suggests that the time to reach maximum substrate deformations t6!<A scales as 

t6!<A~
κ6 + n.κ,
n.κ,

n!F!
κ6v8

.																																																																																									(S16)						 

We expect that, after a small transient from the onset of loading, the clutch ensemble stiffness is 

much more rigid than the substrate stiffness, i.e. n.κ, ≫ κ6. We expect this condition to be 

satisfied if the substrate is soft enough, and sufficient number of clutches are bound. Under this 

assumption, Eqs. (S15) and (S16) simplify to 

dx6
dt

≈ v8 e1 −
x6
x6!<A

f 	,							t < t$8*+																																																													(S17) 

t6!<A~
n!F!
κ6v8

.																																																																																																											(S18)						 

We can think of clutches and substrate as two mechanically connected entities, with clutch 

ensemble stiffness and substrate stiffness n.κ, and κ6, respectively. At the time when n.κ, ≫ κ6, 

substrate deformation is much greater than the deformation that any individual clutch undergoes. 

Consequently, substrates deform at a rate equal to the F-actin retrograde velocity v<,+, as 

indicated by Eq. (S17). As long as the system is far away from stall conditions, i.e. x6 ≪ x6!<A, the 

substrate strain rate is approximately equal to the myosin load-free velocity. The timescale to 



reach maximum substrate deformations then scales as t6!<A~x6!<A/v8. The transition between the 

clutch-dominated regime and the intermediate regime will occur when t6!<A~t$8*+ — that is, 

n!F!
n,F.

~
k#&

k#& + k#99
,																																																																																														(S19)						 

where we have assumed that n.κ, ≫ κ6 after a short period of time after the beginning of loading. 

Therefore, the protrusion will be in the clutch-dominated regime when  

F < F,3%,$%+ = C4
k#&

k#& + k#99
,																																																																																		(S20)						 

where C4 is a constant that we estimate by fitting Eq. (S20) with our numerical results. We find 

C4 = 0.4. The protrusion belongs to the clutch-dominated regime and produces the maximum 

possible traction force when the ratio between the total myosin stall force n!F! and the 

equilibrium clutch elastic force n,F.k#&/(k#& + k#99) is lower than a constant of order 1. 

 

Derivation of the mean traction force, number of bound clutches and clutch elongation 

rates of protrusions on rigid substrates 

In our work, we have used two approaches to study the dynamics of cell protrusions: a stochastic 

Langevin-type approach (17) and a mean-field approach. Whereas the stochastic approach is 

suitable to a very small timescale, on which stochastic fluctuations in traction forces are observed, 

the mean-field model addresses a much coarser timescale. On rigid substrates, cycles of 

loading/unloading occur at a very high frequency. Because the frequency of load-and-fail 

dynamics is so high, the load-and-fail cycling time is smaller than the minimum timescale 

addressed by the mean-field model. As a result, the mean-field framework is not able to capture 

these periodic events on rigid substrates, and its temporal solution reaches steady-state after the 

first loading event. This allows us to determine the time-averaged traction force Tt, mean number 

of bound clutches nZ. and mean clutch strain rate vZE in a more theoretical way by seeking the 

steady-state solution of the density conservation equation: 



dPt.
dx,

=
k#&(n, − nZ.)

vZE	
δ(x,) −

k#99
vZE	

	e
?!|A!|
C" Pt.																																																																								(S21) 

where the mean clutch strain rate vZE reads 

vZE = v8 u1 −
κ,

n!F!
T x,P.(x,, t)dx,

>

3>

v																																																																												(S22) 

Integration of Eq. (S21) over a small region x,	ϵ[−ε, ε] and taking the limit ε → 0 yields 

Pt.(0I) =
k#&(n, − nZ.)

vZE	
																																																																																																											(S23) 

where we have assumed that Pt.(03) → 0. We can easily seek a solution for the mean probability 

density for x, > 0 by applying separation of variables to Eq. (S21) and making use of Eq. (S23) 

to solve for the integration constant. We find that Pt. has a double exponential functional form with 

a very fast decay at a clutch length equal to the clutch rupture length ℓ$8*+ = F. κ,⁄ : 

Pt.(x,) =
k#&(n, − nZ.)

vZE	
e
C"H&((
?!GP*	

R43E
+!
,"

-!S
																																																																																(S24) 

Here, vZE is still unknown. Taking the zeroth-order moment of Eq. (S24) and rearranging terms, we 

find 

nZ. =
k#&β

k#&β + vZE	
n,																																																																																																																					(S25) 

where  

β =
F.
κ,
e
C"H&((
?!GP* Γ e0,

F.k#99
κ,vZE	

f																																																																																																								(S26) 

Here, Γ is the incomplete gamma function. Inserting Eq. (S25) into Eq. (S24) yields 

Pt.(x,) =
k#&

k#&β + vZE	
n,e

C"H&((
?!GP*	

R43E
+!
,"

-!S
																																																																																				(S27) 

We plug Eq. (S27) into Eq. (S21) to obtain a non-linear equation for the mean clutch extension 

rate 



vZE) + (k#&β − v8)vZE + v8k#& e
n,κ,α
n!F!

− βf = 0																																																																			(S28) 

where 

α = e
F.
κ,
f
)
e
C"H&((
?!GP*	 G)	((	5 e

F.k#99
κ,vZE	

z 1 	1
0 	0 0 f

																																																																																		(S29) 

Here, G is the Meijer G-function. We can numerically solve Eq. (S28) to determine vZE. Once we 

determine vZE, we can compute nZ. and Pt.(x,) using Eqs. (S25) and (S27), respectively. The mean 

traction force can be then obtained as 

Tt =
G)	((	5 e

F.k#99
κ,vZE	

z 1 	1
0 	0 0 f

Γ e0, F.k#99κ,vZE	
f	

nZ.F.,																																																																																															(S30) 

Equation (S30) shows that the mean traction force produced by an individual protrusion on a rigid 

substrate is proportional to the mean clutch elastic force nZ.F. multiplied by a pre-factor that 

depends on F.k#99/κ,vZE. We rewrite Eqs. (S24−S30) in dimensionless form: 

nZ.∗ =
τβ∗

τβ∗ + vZE∗	
,								β∗ =

1
F
T e

4
CGP*∗

T43E/U
dt

>

5
,								Pt.∗(x,∗) =

nZ.
∗

β∗	
e

4
CGP*∗ 	

V43E,-!
∗
W
																															(S31 − S33) 

vZE∗
) + nτβ∗ −

ω
F
o vZE∗ +

τω
F
(α∗ − β∗) = 0,							α∗ =

1
F)
T te

4
CGP*∗

T43E/U
dt

>

5
,								Tt∗ = F	nZ.∗

α∗

β∗
				(S34 − S36) 

We solve for vZE∗ by numerically solving the nonlinear equation (S34). Once we solve for the mean 

clutch extension rate, we can compute nZ.∗  and Tt∗ using Eqs. (S31) and (S36), respectively. We 

now proceed to determine analytical expressions for two asymptotic cases: low-motor activity 

(F → 0) and high-motor activity (F → ∞). 

Low-motor activity (𝐹 → 0) 

We first derive an analytical expression for the dimensionless clutch strain rate vZE∗. We use regular 

perturbation theory and expand vZE∗ in powers of F: 

vZE∗ = v5 + Fv4 + F)v) + 𝒪(F()																																																																																					(S37) 



We substitute the assumed perturbation series into Eqs. (S32) and (S33), and after some 

mathematical manipulation we get: 

β∗ = v5 + F(v4 − v5)) + F)(2v5( − 2v5v4 + v)) + 𝒪(F()																																								(S38) 

α∗ = v5) + F(2v5v4 − 3v5() + F)(v4) + 2v5v) − 9v5)v4 + 11v57) + 𝒪(F()										(S39) 

We insert Eqs. (S37-S39) into Eq. (S34), and find that the first three leading order terms in the 

expansion satisfy the following equations: 

F5:															τ(v5 − 1) − 1 = 0,																																																																																																									(S40) 

F4:													(τ + 1)v5) −ωv4 + τω(−3v5( + v5) + 2v5v4 − v4) = 0,																																								(S41) 

F):													(2 + τ)v5v4 + τv5(v4 − v5)) − ωv) + τω(v4) + 2v5v) − 9v5)v4 + 11v57) +	

−τω(2v5( − 2v5v4 + v)) = 0.																																																																																																										(S42) 

The leading-order solution can be easily obtained from Eq. (S40): 

v5 =
τ + 1
τ

																																																																																																																																												(S43) 

We recursively solve for higher order terms by solving Eqs. (S41) and (S42), we get: 

v4 = e
τ + 1
τ f

)

e3 −
1
ωf

−
τ + 1
τ

																																																																																																			(S44) 

v) =
τ + 1
τ(ω)

[1 − 9ω + 7ω) + τ)(1 − 6ω +ω)) + τ(2 − 15ω + 7ω))]																												(S45) 

An expression for the dimensionless time-averaged clutch elongation rate can then be obtained 

by substituting Eqs. (S43-S45) into the perturbation expansion in Eq. (S37): 

vZE∗ =
τ + 1
τ

+ e
τ + 1
τ f

)

e
2τ + 3
τ + 1

−
1
ωf

F +	

+
τ + 1
τ(ω)

[1 − 9ω + 7ω) + τ)(1 − 6ω + ω)) + τ(2 − 15ω + 7ω))]F) + 𝒪(F()													(S46)	

Eq. (S43) agrees very well with our numerical solutions as shown in the insets in Fig. 3. In 

dimensional form, the time-averaged clutch elongation rate reads 



vZE ≈
n!F!k#99
n,κ,

e1 +
k#99
k#&

f r1 +
n!F!
n,F.

ue1 +
k#99
k#&

f e3 −
F.k#99
v8κ,

f − 1vs																															(S47) 

where we have only kept the first two leading order terms, for simplicity. Equation (S47) indicates 

that an increase in myosin forces strengthens rearward actin flows, in turn enhancing mean clutch 

elongation rates. It also indicates that an increase in the total number of clutches n,, the clutch 

stiffness κ,, the clutch association constant k#&, or the characteristic clutch rupture force F. 

decreases averaged clutch elongation rates by strengthening clutches, whereas an increase in 

the myosin load-free velocity v8 or in the unloaded clutch dissociation constant k#99 increases 

clutch extension rates. Because only large values of ω are physiologically relevant, we can 

simplify Eq. (S47) by taking the limit for large ω. We get, 

vZE∗(ω → ∞) =
τ + 1
τ

�1 +
2τ + 3
τ

F +
7 + 7τ + τ)

τ)
F)� + 𝒪(F()																																																	(S48) 

Next, we seek a solution for the time-averaged fraction of bound clutches. We substitute the 

results obtained in Eqs. (S43−S45) into Eqs. (S38) and (S39), and plug the results for β∗ and α∗ 

along with Eq. (S46) into Eq. (S31); upon simplification, we get: 

nZ.∗ =
τ

τ + 1
−

1
τ + 1

F +
1 − ω
τω

F) + 𝒪(F()																																																																																								(S49) 

Very good agreement is found between Eq. (S49) and our numerical results, as shown in Fig. 3, 

middle. In dimensional form, the time-averaged number of bound clutches reads  

nZ. ≈
k#&

k#& + k#99
�n, −

n!F!
F.

k#99
k#&

+
(n!F!))

n,F.
) �																																																																													(S50) 

where we have only kept the first two leading order terms, for simplicity. The leading order term 

in Eq. (S50) corresponds to the equilibrium number of bound clutches in an unloaded state, set 

by just a balance of binding/unbinding kinetics. As expected, an increase in myosin forces reduces 

the time-averaged number of bound clutches, as indicated by the negative sign in front of the 

second term in Eq. (S50). The first two leading order terms do not depend on the parameter ω. 



Therefore, we must look at the F) term in Eq. (S49) to study the dependence of number of bound 

clutches on clutch stiffness κ, and myosin-load free velocity v8. We find that larger values of κ, 

or v8 (larger	ω) leads to a reduction in the average number of bound clutches, consistent with our 

discussion of Fig. 2 in the main text and with Fig. S4, right. Finally, we seek a formula for the time-

averaged traction force. We substitute Eqs. (S38), (S39) and (S49) into Eq. (S36) and simplify, to 

get 

Tt∗ = F −
τ + 1
τω

F) +
1 + 2τ + τ) −ω(3 + 5τ + 2τ))

ω)τ)
F( + 𝒪(F7)																																															(S51) 

 

FIGURE S4. Time-averaged fraction of bound clutches as a function of the clutch stiffness 

parameter β, for different values of the clutch kinetic parameter τ and for two values of the 

substrate stiffness parameter K′ (K = K′/β,): (left) K′ = 0.01 and (right) K′ = 1. Parameter values: 

F = 1, ω′ = 200 (ω = ω′β,). Notice that κ, ∝ β,.  

 

The leading order traction force term in Eq. (S51) corresponds to the total myosin stall force, the 

maximum available force. The second leading order term in Eq. (S51) indicates that as the 

number of motors increase, the traction force negatively deviates from the total myosin stall force. 

An increase in the number of clutches n,, the clutch stiffness κ,, the clutch association rate 
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constant, k#&, and the myosin load-free velocity, v8, increases the production of traction forces, 

whereas an increase in the unloaded clutch dissociation rate constant, k#99, negatively contributes 

to traction force production. Among all the parameters, the least obvious dependence is that of 

traction force on myosin load-free velocity. On rigid substrates, actomyosin pulling forces mainly 

deform molecular clutches, as rigid substrates barely undergo any deformation. In low-motor 

protrusions, adhesions build strong clusters that inhibit retrograde flows that result in lower clutch 

loading rates. Consequently, clutches dissociate stochastically before reaching their rupture 

length giving rise to poor force transmission. A higher value of v8 allows clutches to work at their 

fullest capacity, resulting in stronger retrograde flows, thus higher time-averaged traction forces. 

In dimensional form, the time-averaged traction force reads  

Tt ≈ n!F! r1 −
n!F!k#99

)

n,κ,v8k#&
u1 +

k#&
k#99

+
κ,v8
k#&F.

e1 + 2
k#&
k#99

fvs																																																							(S52) 

where we have only kept the first two leading order terms, for simplicity.  

 

High-motor activity (𝐹 → ∞) 

We proceed now to obtain analytical expressions for Tt, nZ. and vZE for motor-dominated 

protrusions. At high motor activity, time-averaged traction force and number of bound clutches 

are independent of motor activity, as demonstrated by the plateau in Figs. 3A and 3B for large F. 

We take the limit F → ∞ in Eq. (S34) and look for the leading-order term, we get 

(vZE∗ + τβ∗) nvZE∗ −
ω
F
o → 0.																																																																																																																										(S53) 

Only positive values of vZE∗ are physically possible, thus solution of Eq. (S53) reads 

vZE∗ →
ω
F
																																																																																																																																																												(S54) 

Therefore, clutches of motor-dominated protrusions elongate on rigid substrates at an average 

rate that approaches the myosin load-free velocity vZE = v8. The mean number of bound clutches 



of a motor-dominated protrusion can then be obtained by plugging Eq. (S32) into Eq. (S31) and 

making use of Eq. (S54), we get: 

nZ.∗ →
τe

4
XΓ n0, 1ωo

τe
4
XΓ n0, 1ωo + ω	

																																																																																																																															(S55) 

Equation (S55) is in very good agreement with the stochastic model results, as shown in Fig. 4C. 

The fraction of bound clutches monotonically increases as the clutch kinetic parameter τ 

increases and/or the parameter ω decreases. In dimensional form, Eq. (S55) reads 

nZ. →
k#&F.e

C"H&((
?!G# Γ e0, F.k#99κ,v8	

f

k#&F.e
C"H&((
?!G# Γ e0, F.k#99κ,v8	

f + v8κ,	
n,,																																																																																														(S56) 

Finally, we can easily obtain the time-averaged force transmitted to the substrate: 

Tt∗ →
G)	((	5 n

1
ω�
1 	1
0 	0 0

o

Γ n0, 1ωo
	nZ.∗ 																																																																																																																											(S57) 

This solution has also been derived in prior publications (13,19). It is worth mentioning that this 

solution is only valid for high motor activity. In dimensional form, Eq. (S57) reads  

Tt →
G)	((	5 e

F.k#99
κ,v8	

z 1 	1
0 	0 0 f

Γ e0, F.k#99κ,v8	
f	

nZ.F.,																																																																																																																	(S58) 

where nZ. is that in Eq. (S56).  

 

Derivation of the mean traction force produced by cell protrusions with reinforcement on 

rigid substrates 

The frequency of load-and-fail dynamics is so high on rigid substrates that the mean-field 

framework cannot capture these periodic events and the mean-field temporal solution reaches 

steady-state after the first loading event. This steady-solution corresponds to the time-averaged 



solution of the stochastic motor-clutch model, allowing us to determine the time-averaged traction 

force Tt, mean number of bound clutches nZ. and mean clutch strain rate vZE in a more theoretical 

way by seeking the steady-state solution of Eq. (7). The time-averaged probability density of 

clutch extensions for a protrusion with clutch reinforcement has also a double exponential form 

on clutch extensions: 

 

FIGURE S5. Load-dependent clutch reinforcement shifts the optimum substrate stiffness for 

maximal force transmission to stiffer substrates. (A) Dimensionless time-averaged traction force 

as a function of substrate stiffness for two values of the clutch reinforcement parameter θ and 

clutch reinforcement threshold force D. Parameter values: τ = 1, ω = 2000, F = 10. (B) 

Dimensionless time-averaged traction force on rigid substrates (K → ∞) as a function of the 
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dimensionless clutch reinforcement threshold force D for four different values of the clutch 

reinforcement parameter. Dashed gray line corresponds to the force transmission curve in the 

absence of clutch reinforcement (θ = 0). Parameter values: ω = 200, F = 10, τ = 5. (C) Optimum 

substrate stiffness as a function of the clutch reinforcement parameter for two different values of 

the dimensionless myosin unloaded velocity ω. Solid lines are the numerical solution of the 

developed mean-field model (Eq. S68) and symbols are the numerical solutions of the stochastic 

motor-clutch model. Parameter values: ω = 200, F = 1, τ = 1. (D) Dimensionless time-averaged 

traction force as a function of the dimensionless substrate stiffness for four different values of the 

clutch reinforcement parameter θ. Parameter values: ω = 200, F = 1, τ = 1,D = 0. 

 

Pt.(x,) =
k#& n1 + θ

nZ.
n,
o (n, − nZ.)

vZE	
e
C"H&((
?!GP*	

R43E
+!
,"

-!S
.																																										(S59) 

where we have assumed in the subsequent derivation that the clutch reinforcement threshold 

force is F+: = 0. The mean clutch strain rate and mean number of bound clutches take the form: 

vZE = v8 h1 −
κ,k#&
n!F!vZE

e1 + θ
nZ.
n,
f (n, − nZ.)σi																																																				(S60) 

and  

nZ. =
k#&(1 + θ

nZ.
n,
)(n, − nZ.)

vZE	
ρ																																																																															(S61) 

where 

σ = T e
C"H&((
?!GP*	

R43E
+!
,"

-!S
x,dx,

>

5
,																																																																															(S62) 

and 

ρ = T e
C"H&((
?!GP*	

R43E
+!
,"

-!S
dx,

>

5
																																																																																					(S63) 

We can express nZ. as function of vZE by rearranging terms in Eq. (S61): 



nZ. =
n,
2θ
�− e

vZE
k#&ρ

+ 1 − θf +�e
vZE
k#&ρ

+ 1 − θf
)
+ 4θ	�																															(S64) 

We plug Eq. (S64) into Eq. (S60) and obtain a nonlinear integral equation for the mean clutch 

extension rate: 

1 −
vZE
v8
+

κ,σn,
2θn!F!ρ

�e
vZE
k#&ρ

+ 1 − θf − �e
vZE
k#&ρ

+ 1 − θf
)
+ 4θ� = 0								(S65) 

The traction force produced by the protrusion can then be expressed as  

Tt =
κ,nZ.σ
ρ

																																																																																																																						(S66) 

In dimensionless form, Eqs. (S64−S66) read: 

nZ.∗ =
1
2θ
�−e

vZE∗

τρ∗
+ 1 − θf + �e

vZE∗

τρ∗
+ 1 − θf

)

+ 4θ	�																																								(S67) 

4θ)ρ∗) e1 −
𝐹
ω
vZE∗f

)
+ 4θσ∗ re1 −

𝐹
ω
vZE∗fu

vZE∗

τ
+ ρ∗(1 − θ)v − σ∗s = 0											(S68) 

Tt∗ =
FnZ.

∗σ∗

ρ∗
																																																																																																																						(S69) 

where 

σ∗ =
n,)κ,)

n!) F!)
T e

C"H&((
?!GP*	

R43E
+!
,"

-!S
x,dx,

>

5
,				ρ∗ =

n,κ,
n!F!

T e
C"H&((
?!GP*	

R43E
+!
,"

-!S
dx,

>

5
										 

Notice that ρ∗ = ρn,κ, n!F!⁄  and σ∗ = σn,)κ,) n!) F!)⁄ . We solve Eq. (S68) numerically and find that 

clutch reinforcement significantly enhances traction force generation on rigid substrates for 

protrusions with fast clutch association kinetics (large τ), as shown in Fig. S6A. As the clutch 

reinforcement parameter θ increases, the time-averaged traction force produced by the protrusion 

rises, and it eventually reaches a plateau at large values of θ, where the protrusion nearly reaches 

stall conditions, as shown in Fig. S6A for τ = 3 and τ = 5. Our mean-field model results with clutch 

reinforcement show that adhesion reinforcement shifts the optimum unloaded velocity parameter 



to larger values (Fig. S6B). We also find that clutch reinforcement on rigid substrates shifts the 

optimum clutch stiffness to higher stiffnesses, as Fig. S6C shows. Interestingly, the shifts in the 

optimum unloaded velocity parameter and clutch stiffness are very sensitive to changes in the 

clutch reinforcement parameter θ for the largest values of the clutch kinetic parameter τ explored, 

whereas they are nearly independent of θ for the smallest value of τ explored (τ = 1), as Figs. 

S6B and S6C show, respectively.  

 

FIGURE S6. Load-dependent clutch reinforcement on rigid substrates shifts the optimum 

unloaded velocity parameter and optimum clutch stiffness to larger values. (A) Time-averaged 

traction force (parameter values: F = 1,ω = 200, K → ∞), (B) optimum unloaded velocity 

parameter (parameter values: F = 1, K → ∞), and (C) optimum clutch stiffness parameter 

(parameter values: F = 1,ωY = 200, K′ = 1) as a function of the clutch reinforcement parameter θ 

for four different values of the clutch kinetic parameter 𝜏. Notice that K = K′/β, and ω = ω′β,. 

Solid lines are the numerical solution of the mean-field model (Eq. S68) and symbols are the 

numerical solutions of the stochastic motor-clutch model. (D) Time-averaged traction force as a 

function the myosin activity parameter 𝐹 for three different values of the clutch reinforcement 
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parameter. Parameter values: τ = 3, ω = 200, K → ∞. Solid lines are the numerical solution of 

the mean-field model (Eq. S68) and symbols are the numerical solutions of the stochastic motor-

clutch model. (E) Time-averaged traction force and (F) number of bound clutches as a function of 

the clutch reinforcement parameter for four different values of the clutch kinetic parameter. 

Parameter values: F → ∞, K → ∞,ω = 200. Solid lines correspond to our analytical solutions 

(Eqs. (S70) and (S71)), symbols correspond to the numerical solutions of the stochastic motor-

clutch model, and black dashed lines are the asymptotic solutions for small θ obtained in Eqs. 

(S71) and (S73). D=0 in all panels. 

 

The sensitivity of force transmission on the parameter θ for different myosin activity levels 

is quantified in Fig. S6D. We find that low-motor activity protrusions (small F) produce θ-

independent traction forces, since the protrusion is already operating at stall conditions. High-

motor activity protrusions (large F) display high-frequency load-and-fail dynamics on rigid 

substrates, and force transmission and mean number of bound clutches are enhanced as the 

clutch reinforcement parameter increases, as shown in Figs. S6D, S6E and S6F.  

We further proceed to obtain asymptotic expressions for the time-averaged traction force 

and mean number of bound clutches for motor-dominated protrusions with reinforcement. The 

leading order term can be obtained by taking the limit F → ∞ on Eqs. (S59−S69). After some 

math, we get: 

nZ.∗ →

−e ω
τe4 X⁄ Γ(0, 1 ω⁄ ) + 1 − θf + �e

ω
τe4 X⁄ Γ(0, 1 ω⁄ ) + 1 − θf

)
+ 4θ

2θ
									(S70) 

Tt∗ →
G)	((	5 n

1
ω	�

1 	1
0 	0 0

o

Γ n0, 1ω	o
nZ.∗ 																																																																																																		(S71) 

Pt.∗(x,∗) →
Fτ
ω
�1 + θ

nZ.
∗

n,
� (1 − nZ.∗ )e

43E,-!
∗

X 																																																																								(S72) 



   
Our analytical solutions (Eqs. S70-S72) are in very good agreement with the stochastic motor-

clutch model solutions, as shown in Figs. S6E and S6F. We find that high-motor protrusions on 

rigid substrates can avoid frictional slippage and produce large traction forces provided that the 

clutch parameters θ and/or τ are sufficiently large and the parameter ω is sufficiently small, as 

shown in Figs. S6E and (6).  

We additionally take the limit of Eq. (S70) when θ → 0 to explore traction force generation 

on protrusions with low reinforcement. We get: 

nZ.∗ →
1

1 + ω
τe4 X⁄ Γ(0, 1 ω⁄ )

+

ω
τe4 X⁄ Γ(0, 1 ω⁄ )

e1 + ω
τe4 X⁄ Γ(0, 1 ω⁄ )f

( θ																																															(S73) 

where we have only kept the first two leading order terms in θ, for simplicity. The positive sign in 

front of the last term in Eq. (S73) indicates that reinforcement enhances the mean number of 

bound clutches and, therefore, the mean traction force produced by the protrusion as shown in 

Figs. S6E and S6F.  

 

Dynamics of strong-motor protrusions are myosin independent 

In this section, we demonstrate using a simple approach that clutch dynamics of strong-motor 

protrusions do not depend on myosin activity. We explore the evolution of an individual protrusion 

right after the first clutch connects the actin-cytoskeleton with the surrounding substrate. Before 

any clutch couples the actin network with the substrate, the actin cytoskeleton flows rearwards at 

the myosin load-free velocity. Once the first clutch binds, force balance reads   

n!F! e1 −
v<,+
v8
f = κ,x, = κ6x6.																																																																																																(S74) 

The clutch extension rate is equal to the difference between actin retrograde flow velocity and the 

substrate deformation rate: 



dx,
dt

= v<,+ −
dx6
dt
.																																																																																																																										(S75) 

Combination of Eqs. (S74) and (S75) yields an ordinary differential equation for the actin 

retrograde flow velocity: 

n!F!
v8

e
1
κ,
+
1
κ6
f
dv<,+
dt

= −v<,+.																																																																																																		(S76) 

We easily solve for Eq. (S76) by applying separation of variables: 

v<,+(t) = v8e
3	 G#
&%C%V

4
?!
I 4
?$
W
+

																																																																																																									(S77) 

We substitute Eq. (S77) into Eq. (S74) to obtain: 

x,(t) =
κ6
κ,
x6(t) =

n!F!
κ,

�1 − e
3	 G#
&%C%V

4
?!
I 4
?$
W
+

�																																																																	(S78) 

If the bound clutch does not dissociate before reaching its characteristic rupture length x,
$8*+ =

F./κ, and that no other clutch binds, Eq. (S78) implies that the time required for the clutch to 

reach its rupture length t$ is: 

t$ = −
n!F!
v8

e
1
κ,
+
1
κ6
f ln e1 −

F.
n!F!

f.																																																																																		(S79) 

Notice that the argument of the logarithm in Eq. (S79) is positive provided that the characteristic 

clutch rupture length x,
$8*+ is smaller than the clutch elongation at stall conditions x,6+<;; = n!F!/κ,. 

Therefore, Eq. (S79) is valid for x,
$8*+ < x,6+<;;. We take the high-myosin limit (n!F! → ∞) of Eqs. 

(S78) and (S79) to obtain 

lim
&%C%→>

x,(t) =
v8t

1 + κ,/κ6
�1 −

v8t

2n!F! n
1
κ,
+ 1
κ6
o
� + 𝒪 �

t(

(n!F!))
�,																										(S80) 

lim
&%C%→>

t$ =
F.
v8
e
1
κ,
+
1
κ6
f + 𝒪 e

1
n!F!

f.																																																																														(S81) 



Eq. (S81) suggests that, in the high-myosin limit and for times on the order of the clutch rupture 

time t = 𝒪(t$), clutch elongation is asymptotically myosin independent. Hence, the clutch 

elongation rate is time independent and asymptotically equal to  

lim
&%C%→>

dx,(t)
dt

=
v8

1 + κ,/κ6
.																																																																																																				(S82) 

We use Eqs. (S74) and (S82) to obtain the asymptotic substrate deformation rate: 

lim
&%C%→>

dx6(t)
dt

=
v8

1 + κ6/κ,
,																																																																																																						(S83) 

which indicates that the dynamics of motor-dominated protrusions are myosin insensitive, in 

agreement with our numerical and analytical results. Notice that the average time required for a 

second clutch to bind is equal to 1/(n, − 1)k#&. A second clutch will on average bind before the 

first bound clutch reaches its rupture length when 

F.k#&(n, − 1)
v8

e
1
κ,
+
1
κ6
f > 1.																																																																																																					(S84) 

 

Numerical solution of the mean-field conservation equation 

We solve Eqs. (3-4) of the main text numerically for a range of parameter values. Note that the 

probability density P.∗(x,∗, t∗) is defined on an infinite domain on clutch extensions. We use a 

sufficiently large computational domain so that domain size does not affect the numerical solution. 

We impose that the probability density vanishes at the two boundaries, i.e. P.∗(±∞, t∗) 	= 0. We 

discretize the domain using a uniform grid, approximate integrals using the trapezoidal quadrature 

method, and approximate the first derivative in Eq. (3) using the first order left-sided finite 

difference scheme to guarantee numerical stability. We approximate the Dirac delta function with 

the following function: 

δ∗(x,∗) ≈
1
π

ε
x,∗
) + ε)

,																																																																																																																												(S85) 



where we have used ε = 5 × 103( in all simulations. We have integrated Eq. (3) in time by using 

the Forward-Backward Euler method, where we have treated the clutch binding term explicitly, 

and the clutch unbinding and clutch extension terms implicitly.  

 

Clutches with catch bond properties enhance traction forces 

In this section, we proceed to explore the effect of catch bond adhesion properties on force 

transmission. We follow the assumption made in (15) and assume that both catch and slip bond 

dissociation kinetics depend exponentially on clutch force. Therefore, the conservation equation 

for the probability density now reads: 

∂P.
∂t

= k#&(n, − n.)δ(x,) − uk#99	e
?!|A!|
C" + k#99

,<+,:e
3?!|A!|
C"
!0/!1vP. − vE

∂P.
∂x,

,																																	(S86) 

where k#99 and k#99,<+,: are the unloaded clutch slip and catch bond dissociation rates, respectively, 

and F. and F.,<+,: are the characteristic forces of the slip and catch bonds, respectively. In 

dimensionless form, Eq. (S86) reads 

∂P.
∗

∂t∗
= τ(1 + θn.∗ )(1 − n.∗ )δ∗(x,∗) − �eC|A!

∗ | + K#99	e
3C|A!

∗|
[" �P.∗ − vE∗

∂P.
∗

∂x,∗
,																																		(S87) 

where we have introduced two additional dimensionless numbers: 

K#99 =
k#99
,<+,:

k#99
,																																																											χ. =	

F.
,<+,:

F.
																																																										(S88) 

The dimensionless clutch strain rate vE∗ appearing in Eq. (S87) have been previously introduced 

in Eq. (S34). The numerical solution of Eq. (S87) is shown in Fig. S7. For low values of the 

parameter ω, force transmission depends inversely on the parameter χ. for the whole range of 

substrate stiffnesses, since the effective clutch dissociation rate at low clutch extensions scales 

with χ. due to catch bond behavior. For high values of the parameter ω, force transmission is only 

sensitive to changes in the parameter χ. for protrusions on soft enough substrate stiffnesses. On 



sufficiently rigid substrates, clutch loading is fast, slip bonds break by force, and the protrusion 

undergoes frictional slippage. Interestingly, the optimum substrate stiffness for maximal force 

transmission is not sensitive to the changes in the catch bond force parameter χ., as shown in 

Fig. S7. 

 

FIGURE S7. Optimum substrate stiffness for maximal for transmission is independent of the catch 

bond force parameter χ.. Time-averaged traction force as a function of substrate stiffness for four 

different values of χ.. Parameter values: F = 1, K#99 = 20. Solid lines correspond to the mean-field 

numerical solution (Eq. (S87)) and symbols correspond to the numerical solutions of the 

stochastic motor-clutch model. 
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