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A. Hyperparameters for Random Forests models 

All Random Forest models were optimised using Optuna1 in 30 evaluations and five-fold cross 
validation method using oral bioavailability train dataset. 

Table S1. Best parameters for Random Forest models.

n_estimators max_depth
Molecular Descriptors 76 96
Morgan Fingerprints 89 40
RDKit Fingerprints 28 11
MACCSkeyys 85 46

B. Hyperparameters for GNN models

All GNN models were optimised using Optuna1 in 30 evaluations and five-fold cross validation 
method using oral bioavailability train dataset.

Table S2. Best parameters for GIN model.

Hyperparameters Values
num_layers 1
hidden_size 66
learning_rate 0.00889495369073538

Table S3. Best parameters for Graph Transformer model.

Hyperparameters Values
num_layers 2
hidden_size 439
n_heads 1
dropout 0.269754753387312
learning_rate 0.007890910361468965
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Table S4. Best parameters for Vertical GNN model.

Hyperparameters Values
num_gin_layers 2
num_graph_trans_layer 2
hidden_size 122
n_heads 2
dropout 0.36738054656589025
learning_rate 0.00452976319043267

C. Hyperparameters for Transfer Learning GNN Models 

All Transfer Learning GNN models were optimised using Optuna1 in 30 evaluations using 
solubility train and validation dataset.

Table S5. Best parameters for Transfer Learning Vertical GNN model.

Hyperparameters Values
num_gin_layers 2
num_graph_trans_layer 2
hidden_size 245
n_heads 1
dropout 0.30146027310173296
learning_rate 0.0012649520485726895

Table S6. Best parameters for Transfer Learning Pre-Trained Vertical GNN model.

Hyperparameters Values
learning_rate 0.00012649520485726895
es_trigger 15
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D. List of Molecular Descriptors

Table S7. Descriptions of the 45 molecular descriptors used to build random forest model to 
predict oral bioavailability. 

Molecular Descriptors Categories Details
MaxEStateIndex Basic EState descriptors States the maximum EState index
MinEStateIndex Basic EState descriptors States the minimum EState index

MaxAbsEStateIndex Basic EState descriptors
States the maximum absolute EState 
index

MinAbsEStateIndex Basic EState descriptors
State the minimum absolute EState 
index

qed
quantitative estimation of 
drug-likeness

States the weighted sum of ADS-
mapped properties

MolWt General descriptors
States the average molecular weight 
of a molecule

HeavyAtomMolWt General descriptors

States the average molecular weight 
of a molecule with the removal of 
hydrogen atoms

ExactMolWt General descriptors
States the exact molecular weight of 
a molecule

NumValenceElectrons General descriptors
States the number of valence 
electrons a molecule possesses 

MaxPartialCharge General descriptors States the maximum partial charge
MinPartialCharge General descriptors States the minimal partial charge

MaxAbsPartialCharge General descriptors
States the maximum absolute partial 
charge

MinAbsPartialCharge General descriptors
States the minimal absolute partial 
charge

FpDensityMorgan1 General descriptors Morgan fingerprint, radius 1
FpDensityMorgan2 General descriptors Morgan fingerprint, radius 2
FpDensityMorgan3 General descriptors Morgan fingerprint, radius 3

BCUT2D_MWHI BCUT descriptors
Highest eigenvalue of Burden 
matrix weighted by atomic masses

BCUT2D_MWLOW BCUT descriptors
Lowest eigenvalue of Burden 
matrix weighted by atomic masses

BCUT2D_CHGHI BCUT descriptors

the highest eigenvalue of Burden 
matrix weighted by gasteiger 
charges

BCUT2D_CHGLO BCUT descriptors

the lowest eigenvalue of Burden 
matrix weighted by gasteiger 
charges

BCUT2D_LOGPHI BCUT descriptors
the highest eigenvalue of Burden 
matrix weighted by Crippen LogP

BCUT2D_LOGPLO
W BCUT descriptors

the lowest eigenvalue of Burden 
matrix weighted by Crippen LogP
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BCUT2D_MRHI BCUT descriptors
the highest eigenvalue of Burden 
matrix weighted by Crippen MR

BCUT2D_MRLOW BCUT descriptors
the lowest eigenvalue of Burden 
matrix weighted by Crippen MR

BalabanJ
Topological/topochemical 
descriptors Balaban's J value

BertzCT
Topological/topochemical 
descriptors

A topological index meant to 
quantify "complexity"

Chi0
Topological/topochemical 
descriptors

From equations (1), (9) and (10) of 
reference 2

Chi0n
Topological/topochemical 
descriptors

Similar to Hall Kier Chi0v, but uses 
nVal instead of valence. 

Chi0v
Topological/topochemical 
descriptors

From equations (5),(9) and (10) of 
reference 2

Chi1
Topological/topochemical 
descriptors

From equations (1),(11) and (12) of 
reference 2

Chi1n
Topological/topochemical 
descriptors

Similar to Hall Kier Chi1v, but uses 
nVal instead of valence

Chi1v
Topological/topochemical 
descriptors

From equations (5),(11) and (12) of 
reference 2

Chi2n
Topological/topochemical 
descriptors

Similar to Hall Kier Chi2v, but uses 
nVal instead of valence.

Chi2v
Topological/topochemical 
descriptors

From equations (5),(15) and (16) of 
reference 2

Chi3n
Topological/topochemical 
descriptors

Similar to Hall Kier Chi3v, but uses 
nVal instead of valence. 

Chi3v
Topological/topochemical 
descriptors

From equations (5),(15) and (16) of 
reference 2

HallKierAlpha
Topological/topochemical 
descriptors

The Hall-Kier alpha value for a 
molecule

Ipc
Topological/topochemical 
descriptors

The information content of the 
coefficients of the characteristic 
polynomial of the adjacency matrix 
of a hydrogen-suppressed graph of a 
molecule

Kappa1
Topological/topochemical 
descriptors Hall-Kier Kappa1 value

Kappa2
Topological/topochemical 
descriptors Hall-Kier Kappa2 value

Kappa3
Topological/topochemical 
descriptors Hall-Kier Kappa3 value

LabuteASA

MOE-like approximate 
molecular surface area 
descriptors

Labute's Approximate Surface Area 
(ASA from MOE)

HeavyAtomCount
Lipinski parameters for 
molecules

States the number of heavy atoms a 
molecule
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MolLogP

Atom-based calculation of 
LogP and MR using 
Crippen's approach

Wildman-Crippen LogP value

MolMR

Atom-based calculation of 
LogP and MR using 
Crippen's approach

Wildman-Crippen MR value

E. Solubility Dataset Splitting Strategy 

Firstly, we calculated the Tanimoto similarity scores between the solubility dataset and oral 
bioavailability test dataset. The molecules were then arranged in order from the smallest to the 
largest according to the Tanimoto similarity scores. The first 5000 molecules were classified 
as low similarity, the 2501th molecule to 7500th molecules were classified as low similarity and 
4845th molecule to the last molecule were classified as high similarity. Thus, creating 3 datasets 
of different similarity level. This is a similar method adopted from Farsi3 and inspired from k-
fold cross-validation methodology where overlapping train datasets are formed from splitting 
thus generating more permutation and hence more datasets for training purposes.  

Figure S1. Splitting strategy for solubility dataset. 
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F. Prediction Performance of pre-trained models during five-fold cross-validation

Table S8. Prediction performance for oral bioavailability prediction during five-fold cross-
validation comparing different pre-training epochs a

Data Similarity LevelNumber of 
pre-training 
epochs

Metrics
Low (5000) Mid (5000) High (5000) Mid (9844)

Log Loss 0.648±0.028 0.655±0.019 0.637±0.033 0.633±0.032
Acc 0.613±0.069 0.620±0.059 0.632±0.069 0.622±0.056
F1 Score 0.633±0.154 0.571±0.296 0.682±0.109 0.632±0.136

20

AUC-ROC 0.602±0.059 0.559±0.085 0.646±0.056 0.648±0.056
Log Loss 0.642±0.025 0.644±0.032 0.640±0.032 0.625±0.043
Acc 0.628±0.054 0.623±0.053 0.637±0.054 0.642±0.070
F1 Score 0.635±0.142 0.564±0.281 0.679±0.102 0.642±0.142

40

AUC-ROC 0.627±0.042 0.625±0.073 0.627±0.059 0.655±0.081
Log Loss 0.632±0.037 0.641±0.032 0.640±0.027 0.636±0.044
Acc 0.634±0.060 0.629±0.053 0.639±0.066 0.636±0.074
F1 Score 0.631±0.147 0.651±0.128 0.671±0.118 0.636±0.150

60

AUC-ROC 0.662±0.061 0.651±0.045 0.646±0.051 0.662±0.071
a Prediction performance for oral bioavailability train dataset during five-fold cross-validation 
reported in mean ± standard deviation. Models were pre-trained with different number of 
epochs (20, 40, 60). Bold value represents the best score across different epoch level. 

G. Prediction Performance of Transfer Learning Model across different similarity levels

Table S9. Prediction Performance of Transfer Learning Model across different similarity 
levels b

Similarity (Size) Low (5000) Mid (5000) High (5000) Mid (9844)

Log Loss 0.588±0.066 0.532±0.034 0.531±0.033 0.520±0.042

Acc 0.718±0.053 0.729±0.025 0.755±0.022 0.737±0.020

F1 Score 0.760±0.066 0.789±0.016 0.809±0.016 0.782±0.026

AUC-ROC 0.746±0.041 0.799±0.027 0.801±0.024 0.795±0.044

b Vertical GNN models were pre-trained with solubility dataset of different similarity level 
for 60 epochs. Prediction performance using oral bioavailability test dataset were reported in 
mean ± standard deviation. Bold values represent the best score across different similarity level.
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H. SHAP Analysis of Random Forest Models 

Figure S2. Beeswarm plot of top 20 important molecular descriptors for Random Forest model 
towards oral bioavailability prediction using oral bioavailability test dataset. Analysis done on 
model developed from the second fold dataset produced using five-fold cross-validation. 
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Figure S3. Beeswarm plot of top 20 important molecular descriptors for Random Forest model 
towards oral bioavailability prediction using oral bioavailability test dataset. Analysis done on 
model developed from the third fold dataset produced using five-fold cross-validation. 
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Figure S4. Beeswarm plot of top 20 important molecular descriptors for Random Forest model 
towards oral bioavailability prediction using oral bioavailability test dataset. Analysis done on 
model developed from the fourth fold dataset produced using five-fold cross-validation. 
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Figure S5. Beeswarm plot of top 20 important molecular descriptors for Random Forest model 
towards oral bioavailability prediction using oral bioavailability test dataset. Analysis done on 
model developed from the fifth fold dataset produced using five-fold cross-validation. 
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Figure S6. Global feature importance bar plot highlighting top 10 most important molecular 
descriptors. Absolute mean for that feature is taken over all the given sample. Analysis done 
on model developed from the first fold dataset produced using five-fold cross-validation.
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Figure S7. Global feature importance bar plot highlighting top 10 most important molecular 
descriptors. Absolute mean for that feature is taken over all the given sample. Analysis done 
on model developed from the second fold dataset produced using five-fold cross-validation.



S13

Figure S8. Global feature importance bar plot highlighting top 10 most important molecular 
descriptors. Absolute mean for that feature is taken over all the given sample Analysis done on 
model developed from the third fold dataset produced using five-fold cross-validation.
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Figure S9. Global feature importance bar plot highlighting top 10 most important molecular 
descriptors. Absolute mean for that feature is taken over all the given sample. Analysis done 
on model developed from the fourth fold dataset produced using five-fold cross-validation. 
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Figure S10. Global feature importance bar plot highlighting top 10 most important molecular 
descriptors. Absolute mean for that feature is taken over all the given sample. Analysis done 
on model developed from the fifth fold dataset produced using five-fold cross-validation.

 



S16

References

1. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-Generation 

Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD 

International Conference on Knowledge Discovery & Data Mining; ACM: New York, 

NY, USA, 2019.

2. Hall, L. H.; Kier, L. B. The Molecular Connectivity Chi Indexes and Kappa Shape 

Indexes in Structure-Property Modeling. Reviews in Computational Chemistry. 2007, 

367–422. 

3. Farsi, M. Application of Ensemble RNN Deep Neural Network to the Fall Detection 

through IoT Environment. Alex. Eng. J. 2021, 60, 199–211. 


