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SI Figure 1



SI Figure 1: RFdiffusion fine-tuning is required to adapt RoseTTAFold into a gen-
erative model. A) The initial RoseTTAFold structure prediction network cannot perform the
correct reversal of the time-dependent forward noising process. Twenty 300 amino acid uncondi-
tional designs were generated with either RoseTTAFold or RFdiffusion, and their predictions at
each timestep analyzed. While RFdiffusion makes translational- and rotational-predictions (pink)
that closely match the forward noising process (blue), RoseTTAFold (gray) makes inconsistent
predictions. B) Non-finetuned RoseTTAFold does have some ability to unconditionally-generate
designable backbones, although this deteriorates at lengths greater than 100 amino acids (top
left). The 70 and 100 amino acid, designable designs, are not diverse however, with significantly
fewer structural clusters than RFdiffusion (top right). Four randomly selected RoseTTAFold-
generated designs are depicted (bottom), demonstrating this lack of structural diversity. C) RFd-
iffusion also requires fine-tuning to scaffold protein functional sites. While RFdiffusion learns to
keep the functional motif fixed in the output (median RMSD on the functional motif of 0.19Å),
RoseTTAFold cannot (7.45Å). This inability is shown on the right, with four randomly-selected
RoseTTAFold outputs highlighting the inability to maintain the correct internal structure of the
double EF-hand motif from PDB: 1PRW. Boxplot represents median±IQR; tails: min/max ex-
cluding outliers(±1.5xIQR).
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SI Figure 2



Supplementary Information Figure 2: Improving metrics for defining in silico success.
A) In this work, following [5, 16], we sample 8 ProteinMPNN sequences for reported benchmarks.
Higher in silico success rates can be achieved through sampling greater numbers. Data displayed
is for unconditional 300 amino acid proteins. B-C) TM score between a design and a subsequent
orthogonal prediction (e.g. AF2), has been previously used, typically with a threshold of > 0.5,
as a metric for in silico design success. B) RFdiffusion designs have high TM score agreement
to both the AF2 (left) and ESMFold (right) predictions of the unconditional structures, with TM
> 0.5 for a significant fraction of designs even up to 1000 amino acids in length. C) TM score
is, however, much less stringent than RMSD alignment. Depicted here are three unconditional
RFdiffusion designs of 600 amino acids in length (gray), overlaid with the AF2 prediction (colors),
with TM scores of 0.983, 0.757 and 0.506 respectively. While a TM score of 0.5 clearly shows
some resemblance to the designed structure, it differs significantly and should not be classed as
“successfully designed”. RMSD with a strict threshold (for example, 2Å) is significantly more
stringent. RMSDs for the displayed designs are 1.15Å, 9.78Å and 21.4Å respectively. D) To
permit comparison to other work, where TM score has been used, we replot three benchmarks as
TM score between design and AF2 prediction. These correspond to Extended Data Fig. 1E (left),
Extended Data Fig. 1F (middle), Extended Data Fig. 1I (right). Boxplots represent median±IQR;
tails: min/max excluding outliers(±1.5xIQR).
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SI Figure 3



SI Figure 3: RFdiffusion designs are diverse and dissimilar to proteins in the PDB. A)
Comparing unconditional designs to one another (100 designs per length) demonstrates that, by
TM score alignment, designs are diverse (medians 100-400aa: 0.39, 0.36, 0.37, 0.35). B) Outputs
from RFdiffusion are not systematically more similar to example structures in the training set than
the validation set. The RFdiffusion (and original RF) training set is structurally distinct from
the validation set. Structural comparison to the validation set, or a subsampled training set (to
normalize for the total number of TM alignments performed) shows that RFdiffusion outputs show
comparable similarity to each set (ANOVA with Tukey post-hoc test, n = 100 designs per condition,
mean difference between sets = 0.0065, p = 0.32). 1000 unique training set subsamples are averaged.
We therefore conclude that any structural similarity seen to proteins in the PDB is as a result of
learning the distribution of native-like proteins, rather than because of memorization. Further,
the greater similarity (higher TM score) of short proteins is similarly not due to memorization,
but instead the smaller space of possible protein folds for smaller sequences. C) Example of the
most diverse (lowest TM score hit) to the PDB for a set of 300 amino acid designs. The folds of
the design (left) and native protein (middle) are highly dissimilar, aligning only across a portion
of the beta-sheet (right). D) Additional example designs demonstrating extrapolation beyond the
training set for generating novel folds. Gray: closest protein in the PDB by TM score, colors:
RFdiffusion design model, overlaid by TM alignment. For each protein length, the median and
most diverse samples are shown (the 300 amino acid design is the same as in panel C). While
for short proteins, designs typically show some similarity to known protein folds, with increasing
length, designs become increasingly dissimilar to the PDB. TM score (closest PDB, TM score;
median, most diverse): 100aa: 5WVE A, 0.71; 4W5T A, 0.59; 200aa: 4AV3 A, 0.58; 4CLY A, 0.47;
300aa: 4PEW B, 0.53; 4RDR A, 0.46; 400aa: 4AIP A, 0.49; 6R9T A, 0.42. Boxplot represents
median±IQR; tails: min/max excluding outliers(±1.5xIQR).
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SI Figure 4



Supplementary Information Figure 4: Size exclusion chromatography of symmetric
oligomers. A-C) Size exclusion chromatography (SEC) was used as a primary screening method
for all RFdiffusion-generated oligomers. Here, SEC traces from 608 oligomers are shown for each of
the experimentally tested symmetry groups, excluding the void volume. Panel A) shows dihedral
symmetries, B) shows cyclic symmetries, andC) shows all others. For each set of traces, on the left,
data are overlaid for all designs, and on the right, traces are normalized and stacked. As designs
increase in complexity (higher number of individual subunits), the amount of soluble protein shown
by SEC visibly decreases. For tetrahedral, octahedral, and icosahedral designs, many have soluble
protein peaks that are possibly dimer and trimer subunits (unassembled cages).
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SI Figure 5



Supplementary Information Figure 5: SEC elution peaks of symmetric oligomers vs.
calibration curves. Retention volume for the major SEC peak versus molecular weight for each
design are plotted in comparison to a known calibration curve. The calibration curve is shown in
gray, with shading representing the 95% confidence interval. Total yield of each design is indicated
by the scale bar on the right of the graphs, and success rates for the 95% CI and 99% CI are denoted
on each graph per each symmetry. Given that MW is being used as a proxy for hydrodynamic
radius, we expect that some designs (e.g. cycles with large pores) may be true to their design
model, but deviate from the standard curve. These calibration curves provide a rough estimate
of the success rate of each symmetry group, and help guide the selection process for downstream
analysis of any design. In some cases, even though no designs are within the 99% CI, we still
selected designs to screen by nsEM. For example, we are able to confirm HE0822 (C3) by nsEM
despite misalignment between the theoretical and actual elution profiles (Fig. 3B). Because of their
size, the icosahedra were run on an S6 column with lower resolution; thus, the calibration curve
fit results in bigger confidence intervals compared to an S200 column, which was used to screen
all other oligomers (See Methods 6.2). We expect that for oligomers run on the S200, reported
success rates are fairly conservative, whereas for designs run on the S6, experimental success rates
are likely lower than reported.
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SI Figure 6



Supplementary Information Figure 6: Details of HE0537 cryo-EM data processing
pipeline. 2D class averages showing exclusively side-views of HE0537, and an ab initio recon-
struction followed by a C1 non-uniform refinement yielding identifiable D4 features corresponding
to the size and rough secondary structure of the design model. Further data processing was at-
tempted with D4 symmetry imposed, but the strong preferred orientation precluded generation of
a reliable 3D map for detailed structural analysis. At this time, only the predicted 2D projection
images of the design model are analyzed/compared alongside the corresponding experimental cryo-
EM 2D class average side views in Extended Data Fig. 5G, which display strikingly high agreement
to the design. A representative raw cryo-EM micrograph is shown on the right along with nine
example extracted particles and characteristic 2D class averages used in the processing pipeline.
An FSC validation curve for the final reconstruction is shown along with the density map.
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SI Figure 7



Supplementary Information Figure 7: RFdiffusion can scaffold never-seen-before mo-
tifs. To test whether the ability to scaffold “motifs” was related to their presence in the training
set, we randomly extracted “motifs” (either single contiguous 15 residue segments, or two discon-
tinuous 15 residue segments close in 3D space) from two sources. The first set represents the 15
orphan proteins described in Wu et al. [20], which lack sequence or structure homology to known
proteins, and are in neither the RF, RFdiffusion or AF2 training sets The second set were randomly
sampled from the RF (and RFdiffusion) training set. Full details of the structures and “motif”
regions are described in Supplementary Methods Table 9, along with tabulated in silico results
in Supplementary Methods Table 10. A-B) Illustrations of the “motifs” randomly selected for
scaffolding. Teal: motifs that RFdiffusion can successfully scaffold in silico (AF2 pAE < 5, RMSD
AF2 vs Design < 2Å, Motif RMSD vs Native < 1Å). Red: motifs that RFdiffusion failed to scaffold
in silico. C) The success rate on both single and double “motifs” is at least as high for “orphan”
motifs as compared to “motifs” from the training dataset. Note that while RFdiffusion failures
were generally loop-rich, RFdiffusion is able to scaffold “motifs” of a broad range of topologies and
secondary structures. Success rates are typically lower for discontiguous motifs as compared to
single motifs.
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SI Figure 8



Supplementary Information Figure 8: Comparing the diversity of functional motif
scaffolds. The diversity of scaffolds produced by the three “motif-scaffolding” methods; RFdiffu-
sion, RFjoint Inpainting and RF Hallucination was compared by pairwise TM score analysis of the
designed scaffolds (Methods 5.6). Only scaffolding problems with 5 or more in silico successes are
plotted, to permit meaningful comparison. A) RFdiffusion in silico successes are typically some-
what less diverse than (the smaller number of) in silico successes generated by RF Hallucination.
B) RFdiffusion in silico successes are generally more diverse than in silico successes generated by
RFjoint inpainting, where diversity comes solely from the sampling of different scaffold lengths.
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SI Figure 9



Supplementary Information Figure 9: Symmetric motif scaffolding for square-planar
Ni2+ binding. A) Symmetrized imidazole groups of varying shear angles used for constructing the
square-planar motifs to scaffold, with 2.2Å between the theoretically Ni2+ coordinating nitrogen
and the symmetry axis. B) Depiction of a subset of the C4-symmetrized backbone-dependent
(ϕ = −40o, ψ = −60o) rotamers [59] (“inverse rotamers”, Methods 5.9) used as motifs from set
1 input to RFdiffusion for symmetrically scaffolding the theoretical Ni2+ binding site (teal, top).
AF2 predictions of selected in silico successes scaffolding the C4 inverse rotamers show significant
structural diversity in RFdiffusion solutions (colors, bottom). All AF2 structures have full-atom
RMSD < 1.0Å between AF2 predictions and the input motif, AF2 pAE < 6, and AF2 plDDT >
90. C) Depiction of a different subset of the C4-symmetrized backbone-dependent (ϕ = −40o, ψ =
−60o) inverse rotamers [59] used as motifs from set 2 (top), with AF2 predictions of selected in silico
successes (bottom). All AF2 structures have full-atom RMSD < 1.0Å between AF2 predictions
and the input motif, AF2 pAE < 6, AF2 plDDT > 90 D) In silico success count for the inverse
rotamers from set 1 depicted in panel B. An in silico “success” here is defined in accordance with
success on oligomers and success on the active site scaffolding. That is, an AF2 prediction for a
single sequence which has (1) full-atom RMSD over the four histidine residues between the AF2
prediction and the ideal motif of < 1.5Å (2) AF2 pLDDT > 80, (3) backbone RMSD between AF2
and the ideal motif < 1.0Å and (4) backbone RMSD between AF2/design over the entire protein <
2.0Å (Methods 5.3). E) Overlay of various AF2 predictions for designs scaffolding motifs derived
from imidazole groups with no shear (panel A, left) shows a diverse array of RFdiffusion solutions
can all place the histidine imidazole groups at near-ideal distances from a theoretical nickel ion.
F) Overlay of various AF2 predictions for motifs derived from imidazole groups with shear (panel
A, middle and right) again displays diverse backbone solutions for placing the imidazole groups at
near-ideal distances from the theoretical Ni2+ ion.
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SI Figure 10



Supplementary Information Figure 10: Additional Characterization of Binder Designs.
A) IL-7Rα Competition Assay. Positive control (known IL-7Rα binder from ref [12]) was amine
conjugated to ar2g biosensor tips. 100nM IL-7Rα with 1µM of each design then was used as
analyte. Positive control was also included as an analyte as there should be no binding. Response
is normalized to binding of IL-7Rα on its own. All six diffusion-generated binders compete with
the positive control, indicating they bind to the intended site. B) Most binders are expressed with
high yield in E. coli. C-H) SEC elution profiles indicate most binders elute as monomers. In order:
Influenza Hemagglutinin, IL-7Rα, Insulin Receptor, PD-L1, TrkA, Mdm2 (p53 scaffolds).
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SI Figure 11



Supplementary Information Figure 11: Alignment of RFdiffusion binder structures to
complexes in the training set. For all targets the AF2 model of the highest affinity RFdiffusion
binder (left, blue) and another experimentally-validated RFdiffusion binder with a different dock
(right, blue) is shown in complex with its target (yellow). The closest matching interface, as
determined by manual inspection of PDB entries with the same target protein name are aligned
to the designed binder. A) Influenza HA binders aligned to PDB 5VLI (pink). B) PD-L1 binders
aligned to PDB 7UXO (pink). C) IL-7Rα binders aligned to PDB 3DI2 (pink). D) TrkA binders
aligned to PDB 2IFG E (pink) and 2IFG F (teal). E) Insulin Receptor binders aligned to PDB
6PXV C (pink) and 6PXV D (teal).
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SI Figure 12



Supplementary Information Figure 12: Alignment of RFdiffusion binder structures to
previously designed binders. The AF2 model of the highest affinity RFdiffusion binder (left,
blue) and another experimentally-validated RFdiffusion binder with a different dock (right, blue)
is shown in complex with its target (yellow). The structure of the final affinity-matured binder
from Cao et al. [12] is shown in pink. The final affinity-matured binder to Influenza HA was in the
training set and is shown in Extended Data Fig. 9H and omitted here. A) PD-L1 binder aligned
to Rosetta design model of the affinity-matured PD-L1 binder from Cao et al. B) IL-7Rα binder
aligned to the crystal structure of the affinity-matured IL-7Rα binder from Cao et al. (7OPB). C)
TrkA binder aligned to the crystal structure of the affinity-matured TrkA binder from Cao et al.
[12] (7N3T). D) Insulin receptor binder aligned to the Rosetta design model of the affinity-matured
Insulin receptor binder from Cao et al [12]. The four previous de novo binders were not in the RF
or RFdiffusion training set.

29



1 List of Supplementary Information Tables

SI Table 1

30



D
at

as
et

A
ss

o
ci

at
ed

 F
ig

u
re

s
D

es
cr

ip
ti

o
n

 o
f 

an
al

yz
ed

 d
at

as
et

(T
M

al
ig

n
) 

M
ed

ia
n

 o
f

h
ig

h
es

t 
T

M
 S

co
re

 t
o

P
D

B
(T

M
al

ig
n

) 
5t

h
, 2

5t
h

, 7
5t

h
, 9

5t
h

p
er

ce
n

ti
le

 h
ig

h
es

t 
T

M
sc

o
re

 t
o

 P
D

B

(T
M

al
ig

n
) 

M
ed

ia
n

p
ai

rw
is

e 
T

M
 s

co
re

 w
it

h
in

fi
lt

er
ed

 d
es

ig
n

s
(T

M
al

ig
n

) 
5t

h
, 2

5t
h

, 7
5t

h
, 9

5t
h

 p
er

ce
n

ti
le

p
ai

rw
is

e 
T

M
 s

co
re

(B
L

A
S

T
) 

F
ra

ct
io

n
 w

it
h

 s
ig

n
if

ic
an

t
b

la
st

 h
it

s 
(E

-v
al

u
e 

<
 0

.1
) 

in
U

n
iR

ef
90

(B
L

A
S

T
) 

Q
u

er
y 

S
eq

ID
 f

o
r 

b
es

t 
U

n
iR

ef
90

 h
it

(5
th

/2
5t

h
/5

0t
h

/7
5t

h
/9

5t
h

 p
er

ce
n

ti
le

s)

p5
3 

H
el

ix
 S

ca
ffo

ld
s

F
ig

. 4
C

-E
S

et
 o

f 9
5 

te
st

ed
 d

es
ig

ns
, A

lp
ha

F
ol

d2
 m

od
el

s
0.

64
5

0.
58

8 
/ 0

.6
23

 / 
0.

69
0 

/ 0
.7

35
0.

40
6

0.
33

3 
/ 0

.3
71

 / 
0.

45
5 

/ 0
.5

47
0.

07
3

0.
21

9/
0.

23
2/

0.
26

2/
0.

29
6/

0.
31

6

IL
-7

R
a 

bi
nd

er
s

F
ig

. 6
S

et
 o

f 9
5 

te
st

ed
 d

es
ig

ns
, A

lp
ha

F
ol

d2
 m

od
el

s
0.

79
3

0.
70

8 
/ 0

.7
54

 / 
0.

83
9 

/ 0
.9

01
0.

48
3

0.
37

0 
/ 0

.4
28

 / 
0.

54
4 

/ 0
.6

65
0.

12
4

0.
2/

0.
28

9/
0.

3/
0.

32
9/

0.
38

3

In
su

lin
 b

in
de

rs
F

ig
. 6

S
et

 o
f 9

5 
te

st
ed

 d
es

ig
ns

, A
lp

ha
F

ol
d2

 m
od

el
s

0.
80

1
0.

70
3 

/ 0
.7

59
 / 

0.
83

8 
/ 0

.8
78

0.
46

7
0.

35
0 

/ 0
.4

05
 / 

0.
53

8 
/ 0

.6
69

0.
22

9
0.

22
4/

0.
28

9/
0.

31
8/

0.
34

4/
0.

40
3

T
rk

A
 b

in
de

rs
F

ig
. 6

S
et

 o
f 9

5 
te

st
ed

 d
es

ig
ns

, A
lp

ha
F

ol
d2

 m
od

el
s

0.
79

4
0.

69
1 

/ 0
.7

53
 / 

0.
82

7 
/ 0

.8
93

0.
44

7
0.

34
8 

/ 0
.3

99
 / 

0.
52

4 
/ 0

.7
05

0.
19

8
0.

25
2/

0.
3/

0.
33

3/
0.

35
6/

0.
40

5

In
flu

en
za

 H
em

ag
gl

ut
tin

ni
n 

bi
nd

er
s

F
ig

. 6
S

et
 o

f 9
5 

te
st

ed
 d

es
ig

ns
, A

lp
ha

F
ol

d2
 m

od
el

s
0.

80
7

0.
72

2 
/ 0

.7
53

 / 
0.

83
9 

/ 0
.8

75
0.

46
9

0.
36

8 
/ 0

.4
21

 / 
0.

53
6 

/ 0
.6

77
0.

08
3

0.
26

2/
0.

28
/0

.3
1/

0.
34

/0
.3

52

P
D

-L
1

bi
nd

er
s

F
ig

. 6
S

et
 o

f 9
5 

te
st

ed
 d

es
ig

ns
, A

lp
ha

F
ol

d2
 m

od
el

s
0.

80
4

0.
71

7 
/ 0

.7
63

 / 
0.

82
9 

/ 0
.8

67
0.

47
9

0.
34

9 
/ 0

.4
13

 / 
0.

54
6 

/ 0
.7

08
0.

12
5

0.
23

7/
0.

26
4/

0.
28

2/
0.

30
2/

0.
34

8

N
ic

ke
l-b

in
di

ng
 O

lig
om

er
s 

(m
on

om
er

)
F

ig
. 5

S
et

 o
f 3

4 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 M
on

om
er

 e
xt

ra
ct

ed
 fr

om
 th

e 
C

4 
sy

m
m

et
ric

 m
od

el
0.

77
3

0.
68

8 
/ 0

.7
22

 / 
0.

80
9 

/ 0
.8

36
0.

49
5

0.
39

4 
/ 0

.4
48

 / 
0.

59
6 

/ 0
.7

15
0.

11
5

0.
22

8/
0.

28
6/

0.
30

1/
0.

33
5/

0.
35

N
ic

ke
l-b

in
di

ng
 O

lig
om

er
s 

(o
lig

om
er

s)
F

ig
. 5

S
et

 o
f 3

4 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 F
ul

l c
om

pl
ex

 T
M

 a
lig

ne
d

0.
51

1
0.

41
2 

/ 0
.4

89
 / 

0.
52

6 
/ 0

.5
55

0.
39

5
0.

27
5 

/ 0
.3

27
 / 

0.
53

1 
/ 0

.7
33

N
A

 (
se

e 
m

on
om

er
)

N
A

 (
se

e 
m

on
om

er
)

S
ym

m
et

ric
 O

lig
om

er
 (

C
3,

 >
 7

50
 a

m
in

o 
ac

id
s)

 -
 M

on
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 2

0 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 M
on

om
er

 e
xt

ra
ct

ed
 fr

om
 o

lig
om

er
0.

51
9

0.
44

9 
/ 0

.4
7 

/ 0
.6

03
 / 

0.
65

1
0.

29
4

0.
22

3 
/ 0

.2
58

 / 
0.

36
0 

/ 0
.5

48
0.

45
0.

12
9/

0.
18

/0
.2

1/
0.

25
1/

0.
28

3

S
ym

m
et

ric
 O

lig
om

er
 (

C
5,

 >
 7

50
 a

m
in

o 
ac

id
s)

 -
 M

on
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 1

7 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 M
on

om
er

 e
xt

ra
ct

ed
 fr

om
 o

lig
om

er
0.

58
3

0.
51

2 
/ 0

.5
51

 / 
0.

60
5 

/ 0
.6

78
0.

37
2

0.
29

1 
/ 0

.3
29

 / 
0.

41
8 

/ 0
.5

72
0.

17
6

0.
16

2/
0.

18
6/

0.
21

7/
0.

25
6/

0.
28

8

S
ym

m
et

ric
 O

lig
om

er
 (

C
6)

 -
 M

on
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 3

9 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 M
on

om
er

 e
xt

ra
ct

ed
 fr

om
 o

lig
om

er
0.

72
7

0.
66

5 
/ 0

.6
97

 / 
0.

78
1 

/ 0
.8

87
0.

44
5

0.
33

4 
/ 0

.3
84

 / 
0.

54
1 

/ 0
.6

78
0.

12
8

0.
27

3/
0.

32
5/

0.
33

8/
0.

35
/0

.3
63

S
ym

m
et

ric
 O

lig
om

er
 (

C
6,

 >
 7

50
 a

m
in

o 
ac

id
s)

 -
 M

on
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 1

4 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 M
on

om
er

 e
xt

ra
ct

ed
 fr

om
 o

lig
om

er
0.

59
8

0.
53

8 
/ 0

.5
45

 / 
0.

62
9 

/ 0
.7

2
0.

33
8

0.
23

4 
/ 0

.2
94

 / 
0.

43
4 

/ 0
.6

03
0.

28
6

0.
16

4/
0.

18
/0

.1
9/

0.
20

3/
0.

22
7

S
ym

m
et

ric
 O

lig
om

er
 (

C
8)

 -
 M

on
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 3

5 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 M
on

om
er

 e
xt

ra
ct

ed
 fr

om
 o

lig
om

er
0.

73
0.

68
 / 

0.
70

8 
/ 0

.7
55

 / 
0.

90
1

0.
43

2
0.

35
2 

/ 0
.3

91
 / 

0.
50

0 
/ 0

.6
89

0.
08

6
0.

31
7/

0.
31

7/
0.

31
7/

0.
31

7/
0.

31
7

S
ym

m
et

ric
 O

lig
om

er
 (

C
10

) 
- 

M
on

om
er

E
xt

. D
at

a 
F

ig
. 5

B
S

et
 o

f 2
0 

un
iq

ue
 te

st
ed

 b
ac

kb
on

es
, A

lp
ha

F
ol

d2
 m

od
el

s.
 M

on
om

er
 e

xt
ra

ct
ed

 fr
om

 o
lig

om
er

0.
70

5
0.

59
9 

/ 0
.6

68
 / 

0.
72

2 
/ 0

.7
42

0.
54

0.
26

6 
/ 0

.4
30

 / 
0.

63
0 

/ 0
.7

14
0.

05
0.

41
7/

0.
41

7/
0.

41
7/

0.
41

7/
0.

41
7

S
ym

m
et

ric
 O

lig
om

er
 (

C
12

) 
- 

M
on

om
er

E
xt

. D
at

a 
F

ig
. 5

B
S

et
 o

f 9
 u

ni
qu

e 
te

st
ed

 b
ac

kb
on

es
, A

lp
ha

F
ol

d2
 m

od
el

s.
 M

on
om

er
 e

xt
ra

ct
ed

 fr
om

 o
lig

om
er

0.
70

8
0.

67
9 

/ 0
.6

98
 / 

0.
73

1 
/ 0

.8
54

0.
43

5
0.

35
5 

/ 0
.4

07
 / 

0.
49

3 
/ 0

.6
81

0
N

A
 -

 n
o 

hi
ts

S
ym

m
et

ric
 O

lig
om

er
 (

D
2)

 -
 M

on
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 8

4 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 M
on

om
er

 e
xt

ra
ct

ed
 fr

om
 o

lig
om

er
0.

77
7

0.
65

1 
/ 0

.7
35

 / 
0.

82
2 

/ 0
.9

15
0.

45
8

0.
35

0 
/ 0

.4
08

 / 
0.

51
6 

/ 0
.6

32
0.

09
5

0.
27

1/
0.

29
7/

0.
30

8/
0.

41
4/

0.
44

9

S
ym

m
et

ric
 O

lig
om

er
 (

D
3)

 -
 M

on
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 2

6 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 M
on

om
er

 e
xt

ra
ct

ed
 fr

om
 o

lig
om

er
0.

76
3

0.
69

2 
/ 0

.7
38

 / 
0.

81
2 

/ 0
.8

5
0.

50
6

0.
40

1 
/ 0

.4
53

 / 
0.

55
3 

/ 0
.6

52
0.

23
1

0.
26

4/
0.

27
1/

0.
29

4/
0.

32
2/

0.
34

4

S
ym

m
et

ric
 O

lig
om

er
 (

D
4)

 -
 M

on
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 3

0 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 M
on

om
er

 e
xt

ra
ct

ed
 fr

om
 o

lig
om

er
0.

74
9

0.
66

7 
/ 0

.7
07

 / 
0.

79
2 

/ 0
.8

46
0.

42
5

0.
30

8 
/ 0

.3
76

 / 
0.

47
7 

/ 0
.5

63
0.

1
0.

33
5/

0.
34

2/
0.

35
/0

.3
92

/0
.4

25

S
ym

m
et

ric
 O

lig
om

er
 (

D
5)

 -
 M

on
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 7

 u
ni

qu
e 

te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 M
on

om
er

 e
xt

ra
ct

ed
 fr

om
 o

lig
om

er
0.

73
8

0.
69

 / 
0.

71
7 

/ 0
.7

48
 / 

0.
89

1
0.

42
3

0.
25

7 
/ 0

.3
42

 / 
0.

48
0 

/ 0
.5

74
0

N
A

 -
 n

o 
hi

ts

S
ym

m
et

ric
 O

lig
om

er
 (

C
3,

 >
 7

50
 a

m
in

o 
ac

id
s)

 -
 F

ul
l o

lig
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 2

0 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 F
ul

l c
om

pl
ex

0.
36

8
0.

32
5 

/ 0
.3

5 
/ 0

.4
24

 / 
0.

55
1

0.
27

0.
21

8 
/ 0

.2
46

 / 
0.

32
0 

/ 0
.4

71
N

A
 (

se
e 

m
on

om
er

)
N

A
 (

se
e 

m
on

om
er

)

S
ym

m
et

ric
 O

lig
om

er
 (

C
5,

 >
 7

50
 a

m
in

o 
ac

id
s)

 -
 F

ul
l o

lig
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 1

7 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 F
ul

l c
om

pl
ex

0.
37

4
0.

34
1 

/ 0
.3

56
 / 

0.
45

4 
/ 0

.5
53

0.
31

1
0.

22
2 

/ 0
.2

71
 / 

0.
37

2 
/ 0

.5
11

N
A

 (
se

e 
m

on
om

er
)

N
A

 (
se

e 
m

on
om

er
)

S
ym

m
et

ric
 O

lig
om

er
 (

C
6)

 -
 F

ul
l o

lig
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 3

9 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 F
ul

l c
om

pl
ex

0.
57

8
0.

46
4 

/ 0
.5

12
 / 

0.
61

1 
/ 0

.6
69

0.
41

7
0.

21
9 

/ 0
.3

18
 / 

0.
53

7 
/ 0

.7
99

N
A

 (
se

e 
m

on
om

er
)

N
A

 (
se

e 
m

on
om

er
)

S
ym

m
et

ric
 O

lig
om

er
 (

C
6,

 >
 7

50
 a

m
in

o 
ac

id
s)

 -
 F

ul
l o

lig
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 1

4 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 F
ul

l c
om

pl
ex

0.
43

9
0.

33
5 

/ 0
.3

55
 / 

0.
50

1 
/ 0

.5
58

0.
31

5
0.

21
4 

/ 0
.2

62
 / 

0.
40

9 
/ 0

.6
89

N
A

 (
se

e 
m

on
om

er
)

N
A

 (
se

e 
m

on
om

er
)

S
ym

m
et

ric
 O

lig
om

er
 (

C
8)

 -
 F

ul
l o

lig
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 3

5 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 F
ul

l c
om

pl
ex

0.
57

5
0.

44
7 

/ 0
.5

16
 / 

0.
61

7 
/ 0

.6
8

0.
46

7
0.

25
4 

/ 0
.3

27
 / 

0.
62

5 
/ 0

.8
78

N
A

 (
se

e 
m

on
om

er
)

N
A

 (
se

e 
m

on
om

er
)

S
ym

m
et

ric
 O

lig
om

er
 (

C
10

) 
- 

F
ul

l o
lig

om
er

E
xt

. D
at

a 
F

ig
. 5

B
S

et
 o

f 2
0 

un
iq

ue
 te

st
ed

 b
ac

kb
on

es
, A

lp
ha

F
ol

d2
 m

od
el

s.
 F

ul
l c

om
pl

ex
0.

59
7

0.
47

7 
/ 0

.5
56

 / 
0.

64
3 

/ 0
.6

61
0.

73
0.

48
0 

/ 0
.6

24
 / 

0.
82

6 
/ 0

.9
00

N
A

 (
se

e 
m

on
om

er
)

N
A

 (
se

e 
m

on
om

er
)

S
ym

m
et

ric
 O

lig
om

er
 (

C
12

) 
- 

F
ul

l o
lig

om
er

E
xt

. D
at

a 
F

ig
. 5

B
S

et
 o

f 9
 u

ni
qu

e 
te

st
ed

 b
ac

kb
on

es
, A

lp
ha

F
ol

d2
 m

od
el

s.
 F

ul
l c

om
pl

ex
0.

50
9

0.
41

4 
/ 0

.4
76

 / 
0.

52
8 

/ 0
.6

29
0.

42
9

0.
31

0 
/ 0

.3
50

 / 
0.

55
8 

/ 0
.7

31
N

A
 (

se
e 

m
on

om
er

)
N

A
 (

se
e 

m
on

om
er

)

S
ym

m
et

ric
 O

lig
om

er
 (

D
2)

 -
 F

ul
l o

lig
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 8

4 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 F
ul

l c
om

pl
ex

0.
5

0.
41

6 
/ 0

.4
64

 / 
0.

53
6 

/ 0
.5

96
0.

34
0.

26
3 

/ 0
.3

06
 / 

0.
38

8 
/ 0

.5
15

N
A

 (
se

e 
m

on
om

er
)

N
A

 (
se

e 
m

on
om

er
)

S
ym

m
et

ric
 O

lig
om

er
 (

D
3)

 -
 F

ul
l o

lig
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 2

6 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 F
ul

l c
om

pl
ex

0.
40

3
0.

38
5 

/ 0
.3

91
 / 

0.
43

5 
/ 0

.4
59

0.
31

2
0.

25
4 

/ 0
.2

85
 / 

0.
35

0 
/ 0

.4
71

N
A

 (
se

e 
m

on
om

er
)

N
A

 (
se

e 
m

on
om

er
)

S
ym

m
et

ric
 O

lig
om

er
 (

D
4)

 -
 F

ul
l o

lig
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 3

0 
un

iq
ue

 te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 F
ul

l c
om

pl
ex

0.
38

4
0.

34
3 

/ 0
.3

59
 / 

0.
40

3 
/ 0

.4
23

0.
29

3
0.

23
2 

/ 0
.2

67
 / 

0.
34

1 
/ 0

.4
39

N
A

 (
se

e 
m

on
om

er
)

N
A

 (
se

e 
m

on
om

er
)

S
ym

m
et

ric
 O

lig
om

er
 (

D
5)

 -
 F

ul
l o

lig
om

er
E

xt
. D

at
a 

F
ig

. 5
B

S
et

 o
f 7

 u
ni

qu
e 

te
st

ed
 b

ac
kb

on
es

, A
lp

ha
F

ol
d2

 m
od

el
s.

 F
ul

l c
om

pl
ex

0.
35

3
0.

33
2 

/ 0
.3

45
 / 

0.
37

3 
/ 0

.3
98

0.
32

9
0.

22
7 

/ 0
.2

68
 / 

0.
37

5 
/ 0

.5
23

N
A

 (
se

e 
m

on
om

er
)

N
A

 (
se

e 
m

on
om

er
)

S
ar

s-
C

oV
-2

 C
3 

bi
nd

er
 s

ca
ffo

ld
s 

- 
M

on
om

er
F

ig
. 5

A
S

et
 o

f 7
in

 s
ili

co
su

cc
es

sf
ul

 b
ac

kb
on

es
, A

lp
ha

F
ol

d2
 m

od
el

s.
 M

on
om

er
 e

xt
ra

ct
ed

 fr
om

 o
lig

om
er

0.
62

1
0.

57
4 

/ 0
.5

94
 / 

0.
64

2 
/ 0

.6
62

0.
45

2
0.

39
2 

/ 0
.4

22
 / 

0.
73

 / 
0.

83
7

0.
37

5
0.

15
9/

0.
19

3/
0.

23
4/

0.
27

9/
0.

32
2

S
ar

s-
C

oV
-2

 C
3 

bi
nd

er
 s

ca
ffo

ld
s 

- 
F

ul
l o

lig
om

er
F

ig
. 5

A
S

et
 o

f 7
in

 s
ili

co
su

cc
es

sf
ul

 b
ac

kb
on

es
, A

lp
ha

F
ol

d2
 m

od
el

s.
 F

ul
l c

om
pl

ex
0.

41
2

0.
40

2 
/ 0

.4
04

 / 
0.

42
1 

/ 0
.4

26
0.

42
3

0.
34

6 
/ 0

.3
6 

/ 0
.7

94
 / 

0.
88

5
N

A
 (

se
e 

m
on

om
er

)
N

A
 (

se
e 

m
on

om
er

)

E
C

1 
E

nz
ym

e 
S

ca
ffo

ld
s

F
ig

. 4
G

S
et

 o
f 3

0
in

 s
ili

co
su

cc
es

sf
ul

 E
C

1 
ac

tiv
e 

si
te

 s
ca

ffo
ld

s,
 A

lp
ha

F
ol

d2
 m

od
el

s
0.

66
3

0.
58

 / 
0.

61
5 

/ 0
.6

87
 / 

0.
70

2
0.

45
8

0.
33

2 
/ 0

.4
03

 / 
0.

52
4 

/ 0
.6

14
0.

29
0.

18
3/

0.
19

3/
0.

19
3/

0.
22

7/
0.

24
4

E
C

2 
E

nz
ym

e 
S

ca
ffo

ld
s

F
ig

. 4
G

S
et

 o
f 5

in
 s

ili
co

su
cc

es
sf

ul
 E

C
2 

ac
tiv

e 
si

te
 s

ca
ffo

ld
s,

 A
lp

ha
F

ol
d2

 m
od

el
s

0.
60

5
0.

53
2 

/ 0
.5

77
 / 

0.
63

7 
/ 0

.6
89

0.
36

7
0.

27
6 

/ 0
.3

11
 / 

0.
40

0 
/ 0

.4
70

0.
42

9
0.

21
4/

0.
21

7/
0.

22
/0

.2
2/

0.
22

E
C

3 
E

nz
ym

e 
S

ca
ffo

ld
s

F
ig

. 4
G

S
et

 o
f 3

1
in

 s
ili

co
su

cc
es

sf
ul

 E
C

3 
ac

tiv
e 

si
te

 s
ca

ffo
ld

s,
 A

lp
ha

F
ol

d2
 m

od
el

s
0.

57
8

0.
52

2 
/ 0

.5
5 

/ 0
.6

03
 / 

0.
63

1
0.

35
3

0.
28

5 
/ 0

.3
20

 / 
0.

40
0 

/ 0
. 4

91
0.

03
1

0.
22

7/
0.

22
7/

0.
22

7/
0.

22
7/

0.
22

7

E
C

4 
E

nz
ym

e 
S

ca
ffo

ld
s

F
ig

. 4
G

S
et

 o
f 5

5
in

 s
ili

co
su

cc
es

sf
ul

 E
C

4 
ac

tiv
e 

si
te

 s
ca

ffo
ld

s,
 A

lp
ha

F
ol

d2
 m

od
el

s
0.

63
9

0.
53

3 
/ 0

.6
07

 / 
0.

67
3 

/ 0
.7

04
0.

44
2

0.
32

8 
/ 0

.3
89

 / 
0.

49
4 

/ 0
.5

72
0.

30
4

0.
18

4/
0.

2/
0.

21
3/

0.
22

7/
0.

26

E
C

5 
E

nz
ym

e 
S

ca
ffo

ld
s

F
ig

. 4
G

S
et

 o
f 3

0
in

 s
ili

co
su

cc
es

sf
ul

 E
C

5 
ac

tiv
e 

si
te

 s
ca

ffo
ld

s,
 A

lp
ha

F
ol

d2
 m

od
el

s
0.

66
0.

55
6 

/ 0
.5

94
 / 

0.
69

8 
/ 0

.7
47

0.
37

4
0.

28
9 

/ 0
.3

32
 / 

0.
43

7 
/ 0

.5
31

0.
22

6
0.

20
4/

0.
22

/0
.2

6/
0.

27
7/

0.
29

1

U
nc

on
di

tio
na

l l
en

gt
h 

10
0

F
ig

. 2
C

S
et

 o
f 1

00
 d

es
ig

ns
 u

se
d 

fo
r 

be
nc

hm
ar

ki
ng

 s
uc

ce
ss

 r
at

e 
at

 le
ng

th
 1

00
, R

F
di

ffu
si

on
 o

ut
pu

ts
0.

70
1

0.
61

5 
/ 0

.6
62

 / 
0.

76
 / 

0.
86

3
0.

39
4

0.
30

2 
/ 0

.3
53

 / 
0.

44
5 

/ 0
.5

43
0.

16
0.

25
8/

0.
28

/0
.3

/0
.3

2/
0.

37

U
nc

on
di

tio
na

l l
en

gt
h 

20
0

F
ig

. 2
C

S
et

 o
f 1

00
 d

es
ig

ns
 u

se
d 

fo
r 

be
nc

hm
ar

ki
ng

 s
uc

ce
ss

 r
at

e 
at

 le
ng

th
 2

00
, R

F
di

ffu
si

on
 o

ut
pu

ts
0.

57
6

0.
48

5 
/ 0

.5
25

 / 
0.

61
3 

/ 0
.6

8
0.

36
0.

28
6 

/ 0
.3

25
 / 

0.
40

5 
/ 0

.5
06

0.
32

0.
11

8/
0.

13
9/

0.
18

/0
.2

32
/0

.2
87

U
nc

on
di

tio
na

l l
en

gt
h 

30
0

F
ig

. 2
C

S
et

 o
f 1

00
 d

es
ig

ns
 u

se
d 

fo
r 

be
nc

hm
ar

ki
ng

 s
uc

ce
ss

 r
at

e 
at

 le
ng

th
 3

00
, R

F
di

ffu
si

on
 o

ut
pu

ts
0.

52
6

0.
46

2 
/ 0

.4
90

 / 
0.

58
5 

/ 0
.6

44
0.

36
8

0.
27

9 
/ 0

.3
29

 / 
0.

41
8 

/ 0
.5

31
0.

39
0.

11
3/

0.
14

/0
.1

63
/0

.1
82

/0
.2

51

U
nc

on
di

tio
na

l l
en

gt
h 

40
0

F
ig

. 2
C

S
et

 o
f 1

00
 d

es
ig

ns
 u

se
d 

fo
r 

be
nc

hm
ar

ki
ng

 s
uc

ce
ss

 r
at

e 
at

 le
ng

th
 4

00
, R

F
di

ffu
si

on
 o

ut
pu

ts
0.

47
8

0.
42

0 
/ 0

.4
48

 / 
0.

52
1 

/ 0
.5

93
0.

35
3

0.
27

4 
/ 0

.3
12

 / 
0.

41
9 

/ 0
.4

96
0.

41
0.

08
2/

0.
10

8/
0.

13
/0

.1
62

/0
.2

25

U
nc

on
di

tio
na

l l
en

gt
h 

60
0

F
ig

. 2
C

S
et

 o
f 1

00
 d

es
ig

ns
 u

se
d 

fo
r 

be
nc

hm
ar

ki
ng

 s
uc

ce
ss

 r
at

e 
at

 le
ng

th
 6

00
, R

F
di

ffu
si

on
 o

ut
pu

ts
0.

41
3

0.
37

7 
/ 0

.3
96

 / 
0.

43
9 

/ 0
.4

86
0.

35
0.

27
8 

/ 0
.3

14
 / 

0.
39

 / 
0.

49
9

0.
39

0.
04

8/
0.

07
4/

0.
09

2/
0.

10
7/

0.
19

2

U
nc

on
di

tio
na

l l
en

gt
h 

80
0

F
ig

. 2
C

S
et

 o
f 1

00
 d

es
ig

ns
 u

se
d 

fo
r 

be
nc

hm
ar

ki
ng

 s
uc

ce
ss

 r
at

e 
at

 le
ng

th
 8

00
, R

F
di

ffu
si

on
 o

ut
pu

ts
0.

37
6

0.
34

7 
/ 0

.3
61

 / 
0.

39
4 

/ 0
.4

20
0.

32
2

0.
26

1 
/ 0

.2
87

 / 
0.

35
5 

/ 0
.4

03
0.

39
0.

04
5/

0.
06

4/
0.

07
6/

0.
09

8/
0.

12
8

U
nc

on
di

tio
na

l l
en

gt
h 

10
00

F
ig

. 2
C

S
et

 o
f 1

00
 d

es
ig

ns
 u

se
d 

fo
r 

be
nc

hm
ar

ki
ng

 s
uc

ce
ss

 r
at

e 
at

 le
ng

th
 1

00
0,

 R
F

di
ffu

si
on

 o
ut

pu
ts

0.
35

3
0.

32
7 

/ 0
.3

39
 / 

0.
36

6 
/ 0

.3
93

0.
29

6
0.

25
6 

/ 0
.2

78
 / 

0.
31

5 
/ 0

.3
55

0.
31

0.
03

2/
0.

04
1/

0.
04

7/
0.

06
7/

0.
09

T
IM

 b
ar

re
l

E
xt

. D
at

a 
F

ig
. 4

S
et

 o
f 1

24
32

 ti
m

-b
ar

re
l f

ol
d 

co
nd

iti
on

ed
 d

es
ig

ns
N

A
N

A
N

A
N

A
0.

19
0.

11
/0

.1
48

/0
.1

77
/0

.2
12

/0
.2

63

N
T

F
2

E
xt

. D
at

a 
F

ig
. 4

S
et

 o
f 7

20
0 

nt
f2

 fo
ld

 c
on

di
tio

ne
d 

de
si

gn
s

N
A

N
A

N
A

N
A

0.
13

8
0.

17
1/

0.
21

/0
.2

44
/0

.2
78

/0
.3

28

Su
pp

le
m

en
ta

ry
 I

nf
or

m
at

io
n 

T
ab

le
 1

 -
 P

ar
t 
1/

3

31



D
at

as
et

A
ss

o
ci

at
ed

 F
ig

u
re

s
D

es
cr

ip
ti

o
n

 o
f 

an
al

yz
ed

 d
at

as
et

(T
M

al
ig

n
) 

M
ed

ia
n

 o
f

h
ig

h
es

t 
T

M
 S

co
re

 t
o

P
D

B
(T

M
al

ig
n

) 
5t

h
, 2

5t
h

, 7
5t

h
, 9

5t
h

p
er

ce
n

ti
le

 h
ig

h
es

t 
T

M
sc

o
re

 t
o

 P
D

B

(T
M

al
ig

n
) 

M
ed

ia
n

p
ai

rw
is

e 
T

M
 s

co
re

 w
it

h
in

fi
lt

er
ed

 d
es

ig
n

s
(T

M
al

ig
n

) 
5t

h
, 2

5t
h

, 7
5t

h
, 9

5t
h

 p
er

ce
n

ti
le

p
ai

rw
is

e 
T

M
 s

co
re

(B
L

A
S

T
) 

F
ra

ct
io

n
 w

it
h

 s
ig

n
if

ic
an

t
b

la
st

 h
it

s 
(E

-v
al

u
e 

<
 0

.1
) 

in
 U

n
iR

ef
90

(B
L

A
S

T
) 

Q
u

er
y 

S
eq

ID
 f

o
r 

b
es

t 
U

n
iR

ef
90

 h
it

(5
th

/2
5t

h
/5

0t
h

/7
5t

h
/9

5t
h

 p
er

ce
n

ti
le

s)

rs
v_

si
te

4 
(n

oi
se

 1
)

F
ig

. 4
A

S
et

 o
f 3

1
in

 s
ili

co
su

cc
es

sf
ul

 r
sv

_s
ite

4 
de

si
gn

s 
w

ith
 1

X
 n

oi
se

 s
ca

le
, A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

63
7

0.
54

2 
/ 0

.6
05

 / 
0.

69
6 

/ 0
.7

71
0.

39
0.

27
8 

/ 0
.3

39
 / 

0.
45

6 
/ 0

.5
89

0.
12

9
0.

05
5/

0.
06

9/
0.

07
8/

0.
08

/0
.0

8

rs
v_

si
te

4 
(n

oi
se

 0
)

F
ig

. 4
A

S
et

 o
f 4

0
in

 s
ili

co
su

cc
es

sf
ul

 r
sv

_s
ite

4 
de

si
gn

s 
w

ith
 0

x 
no

is
e 

sc
al

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

65
4

0.
54

8 
/ 0

.5
73

 / 
0.

71
4 

/ 0
.7

58
0.

37
5

0.
26

5 
/ 0

.3
26

 / 
0.

43
2 

/ 0
.5

56
0.

17
5

0.
04

/0
.0

42
/0

.0
49

/0
.0

65
/0

.0
91

2K
L8

 (
no

is
e 

1)
F

ig
. 4

A
S

et
 o

f 9
6

in
 s

ili
co

su
cc

es
sf

ul
 2

kl
8 

de
si

gn
s 

w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

81
6

0.
78

9 
/ 0

.8
01

 / 
0.

82
5 

/ 0
.8

42
0.

7
0.

56
1 

/ 0
.6

27
 / 

0.
82

3 
/ 0

.9
42

1
0.

03
5/

0.
05

1/
0.

06
3/

0.
07

6/
0.

08
9

2K
L8

 (
no

is
e 

0)
F

ig
. 4

A
S

et
 o

f 8
8

in
 s

ili
co

su
cc

es
sf

ul
 2

kl
8 

de
si

gn
s 

w
ith

 0
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

82
1

0.
80

3 
/ 0

.8
15

 / 
0.

82
8 

/ 0
.8

44
0.

84
5

0.
60

0 
/ 0

.6
71

 / 
0.

92
3 

/ 0
.9

76
1

0.
03

8/
0.

06
3/

0.
07

6/
0.

08
9/

0.
08

9

5t
pn

 (
no

is
e 

1)
F

ig
. 4

A
S

et
 o

f 5
9

in
 s

ili
co

su
cc

es
sf

ul
 5

tp
n 

de
si

gn
s 

w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

67
6

0.
60

1 
/ 0

.6
47

 / 
0.

70
8 

/ 0
.7

39
0.

4
0.

28
0 

/ 0
.3

41
 / 

0.
49

 / 
0.

63
4

0.
93

0.
01

5/
0.

06
/0

.0
75

/0
.0

94
/0

.1
25

5t
pn

 (
no

is
e 

0)
F

ig
. 4

A
S

et
 o

f 6
1

in
 s

ili
co

su
cc

es
sf

ul
 5

tp
n 

de
si

gn
s 

w
ith

 0
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

67
0.

61
2 

/ 0
.6

46
 / 

0.
69

5 
/ 0

.7
31

0.
39

1
0.

28
1 

/ 0
.3

37
 / 

0.
47

 / 
0.

62
2

0.
96

7
0.

01
5/

0.
05

8/
0.

07
7/

0.
09

7/
0.

16
9

1B
C

F
 (

no
is

e 
1)

F
ig

. 4
A

S
et

 o
f 9

8 
in

 s
ili

co
 s

uc
ce

ss
fu

l 1
bc

f d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

81
4

0.
74

6 
/ 0

.7
71

 / 
0.

84
 / 

0.
86

3
0.

80
9

0.
73

3 
/ 0

.7
8 

/ 0
.8

38
 / 

0.
87

9
0.

49
0.

07
9/

0.
09

7/
0.

11
4/

0.
18

2/
0.

21
8

1B
C

F
 (

no
is

e 
0)

F
ig

. 4
A

S
et

 o
f 1

00
in

 s
ili

co
su

cc
es

sf
ul

 1
bc

f d
es

ig
ns

 w
ith

 0
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

82
0.

76
5 

/ 0
.7

92
 / 

0.
84

 / 
0.

86
8

0.
82

4
0.

74
3 

/ 0
.7

93
 / 

0.
85

3 
/ 0

.8
92

0.
54

0.
08

4/
0.

10
8/

0.
15

6/
0.

19
5/

0.
25

1

6V
W

1 
(n

oi
se

 1
)

F
ig

. 4
A

S
et

 o
f 6

6
in

 s
ili

co
su

cc
es

sf
ul

 6
vw

1 
de

si
gn

s 
w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
73

6
0.

65
6 

/ 0
.7

07
 / 

0.
75

8 
/ 0

.7
98

0.
57

6
0.

48
4 

/ 0
.5

34
 / 

0.
62

7 
/ 0

.7
55

1
0.

01
3/

0.
02

6/
0.

03
8/

0.
05

5/
0.

07
3

6V
W

1 
(n

oi
se

 0
F

ig
. 4

A
S

et
 o

f 6
9

in
 s

ili
co

su
cc

es
sf

ul
 6

vw
1 

de
si

gn
s 

w
ith

 0
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

74
3

0.
67

4 
/ 0

.7
12

 / 
0.

77
1 

/ 0
.7

98
0.

58
3

0.
48

9 
/ 0

.5
39

 / 
0.

63
6 

/ 0
.7

43
1

0.
0/

0.
01

5/
0.

03
9/

0.
05

5/
0.

08
2

3I
X

T
 (

no
is

e 
1)

F
ig

. 4
A

S
et

 o
f 1

6
in

 s
ili

co
su

cc
es

fu
l 3

ix
t d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
76

8
0.

71
4 

/ 0
.7

21
 / 

0.
80

1 
/ 0

.8
82

0.
48

3
0.

38
6 

/ 0
.4

48
 / 

0.
53

 / 
0.

60
4

1
0.

0/
0.

0/
0.

0/
0.

03
5/

0.
12

2

3I
X

T
 (

no
is

e 
0)

F
ig

. 4
A

S
et

 o
f 3

5
in

 s
ili

co
su

cc
es

sf
ul

 3
ix

t d
es

ig
ns

 w
ith

 0
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

78
7

0.
70

8 
/ 0

.7
48

 / 
0.

80
4 

/ 0
.8

37
0.

48
0.

39
5 

/ 0
.4

38
 / 

0.
53

3 
/ 0

.7
78

1
0.

0/
0.

0/
0.

0/
0.

06
/0

.1
4

5T
R

V
_l

on
g 

(n
oi

se
 1

)
F

ig
. 4

A
S

et
 o

f 3
0

in
 s

ili
co

su
cc

es
sf

ul
 5

tr
v_

lo
ng

 d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

59
1

0.
53

5 
/ 0

.5
72

 / 
0.

63
6 

/ 0
.7

14
0.

33
7

0.
27

7 
/ 0

.3
06

 / 
0.

38
6 

/ 0
.4

85
1

0.
0/

0.
00

2/
0.

00
9/

0.
05

8/
0.

09
5

5T
R

V
_l

on
g 

(n
oi

se
 0

)
F

ig
. 4

A
S

et
 o

f 3
7

in
 s

ili
co

su
cc

es
sf

ul
 5

tr
v_

lo
ng

 d
es

ig
ns

 w
ith

 0
x 

no
is

e
0.

60
9

0.
54

 / 
0.

56
2 

/ 0
.6

37
 / 

0.
71

9
0.

35
1

0.
28

 / 
0.

31
3 

/ 0
.4

11
 / 

0.
53

5
1

0.
0/

0.
00

9/
0.

03
4/

0.
06

9/
0.

10
7

6E
X

Z
_l

on
g 

(n
oi

se
 1

)
F

ig
. 4

A
S

et
 o

f 5
1

in
 s

ili
co

su
cc

es
sf

ul
 6

ex
z_

lo
ng

 d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

66
5

0.
60

5 
/ 0

.6
48

 / 
0.

71
1 

/ 0
.7

43
0.

39
7

0.
32

7 
/ 0

.3
63

 / 
0.

44
5 

/ 0
.5

6
0.

49
0.

03
6/

0.
03

6/
0.

09
1/

0.
22

7/
0.

28

6E
X

Z
_l

on
g 

(n
oi

se
 0

)
F

ig
. 4

A
S

et
 o

f 7
6

in
 s

ili
co

su
cc

es
sf

ul
 6

ex
z_

lo
ng

 d
es

ig
ns

 w
ith

 0
x 

no
is

e
0.

70
7

0.
61

5 
/ 0

.6
66

 / 
0.

73
7 

/ 0
.7

78
0.

41
3

0.
33

4 
/ 0

.3
78

 / 
0.

46
2 

/ 0
.5

66
0.

51
0.

01
8/

0.
02

7/
0.

06
4/

0.
11

4/
0.

27
4

6E
6R

_m
ed

 (
no

is
e 

1)
F

ig
. 4

A
S

et
 o

f 6
7

in
 s

ili
co

su
cc

es
sf

ul
 d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
75

0.
66

1 
/ 0

.7
28

 / 
0.

78
4 

/ 0
.8

3
0.

43
3

0.
35

4 
/ 0

.3
96

 / 
0.

47
8 

/ 0
.5

77
0.

16
4

0.
17

3/
0.

23
7/

0.
26

9/
0.

28
2/

0.
32

1

6E
6R

_m
ed

 (
no

si
e 

0)
F

ig
. 4

A
S

et
 o

f 8
9

in
 s

ili
co

su
cc

es
sf

ul
 d

es
ig

ns
 w

ith
 0

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
76

8
0.

65
1 

/ 0
.7

21
 / 

0.
80

2 
/ 0

.8
41

0.
44

1
0.

35
7 

/ 0
.4

03
 / 

0.
48

9 
/ 0

.5
99

0.
13

4
0.

18
1/

0.
23

1/
0.

24
4/

0.
29

2/
0.

33
3

7M
R

X
_1

28
 (

no
is

e 
1)

F
ig

. 4
A

S
et

 o
f 4

in
 s

ili
co

su
cc

es
sf

ul
 d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
65

5
0.

61
6 

/ 0
.6

40
 / 

0.
69

1 
/ 0

.7
66

0.
35

4
0.

32
8 

/ 0
.3

33
 / 

0.
37

7 
/ 0

.4
98

1
0.

02
3/

0.
02

3/
0.

03
5/

0.
05

5/
0.

07
3

7M
R

X
_1

28
 (

no
is

e 
0)

F
ig

. 4
A

S
et

 o
f 9

in
 s

ili
co

su
cc

es
sf

ul
 d

es
ig

ns
 w

ith
 0

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
67

8
0.

58
4 

/ 0
.6

20
 / 

0.
69

7 
/ 0

.7
30

0.
46

1
0.

33
7 

/ 0
.4

05
 / 

0.
50

8 
/ 0

.7
45

1
0.

0/
0.

03
9/

0.
04

7/
0.

10
9/

0.
12

3

6E
6R

_l
on

g 
(n

oi
se

 1
)

F
ig

. 4
A

S
et

 o
f 6

3
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

7
0.

61
8 

/ 0
.6

54
 / 

0.
72

8 
/ 0

.8
11

0.
39

8
0.

32
1 

/ 0
.3

64
 / 

0.
44

1 
/ 0

.5
15

0.
20

6
0.

14
8/

0.
20

4/
0.

25
/0

.2
69

/0
.3

02

6E
6R

_l
on

g 
(n

oi
se

 0
)

F
ig

. 4
A

S
et

 o
f 8

6
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 0
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

70
2

0.
63

5 
/ 0

.6
70

 / 
0.

74
6 

/ 0
.8

27
0.

42
1

0.
33

8 
/ 0

.3
8 

/ 0
.4

67
 / 

0.
55

8
0.

15
0.

17
6/

0.
18

5/
0.

25
/0

.2
69

/0
.3

15

5T
R

V
_s

ho
rt

 (
no

is
e 

1)
F

ig
. 4

A
S

et
 o

f 7
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

73
7

0.
69

 / 
0.

71
9 

/ 0
.7

54
 / 

0.
81

8
0.

58
2

0.
34

4 
/ 0

.3
52

 / 
0.

81
3 

/ 0
.8

44
1

0.
0/

0.
0/

0.
0/

0.
01

8/
0.

04
3

5T
R

V
_s

ho
rt

 (
no

is
e 

0)
F

ig
. 4

A
S

et
 o

f 4
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 0
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

82
2

0.
77

 / 
0.

79
6 

/ 0
.8

45
 / 

0.
86

3
0.

41
5

0.
31

4 
/ 0

.3
66

 / 
0.

48
4 

/ 0
.5

76
1

0.
0/

0.
0/

0.
00

9/
0.

01
8/

0.
01

8

1P
R

W
 (

no
is

e 
1)

F
ig

. 4
A

S
et

 o
f 9

in
 s

ili
co

su
cc

es
sf

ul
 d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
61

6
0.

58
8 

/ 0
.6

10
 / 

0.
63

4 
/ 0

.6
68

0.
56

0.
35

3 
/ 0

.4
86

 / 
0.

66
 / 

0.
73

9
1

0.
06

1/
0.

08
6/

0.
09

1/
0.

11
2/

0.
13

6

1P
R

W
 (

no
si

e 
0)

F
ig

. 4
A

S
et

 o
f 8

in
 s

ili
co

su
cc

es
sf

ul
 d

es
ig

ns
 w

ith
 0

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
57

5
0.

53
5 

/ 0
.5

63
 / 

0.
62

2 
/ 0

.6
87

0.
45

2
0.

30
2 

/ 0
.3

86
 / 

0.
54

2 
/ 0

.6
42

1
0.

05
5/

0.
06

1/
0.

08
2/

0.
08

8/
0.

09
9

6E
X

Z
_m

ed
 (

no
is

e 
1)

F
ig

. 4
A

S
et

 o
f 3

3
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

72
8

0.
65

6 
/ 0

.6
98

 / 
0.

75
2 

/ 0
.7

76
0.

43
3

0.
35

4 
/ 0

.3
94

 / 
0.

48
4 

/ 0
.5

78
0.

82
0.

01
2/

0.
02

5/
0.

03
8/

0.
08

1/
0.

13
4

6E
X

Z
_m

ed
 (

no
is

e 
0)

F
ig

. 4
A

S
et

 o
f 4

9
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 0
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

73
6

0.
68

7 
/ 0

.7
16

 / 
0.

75
6 

/ 0
.7

79
0.

45
6

0.
36

9 
/ 0

.4
15

 / 
0.

52
6 

/ 0
.6

99
0.

82
0.

02
5/

0.
05

/0
.0

62
/0

.1
/0

.1
54

6E
6R

_s
ho

rt
(n

oi
se

 1
)

F
ig

. 4
A

S
et

 o
f 2

9
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

82
4

0.
75

2 
/ 0

.7
71

 / 
0.

84
5 

/ 0
.8

86
0.

48
6

0.
42

2 
/ 0

.4
59

 / 
0.

52
2 

/ 0
.6

00
0.

03
4

0.
37

5/
0.

37
5/

0.
37

5/
0.

37
5/

0.
37

5

6E
6R

_s
ho

rt
(n

oi
se

 0
)

F
ig

. 4
A

S
et

 o
f 3

9
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 0
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

82
4

0.
73

3 
/ 0

.7
94

 / 
0.

84
8 

/ 0
.8

82
0.

48
6

0.
41

3 
/ 0

.4
54

 / 
0.

54
6 

/ 0
.6

61
0.

1
0.

21
5/

0.
24

/0
.2

92
/0

.3
44

/0
.3

69

5I
U

S
 (

no
is

e 
1)

F
ig

. 4
A

N
A

 (
no

in
 s

ili
co

su
cc

es
sf

ul
 1

x 
no

is
e 

de
si

gn
s)

, A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

N
A

N
A

N
A

N
A

N
A

N
A

5I
U

S
 (

no
is

e 
0)

F
ig

. 4
A

S
et

 o
f 2

in
 s

ili
co

su
cc

es
sf

ul
 d

es
ig

ns
 w

ith
 0

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
68

8
N

A
0.

46
5

N
A

1
0.

02
1/

0.
02

4/
0.

02
7/

0.
03

/0
.0

33

5T
R

V
_m

ed
 (

no
is

e 
1)

F
ig

. 4
A

S
et

 o
f 2

0
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

64
3

0.
58

7 
/ 0

.6
14

 / 
0.

67
2 

/ 0
.7

01
0.

34
2

0.
28

9 
/ 0

.3
21

 / 
0.

38
1 

/ 0
.4

83
1

0.
0/

0.
0/

0.
01

2/
0.

07
/0

.0
84

5T
R

V
_m

ed
 (

no
is

e 
0)

F
ig

. 4
A

S
et

 o
f 2

4
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 0
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

64
7

0.
56

0 
/ 0

.6
21

 / 
0.

67
3 

/ 0
.7

05
0.

36
0.

27
9 

/ 0
.3

30
 / 

0.
41

8 
/ 0

.5
95

1
0.

0/
0.

0/
0.

01
2/

0.
04

7/
0.

09

7M
R

X
_8

5 
(n

oi
se

 1
)

F
ig

. 4
A

S
et

 o
f 6

in
 s

ili
co

su
cc

es
sf

ul
 d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
71

1
0.

64
2 

/ 0
.6

75
 / 

0.
73

1 
/ 0

.7
56

0.
38

4
0.

33
5 

/ 0
.3

76
 / 

0.
47

7 
/ 0

.5
81

1
0.

01
2/

0.
05

3/
0.

07
6/

0.
1/

0.
11

5

7M
R

X
_8

5 
(n

oi
se

 0
)

F
ig

. 4
A

S
et

 o
f 1

1
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 0
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

71
1

0.
65

6 
/ 0

.6
95

 / 
0.

73
7 

/ 0
.7

62
0.

45
7

0.
36

2 
/ 0

.4
19

 / 
0.

51
 / 

0.
86

7
1

0.
02

9/
0.

04
7/

0.
05

9/
0.

11
2/

0.
14

1

1Y
C

R
 (

no
is

e 
1)

F
ig

. 4
A

S
et

 o
f 5

8
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

74
9

0.
66

9 
/ 0

.7
18

 / 
0.

78
2 

/ 0
.8

86
0.

42
3

0.
33

8 
/ 0

.3
82

 / 
0.

48
2 

/ 0
.6

10
0.

14
0.

20
7/

0.
23

2/
0.

26
6/

0.
33

1/
0.

39
6

1Y
C

R
 (

no
is

e 
0)

F
ig

. 4
A

S
et

 o
f 7

4
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 0
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

75
7

0.
68

0 
/ 0

.7
24

 / 
0.

79
9 

/ 0
.8

88
0.

43
9

0.
34

9 
/ 0

.3
96

 / 
0.

50
7 

/ 0
.6

89
0.

06
76

0.
20

6/
0.

23
2/

0.
25

/0
.3

54
/0

.4
26

6E
X

Z
_s

ho
rt

 (
no

is
e 

1)
F

ig
. 4

A
S

et
 o

f 4
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

74
6

0.
69

6 
/ 0

.7
22

 / 
0.

77
9 

/ 0
.8

28
0.

45
5

0.
43

3 
/ 0

.4
39

 / 
0.

51
4 

/ 0
.5

50
0.

75
0.

04
2/

0.
05

/0
.0

6/
0.

07
/0

.0
78

6E
X

Z
_s

ho
rt

 (
no

is
e 

0)
F

ig
. 4

A
S

et
 o

f 2
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 0
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

73
6

0.
70

4 
/ 0

.7
18

 / 
0.

75
4 

/ 0
.7

68
0.

43
8

N
A

1
0.

06
2/

0.
07

/0
.0

8/
0.

09
/0

.0
98

7M
R

X
_6

0 
(n

oi
se

 1
)

F
ig

. 4
A

N
A

 (
no

in
 s

ili
co

su
cc

es
sf

ul
 1

x 
no

is
e 

de
si

gn
s)

, A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

N
A

N
A

N
A

N
A

N
A

N
A

7M
R

X
_6

0 
(n

oi
se

 0
)

F
ig

. 4
A

S
et

 o
f 2

in
 s

ili
co

su
cc

es
sf

ul
 d

es
ig

ns
 w

ith
 0

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
79

2
N

A
0.

47
2

N
A

1
0.

05
1/

0.
05

4/
0.

05
8/

0.
06

2/
0.

06
6

5W
N

9 
(n

oi
se

 1
)

F
ig

. 4
A

S
et

 o
f 1

in
 s

ili
co

su
cc

es
sf

ul
 d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
63

6
N

A
N

A
N

A
1

0/
0/

0/
0/

0 
(a

lig
nm

en
ts

 w
er

e 
al

w
ay

s 
on

 m
ot

if)

5W
N

9 
(n

oi
se

 0
)

F
ig

. 4
A

N
A

 (
no

in
 s

ili
co

su
cc

es
sf

ul
 0

x 
no

is
e 

de
si

gn
s)

, A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

N
A

N
A

N
A

N
A

N
A

 (
no

 h
its

)
N

A
 (

no
 h

its
)

1Q
JG

 (
no

is
e 

1)
F

ig
. 4

A
S

et
 o

f 2
in

 s
ili

co
su

cc
es

sf
ul

 d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

71
7

N
A

0.
64

2
N

A
N

A
 (

no
 h

its
)

N
A

 (
no

 h
its

)

Su
pp

le
m

en
ta

ry
 I

nf
or

m
at

io
n 

T
ab

le
 1

 -
 P

ar
t 
2/

3

32



D
at

as
et

A
ss

o
ci

at
ed

 F
ig

u
re

s
D

es
cr

ip
ti

o
n

 o
f 

an
al

yz
ed

 d
at

as
et

(T
M

al
ig

n
) 

M
ed

ia
n

 o
f

h
ig

h
es

t 
T

M
 S

co
re

 t
o

P
D

B
(T

M
al

ig
n

) 
5t

h
, 2

5t
h

, 7
5t

h
, 9

5t
h

p
er

ce
n

ti
le

 h
ig

h
es

t 
T

M
sc

o
re

 t
o

 P
D

B

(T
M

al
ig

n
) 

M
ed

ia
n

p
ai

rw
is

e 
T

M
 s

co
re

 w
it

h
in

fi
lt

er
ed

 d
es

ig
n

s
(T

M
al

ig
n

) 
5t

h
, 2

5t
h

, 7
5t

h
, 9

5t
h

 p
er

ce
n

ti
le

p
ai

rw
is

e 
T

M
 s

co
re

(B
L

A
S

T
) 

F
ra

ct
io

n
 w

it
h

 s
ig

n
if

ic
an

t
b

la
st

 h
it

s 
(E

-v
al

u
e 

<
 0

.1
) 

in
 U

n
iR

ef
90

(B
L

A
S

T
) 

Q
u

er
y 

S
eq

ID
 f

o
r 

b
es

t 
U

n
iR

ef
90

 h
it

(5
th

/2
5t

h
/5

0t
h

/7
5t

h
/9

5t
h

 p
er

ce
n

ti
le

s)

O
rp

ha
n_

si
ng

le
_m

ot
if_

7A
8S

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 8

3 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

66
8

0.
6 

/ 0
.6

35
 / 

0.
70

1 
/ 0

.7
51

0.
42

1
0.

31
7 

/ 0
.3

72
 / 

0.
48

4 
/ 0

.6
04

0.
54

0.
17

4/
0.

19
1/

0.
21

7/
0.

25
2/

0.
31

3

O
rp

ha
n_

si
ng

le
_m

ot
if_

7A
H

O
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 1
8 

in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
66

0.
54

6 
/ 0

.6
13

 / 
0.

69
3 

/ 0
.7

56
0.

38
5

0.
27

8 
/ 0

.3
26

 / 
0.

45
9 

/ 0
.6

16
0.

61
0.

17
/0

.1
83

/0
.2

/0
.2

52
/0

.3
04

O
rp

ha
n_

si
ng

le
_m

ot
if_

7D
G

W
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 9
7 

in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
82

2
0.

69
3 

/ 0
.7

66
 / 

0.
84

7 
/ 0

.8
8

0.
49

4
0.

37
9 

/ 0
.4

39
 / 

0.
56

3 
/ 0

.7
05

0.
26

0.
21

/0
.2

61
/0

.2
87

/0
.3

3/
0.

35
5

O
rp

ha
n_

si
ng

le
_m

ot
if_

7D
N

S
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 8
1 

in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
66

9
0.

58
4 

/ 0
.6

27
 / 

0.
70

9 
/ 0

.8
1

0.
39

4
0.

32
1 

/ 0
.3

59
 / 

0.
43

5 
/ 0

.5
21

0.
27

0.
16

7/
0.

23
/0

.2
78

/0
.3

11
/0

.3
64

O
rp

ha
n_

si
ng

le
_m

ot
if_

7F
7P

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 6

4 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

78
7

0.
68

3 
/ 0

.7
3 

/ 0
.8

41
 / 

0.
87

6
0.

48
0.

35
5 

/ 0
.4

2 
/ 0

.5
48

 / 
0.

68
1

0.
44

0.
18

3/
0.

25
9/

0.
27

4/
0.

30
7/

0.
34

5

O
rp

ha
n_

si
ng

le
_m

ot
if_

7K
3H

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 8

3 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

84
2

0.
78

2 
/ 0

.8
17

 / 
0.

86
7 

/ 0
.9

32
0.

50
3

0.
40

8 
/ 0

.4
6 

/ 0
.5

65
 / 

0.
68

4
0.

66
0.

20
6/

0.
26

1/
0.

30
4/

0.
33

9/
0.

39
1

O
rp

ha
n_

si
ng

le
_m

ot
if_

7K
U

W
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 8
5 

in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
67

4
0.

58
3 

/ 0
.6

34
 / 

0.
70

8 
/ 0

.7
41

0.
39

4
0.

32
3 

/ 0
.3

6 
/ 0

.4
34

 / 
0.

51
5

0.
21

0.
18

1/
0.

22
6/

0.
25

2/
0.

29
8/

0.
35

7

O
rp

ha
n_

si
ng

le
_m

ot
if_

7K
W

W
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 5
 in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

62
3

0.
59

3 
/ 0

.6
15

 / 
0.

64
6 

/ 0
.6

79
0.

33
9

0.
29

8 
/ 0

.3
26

 / 
0.

45
3 

/ 0
.5

24
0.

8
0.

13
2/

0.
13

7/
0.

13
9/

0.
16

7/
0.

23
5

O
rp

ha
n_

si
ng

le
_m

ot
if_

7M
Q

Q
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 4
2 

in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
74

9
0.

62
9 

/ 0
.6

88
 / 

0.
79

2 
/ 0

.8
69

0.
43

1
0.

33
9 

/ 0
.3

87
 / 

0.
48

6 
/ 0

.6
09

0.
33

0.
20

8/
0.

23
7/

0.
28

7/
0.

29
6/

0.
31

3

O
rp

ha
n_

si
ng

le
_m

ot
if_

7S
5L

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 5

8 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

75
6

0.
62

3 
/ 0

.7
03

 / 
0.

80
9 

/ 0
.8

55
0.

44
9

0.
33

5 
/ 0

.3
9 

/ 0
.5

13
 / 

0.
68

2
0.

48
0.

22
6/

0.
25

/0
.2

91
/0

.3
13

/0
.3

57

O
rp

ha
n_

si
ng

le
_m

ot
if_

7T
JL

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 6

7 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

81
3

0.
71

3 
/ 0

.7
71

 / 
0.

85
 / 

0.
93

1
0.

47
8

0.
38

1 
/ 0

.4
32

 / 
0.

53
3 

/ 0
.6

47
0.

25
0.

19
7/

0.
25

2/
0.

28
7/

0.
32

2/
0.

35

T
ra

in
in

g_
se

t_
si

ng
le

_m
ot

if_
1Y

E
S

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 1

2 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

69
7

0.
63

1 
/ 0

.6
8 

/ 0
.7

71
 / 

0.
85

5
0.

40
8

0.
32

3 
/ 0

.3
77

 / 
0.

45
7 

/ 0
.5

4
0.

75
0.

19
/0

.2
43

/0
.2

61
/0

.3
04

/0
.3

55

T
ra

in
in

g_
se

t_
si

ng
le

_m
ot

if_
2E

F
5

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 1

8 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

66
7

0.
60

3 
/ 0

.6
52

 / 
0.

69
8 

/ 0
.7

15
0.

40
4

0.
30

1 
/ 0

.3
38

 / 
0.

51
 / 

0.
62

7
0.

16
7

0.
26

3/
0.

27
4/

0.
28

7/
0.

31
7/

0.
34

2

T
ra

in
in

g_
se

t_
si

ng
le

_m
ot

if_
2F

Y
D

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 1

7 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

64
5

0.
58

6 
/ 0

.6
27

 / 
0.

68
4 

/ 0
.7

43
0.

35
9

0.
30

5 
/ 0

.3
33

 / 
0.

39
5 

/ 0
.4

72
0.

29
0.

14
6/

0.
17

4/
0.

23
5/

0.
23

5/
0.

31
1

T
ra

in
in

g_
se

t_
si

ng
le

_m
ot

if_
2W

7Y
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 1
 in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

60
5

0.
60

5 
/ 0

.6
05

 / 
0.

60
5 

/ 0
.6

05
N

A
 (

no
 h

its
)

N
A

 (
no

 h
its

)

T
ra

in
in

g_
se

t_
si

ng
le

_m
ot

if_
3E

S
3

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 8

5 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

82
4

0.
70

3 
/ 0

.7
85

 / 
0.

85
2 

/ 0
.8

88
0.

49
2

0.
37

3 
/ 0

.4
37

 / 
0.

55
7 

/ 0
.6

81
0.

46
0.

17
4/

0.
23

5/
0.

27
/0

.3
13

/0
.3

76

T
ra

in
in

g_
se

t_
si

ng
le

_m
ot

if_
3F

K
A

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 5

4 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

62
5

0.
57

2 
/ 0

.5
93

 / 
0.

65
8 

/ 0
.7

02
0.

38
5

0.
29

1 
/ 0

.3
36

 / 
0.

44
2 

/ 0
.5

39
0.

33
3

0.
15

5/
0.

19
1/

0.
24

8/
0.

28
5/

0.
30

1

T
ra

in
in

g_
se

t_
si

ng
le

_m
ot

if_
3T

Q
B

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 4

 in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
6

0.
57

2 
/ 0

.5
91

 / 
0.

60
3 

/ 0
.6

05
0.

36
4

0.
24

9 
/ 0

.2
75

 / 
0.

41
6 

/ 0
.4

97
0.

5
0.

20
3/

0.
21

7/
0.

23
5/

0.
25

2/
0.

26
6

T
ra

in
in

g_
se

t_
si

ng
le

_m
ot

if_
4J

W
C

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 4

4 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

82
1

0.
65

8 
/ 0

.7
5 

/ 0
.8

66
 / 

0.
90

1
0.

48
9

0.
36

9 
/ 0

.4
26

 / 
0.

57
5 

/ 0
.7

5
0.

38
6

0.
2/

0.
25

2/
0.

27
8/

0.
31

3/
0.

32
5

T
ra

in
in

g_
se

t_
si

ng
le

_m
ot

if_
4W

S
F

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 2

4 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

64
9

0.
57

8 
/ 0

.6
33

 / 
0.

67
5 

/ 0
.6

93
0.

40
2

0.
30

7 
/ 0

.3
55

 / 
0.

46
7 

/ 0
.5

54
0.

33
3

0.
16

6/
0.

21
5/

0.
25

2/
0.

28
9/

0.
36

7

T
ra

in
in

g_
se

t_
si

ng
le

_m
ot

if_
4X

JC
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 1
1 

in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
63

3
0.

58
9 

/ 0
.6

12
 / 

0.
64

7 
/ 0

.6
84

0.
37

9
0.

30
3 

/ 0
.3

36
 / 

0.
43

2 
/ 0

.4
91

0.
72

0.
14

8/
0.

19
8/

0.
23

/0
.2

76
/0

.3
01

T
ra

in
in

g_
se

t_
si

ng
le

_m
ot

if_
5E

C
F

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 7

4 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

85
1

0.
79

2 
/ 0

.8
2 

/ 0
.8

74
 / 

0.
92

6
0.

51
7

0.
42

 / 
0.

47
1 

/ 0
.5

92
 / 

0.
71

6
0.

41
0.

2/
0.

23
/0

.2
83

/0
.3

46
/0

.3
75

T
ra

in
in

g_
se

t_
si

ng
le

_m
ot

ig
_5

N
E

0
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 1
 in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

64
8

0.
64

8 
/ 0

.6
48

 / 
0.

64
8 

/ 0
.6

48
1

0.
21

7/
0.

21
7/

0.
21

7/
0.

21
7/

0.
21

7

O
rp

ha
n_

do
ub

le
_m

ot
if_

7A
8S

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 2

 in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
60

3
0.

57
7 

/ 0
.5

89
 / 

0.
61

8 
/ 0

.6
3

0.
38

5
N

A
1

0.
33

7/
0.

34
5/

0.
35

4/
0.

36
2/

0.
37

O
rp

ha
n_

do
ub

le
_m

ot
if_

7C
G

5
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 2
1 

in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
64

6
0.

56
9 

/ 0
.6

16
 / 

0.
68

5 
/ 0

.7
2

0.
54

2
0.

36
2 

/ 0
.4

54
 / 

0.
63

7 
/ 0

.7
34

0.
9

0.
25

7/
0.

27
5/

0.
3/

0.
31

4/
0.

34
3

O
rp

ha
n_

do
ub

le
_m

ot
if_

7D
G

W
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 3
 in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

72
2

0.
71

2 
/ 0

.7
16

 / 
0.

74
3 

/ 0
.7

6
0.

48
3

N
A

0.
33

3
0.

35
/0

.3
5/

0.
35

/0
.3

5/
0.

35

O
rp

ha
n_

do
ub

le
_m

ot
if_

7D
N

S
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 5
2 

in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
63

5
0.

58
 / 

0.
60

3 
/ 0

.6
66

 / 
0.

71
8

0.
39

1
0.

30
9 

/ 0
.3

52
 / 

0.
46

1 
/ 0

.6
14

0.
94

0.
27

1/
0.

28
6/

0.
29

3/
0.

31
4/

0.
34

3

O
rp

ha
n_

do
ub

le
_m

ot
if_

7F
7P

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 1

 in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
60

9
0.

60
9 

/ 0
.6

09
 / 

0.
60

9 
/ 0

.6
09

1
0.

2/
0.

2/
0.

2/
0.

2/
0.

2

O
rp

ha
n_

do
ub

le
_m

ot
if_

7K
3H

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 8

4 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

76
5

0.
59

7 
/ 0

.7
11

 / 
0.

78
8 

/ 0
.8

31
0.

43
5

0.
33

5 
/ 0

.3
81

 / 
0.

51
9 

/ 0
.7

92
0.

37
0.

2/
0.

26
1/

0.
28

6/
0.

31
4/

0.
35

O
rp

ha
n_

do
ub

le
_m

ot
if_

7K
U

W
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 2
6 

in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
64

3
0.

56
6 

/ 0
.6

09
 / 

0.
66

5 
/ 0

.7
02

0.
41

3
0.

31
8 

/ 0
.3

6 
/ 0

.4
82

 / 
0.

67
1

0.
58

0.
18

9/
0.

22
1/

0.
25

/0
.2

68
/0

.2
9

O
rp

ha
n_

do
ub

le
_m

ot
if_

7M
Q

Q
S

up
p.

 In
f. 

F
ig

. 7
S

et
 o

f 1
 in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

62
1

0.
62

1 
/ 0

.6
21

 / 
0.

62
1 

/ 0
.6

21
N

A
 (

no
 h

its
)

N
A

 (
no

 h
its

)

O
rp

ha
n_

do
ub

le
_m

ot
if_

7S
5L

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 3

2 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

62
9

0.
57

7 
/ 0

.6
05

 / 
0.

65
2 

/ 0
.6

82
0.

36
5

0.
28

5 
/ 0

.3
29

 / 
0.

40
9 

/ 0
.5

24
0.

93
8

0.
21

8/
0.

23
8/

0.
25

4/
0.

28
6/

0.
31

5

O
rp

ha
n_

do
ub

le
_m

ot
if_

7T
JL

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 5

4 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

64
0.

59
8 

/ 0
.6

26
 / 

0.
66

2 
/ 0

.6
9

0.
44

7
0.

33
4 

/ 0
.3

94
 / 

0.
52

8 
/ 0

.7
1

0.
03

7
0.

26
5/

0.
26

6/
0.

26
8/

0.
27

/0
.2

71

T
ra

in
in

g_
se

t_
do

ub
le

_m
ot

if_
1Y

E
S

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 3

 in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
62

7
0.

55
9 

/ 0
.5

89
 / 

0.
63

7 
/ 0

.6
45

0.
57

2
N

A
1

0.
25

9/
0.

26
4/

0.
27

1/
0.

3/
0.

32
3

T
ra

in
in

g_
se

t_
do

ub
le

_m
ot

if_
2F

Y
D

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 8

 in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
57

6
0.

52
6 

/ 0
.5

65
 / 

0.
61

5 
/ 0

.6
77

0.
42

8
0.

30
1 

/ 0
.3

67
 / 

0.
54

9 
/ 0

.5
94

0.
12

5
0.

29
3/

0.
29

3/
0.

29
3/

0.
29

3/
0.

29
3

T
ra

in
in

g_
se

t_
do

ub
le

_m
ot

if_
3E

S
3

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 5

5 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

78
7

0.
69

7 
/ 0

.7
49

 / 
0.

83
9 

/ 0
.8

89
0.

56
1

0.
40

3 
/ 0

.4
83

 / 
0.

63
7 

/ 0
.7

67
0.

38
0.

19
3/

0.
25

/0
.3

/0
.3

14
/0

.3
5

T
ra

in
in

g_
se

t_
do

ub
le

_m
ot

if_
3F

K
A

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 3

8 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

55
9

0.
51

5 
/ 0

.5
3 

/ 0
.5

89
 / 

0.
61

8
0.

44
6

0.
31

3 
/ 0

.3
86

 / 
0.

51
3 

/ 0
.6

49
0.

95
0.

28
9/

0.
30

7/
0.

32
1/

0.
33

6/
0.

35
2

T
ra

in
in

g_
se

t_
do

ub
le

_m
ot

if_
3T

Q
B

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 1

3 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

59
1

0.
52

8 
/ 0

.5
49

 / 
0.

60
9 

/ 0
.6

28
0.

44
8

0.
32

1 
/ 0

.4
08

 / 
0.

49
7 

/ 0
.5

91
1

0.
14

9/
0.

16
4/

0.
17

9/
0.

19
3/

0.
20

7

T
ra

in
in

g_
se

t_
do

ub
le

_m
ot

if_
5E

C
F

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 4

 in
 s

ili
co

 s
uc

ce
ss

fu
l d

es
ig

ns
 w

ith
 1

x 
no

is
e,

 A
lp

ha
F

ol
d2

 m
od

el
, e

xc
lu

di
ng

 "
m

ot
if"

0.
59

2
0.

56
1 

/ 0
.5

75
 / 

0.
61

1 
/ 0

.6
3

0.
41

0.
32

7 
/ 0

.3
48

 / 
0.

43
6 

/ 0
.4

57
N

A
 (

no
 h

its
)

N
A

 (
no

 h
its

)

T
ra

in
in

g_
se

t_
do

ub
le

_m
ot

if_
5J

K
B

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 3

1 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

60
3

0.
54

 / 
0.

57
6 

/ 0
.6

42
 / 

0.
71

5
0.

42
7

0.
30

3 
/ 0

.3
69

 / 
0.

49
4 

/ 0
.6

22
0.

77
0.

12
1/

0.
14

3/
0.

18
6/

0.
21

4/
0.

31
7

T
ra

in
in

g_
se

t_
do

ub
le

_m
ot

if_
5N

E
0

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 5

8 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

59
9

0.
54

5 
/ 0

.5
67

 / 
0.

62
2 

/ 0
.6

71
0.

35
9

0.
29

5 
/ 0

.3
28

 / 
0.

40
3 

/ 0
.5

16
0.

72
0.

22
1/

0.
25

/0
.2

64
/0

.2
79

/0
.3

T
ra

in
in

g_
se

t_
do

ub
le

_m
ot

if_
6F

F
W

S
up

p.
 In

f. 
F

ig
. 7

S
et

 o
f 7

3 
in

 s
ili

co
 s

uc
ce

ss
fu

l d
es

ig
ns

 w
ith

 1
x 

no
is

e,
 A

lp
ha

F
ol

d2
 m

od
el

, e
xc

lu
di

ng
 "

m
ot

if"
0.

62
1

0.
54

9 
/ 0

.5
88

 / 
0.

66
2 

/ 0
.7

25
0.

35
4

0.
27

3 
/ 0

.3
14

 / 
0.

40
5 

/ 0
.5

55
0.

47
0.

21
6/

0.
23

8/
0.

25
/0

.2
7/

0.
29

3

Su
pp

le
m

en
ta

ry
 I

nf
or

m
at

io
n 

T
ab

le
 1

 -
 P

ar
t 
3/

3

33



Supplementary Information Table 1: Table of aggregate TMalign and protein BLAST
scores against native databases for various sets of designs from the paper.

Description of columns:
Dataset : Name of the dataset being analyzed with TMalign/BLAST.
Associated Figures : Which figure(s) does the set of designs appear in.
Description of analyzed dataset : Fuller description of designs in the set analyzed.
(TMalign) Median of highest TM score to PDB : The median value of the highest TMalign
score against the entire PDB that every design in the set had.
(TMalign) 5th, 25th, 75th, 95th percentile highest TMscore to PDB : Other percentiles
of highest TMalign score against the entire PDB besides the median (50th).
(TMalign) Median pairwise TM score within filtered designs : Median TMscore found
between designs when running TMalign of the entire set against itself.
(TMalign) 5th, 25th, 75th, 95th percentile pairwise TM score : Other percentiles of the
pairwise TM score within the set of designs.
(BLAST) Fraction with significant blast hits (E-value < 0.1) in UniRef90 : When
running protein BLAST against UniRef90, what fraction of the designs have hits with E-value <
0.1.
(BLAST) Query SeqID for best UniRef90 hit (5th/25th/50th/75th/95th percentiles):
When BLAST finds a hit against UniRef90 for a design with E-value less than 0.1, what are the
various percentiles of sequence identity to the query sequence (in non-motif regions) that the hit
has?
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Supplementary Methods
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1 RoseTTAFold: updated architecture and training details

In this section we provide an overview of relevant details of the three-track architecture of RoseTTAFold

(RF) and its training. This architecture includes significant modifications as compared to the orig-

inal RF [18], which are not a contribution of this work. The model is the “fully connected” model

described fully in [60]. We provide this section to assist in the understanding of the architec-

ture of RFdiffusion. The architecture in Methods Figure 1 below. For the purposes of repro-

ducibility of this work, we also provide the initial RF weights from which RFdiffusion is trained

(https://github.com/RosettaCommons/RFdiffusion/).

1.1 Backbone structure representation

RF adopts a rigid-frame representation of the residues that comprise protein backbones. The

structure of an L residue backbone is described as a collection of residue frames x = [x1, . . . , xL],

where each xl = (rl, zl) describes the translation zl ∈ R3 and rigid rotation rl of the l
th residue,

but when it is clear from context, we sometimes drop the residue subscript. In particular, each zl

represents the coordinates of the lth Cα carbon, and each rl is a 3×3 rotation matrix that maps an

axis-aligned residue with idealized geometry (i.e. bond lengths and angle) and its Cα at the origin

to the positions of these atoms relative to the Cα. For any backbone atom coordinates (zCα , zC

and zN) for a given residue we may apply a Gram-Schmidt process to compute a 3 × 3 rotation

matrix r with rows

r1 = (zC − zCα)/∥zCα − zC∥2,

r2 = ((zN − zCα)− ((zN − zCα) · r1)r1) /∥(zN − zCα)− ((zN − zCα) · r1)r1∥, and

r3 = r1 × r2,

(1)

where · and × are the dot- and cross-products, respectively. 3D backbone coordinates can then
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be reconstructed by multiplication of idealized coordinates (with z∗Cα
at the origin, z∗C − z∗Cα

along

the x-axis, and z∗N − z∗Cα
in the xy-plane) by r as

[zC , zN , zCα ] = r[z∗C , z
∗
N , z

∗
Cα
] + z1⃗3,

where 1⃗3 = [1, 1, 1]. Accordingly, modeling the coordinates of a triplet of backbone atoms is

equivalent to modeling the Cα coordinate z and the rotation matrix r.

1.2 RoseTTAFold architecture

The updated RF architecture is depicted in Methods Figure 1. RF includes several architectural

improvements from the original RoseTTAFold network [18]: 1) the 3D structure track now extends

throughout the entire network, with coordinates initialized from a template structure; 2) biaxial

attention is still used to update 2D pair features, with the addition of an attention bias coming

from geometric constraints between residues in the current 3D structure; 3) a similar biased axial

attention is used to update the 1D track, where the 2D and 3D tracks are used to bias the attention

in the 1D sequence updates; and 4) the incorporation of “recycling” [17] in training, in which the

network is executed multiple times with updated input embeddings based on outputs from the pre-

vious cycle; the model is trained by back-propagating only through the final iteration. RF contains

two major types of architecture blocks: main three-track blocks and the final structure refinement

blocks. The 3-track blocks consist of layers of biased row and column attention over the 1D and

2D features, SE(3)-equivariant layers [61, 62] to update 3D coordinates, and layers to communicate

between 1D, 2D, and 3D features. The structure refinement block is based on an SE(3)-equivariant

network which gives refined 3D coordinates based on given 1D and 2D features. In recycle itera-

tions, coordinates entering the 3D track are initialized from the predictions output in the previous

pass through the network, and as a result of the SE(3)-equivariance of the architecture, the pre-

dictions in recycling passes update these initial coordinates with SE(3)-equivariance. Following
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Supplementary Information Table 1: The three track architecture of RoseTTAFold.

AlphaFold2 [17], in addition to predicting backbone structure updates, at each layer (3-track and

fine-tuning) RF predicts up to 4 sidechain torsion angles that define all protein sidechain atoms

(and one backbone angle to place O). These key differences, denoted by corresponding numbers in

Methods Figure 1, are described in detail below.

Inputs and outputs of RF: Before presenting the tensor input and outputs of RoseTTAFold,
we introduce the relevant dimensions in these objects:

• L: The length of the query sequence

• I: The number of times the model will be executed (1 plus the number of recycles)

• T: The number of homologous structure provided to the model as templates

• N short: The number of sequences in the truncated MSA

• N long: The total number of sequences in the full MSA (capped at 1024)

Multimer prediction with multiple chains: As in the original RoseTTAFold [18] for hetero-

complex structure prediction we indicate chain breaks in the positional encoding. Residue indices

enter the network through the pair representation; for each pair of residues we include a sequence
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Input name (Shape) Description

msa masked

(I, N short, L, 48)
The truncated MSA with some portions of sequence masked (20aa,
1 unknown, 1 mask, MSA profiles (22), insertion/deletions (2), N-
term/C-term (2))

msa full

(I, N long, L, 25)
The full length MSA (20aa, 1 unknown, 1 mask, insertion (1),
N-term/C-term (2))

seq

(I, L, 22)
The sequence whose structure is being predicted (20aa, 1 un-
known, 1 mask)

xyz prev

(L, 27, 3)
The structure recycling information. In recycle steps, this con-
tains the model’s previous prediction. In the first iteration (be-
fore recycling), this feature is populated with template structure
coordinates if available. Otherwise, this feature set to all zeros.
N -Cα-C-O backbone (4), (up to) 10 sidechain atoms, (up to) 13
hydrogen atoms)

idx pdb

(L)
The integer index of each residue. Used to assign each residue its
neighboring residue.

t1d

(T, L, 22)
The one-dimensional features associated with each template struc-
ture. (20 amino acids, missing template token (1), template-match
confidence (1))

t2d

(T, L, L, 44)
The two-dimensional features associated with each template struc-
ture. (36 distance bins (2-20Å, 0.5Å bins) + 1 final distance bin
(> 20Å), angle maps (sine and cosine of omega, theta and phi
angle) (6), missing residue mask (1))

xyz t

(T, L, 27, 3)
The structure of the template structures. This feature is immedi-
ately converted to a distogram and anglegram representation by
the model. (N, Ca, C backbone atoms)

alpha t

(T,L,10*3)
The backbone and sidechain torsion angles of each residue of the
template structures. Initially T, L, 10, 2, with sine and cosine of
(omega, phi, psi angles (3), (up to) 4 torsion angles, Cβ bend (1),
Cβ twist (1), Cγ bend (1)). This is concatenated with a mask (T,
L, 10, 1) indicating which torsion angles are present for a given
amino acid, and reshaped to T, L, 30.

msa prev

(N short, L, Cm)
The MSA embedding recycling information. This is the model’s
previous embedding at each position in the truncated MSA. Cm
= 256

pair prev

(L, L, Cp)
The 2-D embedding recycling information. This is the model’s
previous embedding at each edge between each node. Cp = 128

state prev

(L, Cs)
The 1-D embedding recycling information. This is the model’s
previous embedding at each position in the query sequence. Cs =
16

Supplementary Methods Table 1: Description of features input to RoseTTAFold.
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Output name (shape) Description

msa

(N short, L, Cm)
The model’s final embedding at each position in the trun-
cated MSA. Cm = 256

pair

(L, L, Cp)
The model’s final embedding at each edge between each
node. Cp = 128

state

(L, L, Cs)
The model’s previous embedding at each position in the
query sequence. Cs = 16

xyz

(L, 27, 3)
The model’s prediction of the structure. (N-Ca-C-O back-
bone (4), (up to) 10 sidechain atoms, (up to) 13 hydrogen
atoms)

alpha

(L, 10 * 3)
The model’s prediction of sidechain torsions. Initially T, L,
10, 2, with sine and cosine of (omega, phi, psi angles (3), (up
to) 4 torsion angles, Cβ bend (1), Cβ twist (1), Cγ bend (1)).
This is concatenated with a mask (T, L, 10, 1) indicating
which torsion angles are present for a given amino acid, and
reshaped to T, L, 30.

logits aa

(N short , L , 21)
The model’s prediction of the unmasked, truncated MSA.

pred lddt

(L)
The model’s prediction of the LDDT error of each residue.

logits dist

(Cdist,L,L)
The model’s prediction of the binned distances dl,l′ between
residue pairs, where dl,l′ is the Euclidean distance Cβ,l and
Cβ,l′ . Cdist = 37.

logits omega

(Cdist,L,L)
The model’s prediction of the binned ω angles between
residue pairs, where ωl,l′ is the Cα,l-Cβ,l-Cα,l′-Cβ,l′ dihedral
angle.

logits theta

(Cdist,L,L)
The model’s prediction of the binned θ angles between
residue pairs, where θl,l′ is the Nl-Cα,l-Cβ,l-Cβ,l′ dihedral
angle.

logits phi

(Cphi,L,L)
The model’s prediction of the binned ϕ angles between
residue pairs, where ϕl,l′ is the pseudo-bond angle dictat-
ing the direction of Cβ,l′ from residue l’s frame of reference.
Cphi = 19.

Supplementary Methods Table 2: Description of outputs returned by RoseTTAFold.
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distance feature clipped between -32 and 32 (with sign indicating direction). To indicate breaks

between chains of subunits, we increment residue indices by 100 at the start of each chain.

1.2.1 MSA to MSA updates

The evolving MSA representation is updated with biases from the pair (2D) and structure (3D)

tracks, before gated row-wise and column-wise self-attention analogous to the row-wise and column-

wise attention in AlphaFold2 [17]. Specifically, pair features are concatenated with pairwise

Cα-Cα distances from the emerging 3D structure to yield the bias. Node embeddings from the

SE(3) transformer (State features) update the query sequence embedding. Sigmoid-gated row-

wise self-attention with the bias term is performed, before unbiased sigmoid-gated column-wise

self-attention. Skip connections bypass each attention block. A final feed-forward neural network

yields the updated output.

1.2.2 MSA to Pair updates

As in RF, RF-NA, RF2 and AlphaFold2 [18, 55, 60, 17], evolving pair features are updated with

co-evolution information extracted from the MSA representation. An outer-product on the MSA

embedding captures the coevolutionary signal between all pairs of residues, and these are then

aggregated across all sequences in the MSA. This aggregated outer product is then added to the

pair features.

1.2.3 Pair to Pair updates

Pair features are updated with tied axial attention as implemented in the original RoseTTAFold

[18], with a bias term emanating from the emerging 3D structure. Tied, sigmoid-gated row-

and column-wise self-attention is performed, with projected Cα-Cα distances from the emerging

3D structure added to each block. A final feed-forward neural network yields the updated pair

features.
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1.2.4 Structure to Structure updates

RoseTTAFold uses the SE(3)-Transformer to refine the 3D coordinates [62]. Updates within the

3D track of RoseTTAFold incorporate the MSA and pair features. Protein backbone structure

is represented by frames, as in AlphaFold2 [17]. These frames represent the SE(3) node features

(Cα-position and N -Cα-C rotation). The protein graph is defined with these nodes connected to

K-nearest neighbors. In each structure block, the node features are updated by the query sequence

embedding. Pairwise features, encompassing the pair features, Cα-Cα distances from the emerging

3D structure and the primary sequence separation, define the edge inputs to the SE(3)-Transformer.

The SE(3)-Transformer predicts the translation and rotation updates to the evolving structure. As

in the original RoseTTAfold, degree 0 node features (called “State” features) are also output,

which are used in the aforementioned MSA-to-MSA updates to calculate attention maps. Finally,

as in RoseTTAFold-NA and RF2, sidechains are predicted using a sidechain-prediction network

equivalent to that in AlphaFold2 [55, 60, 17].

1.2.5 Structure Refinement

The final four structure refinement layers are equivalent to the structure-structure updates de-

scribed in Section 1.2.4.

1.2.6 Recycling

As in AlphaFold2 and RoseTTAFold-NA, recycling is now used to improve the structure prediction

accuracy in RoseTTAFold. Specifically, pair features, MSA features and State features are recy-

cled. Pairwise reconstructed Cβ-Cβ distances from the emerging 3D structure are concatenated

with State-features and projected and added to the final pair-features from the previous recycle.

This yields the recycled pair embedding, which is added to the initial pair features (deriving from

template inputs). The final MSA and State embeddings from the previous recycle are similarly
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added to their respective initial embedding at the subsequent recycle. During training, each exam-

ple has 0-3 (randomly sampled) recycles with gradients tracked and back-propagated only in the

final iteration, as in AlphaFold2 [17]

1.3 RoseTTAFold losses

LFAPE: As in AlphaFold2, the primary structure loss used to train RF is the Frame-Aligned Point

Error (FAPE) loss [17]. In 90% of training examples, LFAPE is clamped at a maximum distance of

10Å, and left unclamped in the remaining 10% of examples. LFAPE is split into two componens;

one over just the backbone (frame) accuracy, and one over all atoms, as in AlphaFold2. These

losses are applied equally on all 40 intermediate structures.

Ltors: An L2 loss is applied on the predicted torsion and chi angles (alphas), applied across all

40 intermediate structures.

Ldist: Losses are also applied on the pairwise-prediction in RoseTTAFold, which encompasses

binned distance and orientation predictions (as in RoseTTAFold and TrRosetta [18, 63]). A cross-

entropy loss is applied between this prediction and the pairwise-representation of the true structure.

LMLM: Following the strategy described in AlphaFold2, 15% of input MSA tokens are masked

(or corrupted) during training (of these, 70% are masked, 10% are mutated to a random residue,

10% are mutated to another residue in the MSA column, and 10% are non-mutated, but have a

loss applied). RoseTTAFold predicts the identity of these residues, and a cross entropy is applied

between the predicted logits and the true sequence.

Lexp: A binary cross entropy loss is also used to predict whether or not a residue is resolved in a

structure, as described by AlphaFold2 [17].
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Laccuracy: A cross entropy loss is used to measure the difference between the true lDDT of the

predicted structure and the predicted lDDT (per residue).

Lbond: An L2 loss is applied between the true and predicted C-N bond lengths, as well as between

the Cα-C-N and C-N -Cα bond angles of the predicted and true structures.

LvdW: Additionally, a loss penalizing clashes is applied, using an estimated Leonard Jones po-

tential (akin to that used in Rosetta [58]), with attractive and repulsive components (scaled by

1012 and 106 respectively).

1.4 RoseTTAFold training

RF was trained on a mixture of datasets including 1) monomer/homo-oligomer structures in the

PDB, 2) hetero-oligomer structures in the PDB (date cutoff August 2nd, 2021), 3) AlphaFold2

structural models having plDDT > 0.758, and 4) negative protein-protein interaction examples

generated by random pairing. The training examples were sampled from each database with a

ratio of 2:1:4:1. The model was trained using the masked language model (LMLM) loss, distogram

prediction loss Ldist, FAPE loss LFAPE, torsion angle loss Ltors, accuracy estimation loss Laccuracy,

experimentally-resolved loss Lexp, bond geometry loss Lbond and van der Waals (vdW) energy loss

LvdW. For the initial round of training, only the first six loss terms were used with crop size 256.

After 200 epochs of initial round training, the model was fine-tuned for a further 100 epochs, with

all the loss terms and a crop size 384. RoseTTAFold was trained for 4 weeks on 64 V100 GPUs on

Microsoft Azure. The training details are summarized in Supplementary Methods Table 3.
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Initial training Fine-tuning

Crop size 256 384

Batch size 64 64

Loss function 3.0*LMLM + 1.0*Ldist +
10.0*LFAPE + 10.0*Ltors+
0.1*Laccuracy + 0.1*Lexp

3.0*LMLM + 1.0*Ldist +
10.0*LFAPE + 10.0*Ltors +
0.1*Laccuracy + 0.1*Lbond +
0.1*LvdW + 0.1*Lexp

Learning rate, &
scheduling

0.001, Linear warm-up for first
1000 optimization steps, then de-
cay learning rate by 0.95 after every
15000 optimization steps

0.0005, No warm-up. Decay learn-
ing rate by 0.95 after every 15000
optimization steps

Examples per epoch 25600 25600

Number of epochs 200 100

Supplementary Methods Table 3: RoseTTAFold training hyperparameters.

2 RFdiffusion: principles and formulation as a generative

model of structure

This section details how we have repurposed RoseTTAFold (RF) as the neural network in a dif-

fusion model of protein backbones. Section 2.1 reviews denoising diffusion probabilistic models

(DDPMs) to establish notation and terminology. RFdiffusion adapts DDPMs to the rigid-frame

representation of residues used by RF (as described in Section 1.1), and Sections 2.2 and 2.3 describe

the forward and reverse processes for translation and rotation components of this representation.

Section 2.4 describes our use of self-conditioning. Section 2.5 presents the mean-squared-error de-

noising loss used in training, and discusses how minimizing this objective relates to learning the

reverse process. Finally, Section 2.6 discusses geometric invariance in RFdiffusion. Some of the

theoretical aspects underlying the treatment of the diffusion on residue orientations and geometric

invariance are developed in greater detail in concurrent work [64]; these aspects are referred to

throughout.
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2.1 Diffusion probabilistic modeling background and notation

DDPMs [10, 11] are a class of generative models that approximate a distribution by parameterizing

the reversal of a discrete-time diffusion process. The “forward” diffusion process starts with a

sample x(0) ∼ q(x(0)) from an unknown data distribution q, to which we have access only though

samples. The data are corrupted at each of T steps, to obtain a sequence of increasingly noisy

samples; for each t = 1, . . . , T, we sample x(t) ∼ q(x(t) | x(t−1)) such that the final step x(T ) ∼ q(x(T ))

is indistinguishable from a reference distribution that has no dependence on the data. DDPMs

approximate q(x(0)) with a second distribution p(x(0)) parameterized by a backward transition

kernel p(x(t−1) | x(t)) at each t. We train a neural network parameterizing each p(x(t−1) | x(t))

to approximate q(x(t−1)|x(t)). One then draws from p(x(0)) by first sampling from the reference

distribution x(T ) ∼ p(x(T )) ≈ q(x(T )), and then for each t < T repeatedly denoising by sampling

x(t−1) ∼ p(x(t−1) | x(t)) until x(0) ∼ p(x(0)) is obtained. In the limit that the approximations

p(x(t−1)|x(t)) and p(x(t)) of q(x(t−1)|x(t)) and q(x(T )) are exact, p(x(0)) = q(x(0)).

In our case, q(x(0)) is a distribution over a native protein backbones parameterized by residue

frames. We define the forward noising process independently over the rotational and translational

components of this representation. We similarly model the reverse process transitions as condi-

tionally independent across these components given x(t) as

p(x(t−1) | x(t)) = p(r(t−1)|x(t))p(z(t−1)|x(t)).

We next describe the details of the forward and reverse process conditionals for the translations

in Section 2.2 and for the rotations in Section 2.3. We finally note that our treatment here may

be viewed as a discretization of an SE(3)-equviariant, continuous-time diffusion process on the

manifold SE(3)L, with Brownian motion defined through a product metric that separates across

the rotations and translations associated with each of the L residues in a backbone. The full details
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of continuous time view are beyond the scope of the present paper, and are developed in greater

depth by Yim et al. [64].

2.2 Residue translations, forward and reverse transitions

Our forward process for translations follows closely from previous work by Trippe et al. [5] on Cα

backbone generation, that treats Cα backbone coordinates as a 3D point cloud and corrupts them

with 3D Gaussian noise. We let β(1), β(2), . . . , β(T ) be scalars between 0 and 1 that define a variance

schedule such that for each t = 1, 2, . . . , T the transition density of the forward process is q(z(t) |

z(t−1)) = N (z(t);
√

1− β(t)z(t−1), β(t)I3). To sample z(t) during training, rather than ancestral

sampling z(s)|z(s−1) from s = 1 all the way up to s = t, we draw z(t) directly from the marginal

distribution, q(z(t)|z(0)) = N
(
z(t);

√
ᾱ(t)z(0), (1− ᾱ(t))I3

)
, where we define ᾱ(t) =

∏t
s=1 α

(t) with

α(t) = 1− β(t).

For the reverse process, we desire to use a prediction of denoised coordinates from RoseTTAFold.

Given that q(z(t−1)|z(t), z(0)) = N (z(t−1); µ̃(z(t), z(0)), β̃(t)I3) for µ̃(z
(t), z(0)) =

√
ᾱ(t−1)β(t)

1−ᾱ(t) z(0)+
√
α(t)(1−ᾱ(t))

1−ᾱ(t) z(t),

and β̃(t) = 1−ᾱ(t−1)

1−ᾱ(t) β
(t) ≈ β(t), we define the reverse transitions by

p(z(t−1) | x(t)) = N (z(t); µ̂(x(t)), β(t)I3),

with µ̂(x(t)) =

√
ᾱ(t−1)β(t)

1− ᾱ(t)
ẑ(0)(x(t)) +

√
α(t)(1− ᾱ(t−1))

1− ᾱ(t)
z(t),

(2)

where ẑ(0)(x(t)) denotes the predicted Cα coordinates obtained from RFdiffusion, x̂(0)(x(t)).

Variance schedule and inference with fewer steps. In baseline inference with T = 200

steps, we use a linear variance schedule [11] wherein we choose β(t) = βz
min+( t

T
)(βz

max−βz
min) with

βz
min = 0.01 and βz

max = 0.07. We chose these parameters such that the signal remaining in z(t)

from z(0) (as quantified by ᾱ(t)) decays slowly toward zero as t approaches T .

When using RFdiffusion at inference with a different number of timesteps T ′ ̸= T, we modify
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our variance schedule accordingly by adjusting the limits of the linear schedule as

βz′
min =

T

T ′β
z
min and βz′

max =
T

T ′β
z
max. (3)

This choice scales up the variance of the noise added in each step proportionally to the implied

fraction of the trajectory traversed in each step.

2.3 Residue rotations, forward and reverse transitions

For the forward and reverse transitions on rotations, we adapt a generalization developed by

De Bortoli et al. [23] of diffusion models to Riemannian manifolds. In particular, the space of

3 × 3 rotation matrices (known as the special orthogonal group of dimension 3, or SO(3)) is a

compact Riemannian manifold where the techniques of Ho et al. [11] do not apply readily. In brief,

De Bortoli et al. [23] build on the continuous-time score-based generative modeling framework of

Song et al. [65] and define the forward process as Langevin dynamics on the manifold — and in

particular as a Brownian motion when the manifold is compact. The time-reversal of this process is

then characterized through the Stein score of the noised data distribution at each t. This subsection

relies of some knowledge of properties of SO(3) and its Lie algebra; we refer the reader to Sola

et al. [66] for this background.

Forward process defined by Brownian motion on SO(3): The form of the Brownian motion

on a manifold is well-defined only with the choice of an inner-product on the associated tangent

spaces Tr; we choose a scaling of the Frobenius inner product as an inner product on the tangent

spaces of SO(3), such that for any r ∈ SO(3) and A and B in a Tr,

⟨A,B⟩SO(3) = Trace(A⊤B)/2. (4)
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The marginal distribution of a rotation matrix r(t) evolving according to Brownian motion for

time t from an initial rotation r(0) is given by the IGSO(3) distribution [67, 24], which we write as

r(t)∼IGSO(3)(µ = r(0), σ2 = t). With the choice of inner product in Equation (4), the density of

the IGSO(3) distribution with respect to the uniform distribution on SO(3) is given by

IGSO(3)(r
(t);µ, σ2) = f(ω(µ⊤r(t));σ2), for f(ω;σ2) =

∞∑
l=0

(2l + 1)e−l(l+1)σ2/2 sin((l + 1
2
)ω)

sin(ω/2)
, (5)

where µ is 3× 3 mean rotation matrix and ω(r) denotes the angle of rotation in radians associated

with a rotation r. The angle may be computed as ω(r) = arccos [(trace(R)− 1)/2] . We refer the

reader to [64, Proposition 3.3] for a verification of Equation (5). We approximate the power series

in Equation (5) by its truncation after 2000 terms. We formulate a discrete-time forward noising

by discretizing the Brownian motion, which provides: q(r(t)|r(t−1)) = IGSO(3)(r
(t); r(t−1), σ2

t − σ2
t−1)

and marginally q(r(t) | r(0)) = IGSO(3)(r
(t); r(0), σ2

t ), where σ
2
1, σ

2
2, . . . , σ

2
T is a variance schedule. We

choose this schedule so that the rotations are corrupted at a rate similar to the forward process on

translations (Supplementary Methods Table 6). In contrast to the translations, which converge to

a Gaussian distribution as t increases, the rotations converge to the uniform distribution on SO(3);

this uniform distribution, also known as the Haar measure, is invariant to rotation.

Backward transition kernel: To approximate the reverse transitions for the rotations we take

inspiration from De Bortoli et al. [23, Theorem 1] and approximate the discretized reversal by a

geodesic random walk. In particular, reverse step updates for rotations are computed by taking

a noisy step in the tangent space of SO(3) in the direction of the gradient of the log density of a

noised structure x(t) with respect to each rotation, and projecting back to the SO(3) manifold using

the exponential map De Bortoli et al. [23, Algorithm 1]. The size of the step and the variance of

the noise added depend on the noising schedule as in Song et al. [65], and additionally depend on a

choice of orthonormal basis for the tangent space; with the choice of inner-product in Equation (4),
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the tangent space at I3, TI3 (known as the Lie algebra of SO(3)) has orthonormal basis vectors

f1 =


0 −1 0

1 0 0

0 0 0

 , f2 =


0 0 1

0 0 0

−1 0 0

 , and f3 =


0 0 0

0 0 −1

0 1 0

 , (6)

and for every other r ∈ SO(3), Tr has orthonormal basis {rf1, rf2, rf3}. Each step of the geodesic

random walk is computed as

r(t−1) = expr(t)

{
(σ2

t − σ2
t−1)∇r(t) log q(x

(t)) +
√
σ2
t − σ2

t−1

3∑
d=1

ϵdr
(t)fd

}
, (7)

where ∇r(t) log q(x
(t)) in Tr(t) denotes the Stein score of the forward process at time t, and expr(t)

denotes the exponential map from Tr(t) to SO(3), and ϵ1, ϵ2, ϵ3
iid∼ N (0, 1). The exponential map

expr(t) may be computed as expr(t){v} = r(t) expI3{r
(t)⊤v}, where expI3{·} is the matrix exponential.

The variance schedule for the rotations is chosen by setting σt = σmin +
t
T
βmin +

1
2
( t
T
)2(βr

max −

βr
min), with σmin = 0.02, βr

min = 1.06, and βr
max = 1.77

Approximating the score with a denoising prediction: Equation (7) describes how one

could sample from the reverse process using the score of the forward process. One could in principle

learn this score function directly by score matching training [23]. However, we instead rely on an

approximation that directly leverages RoseTTAFold’s ability to predict denoised structures once
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suitably trained. For a given t and r(t) we may write

∇r(t) log q(x
(t)) = Eq

[
∇r(t) log q(x

(t) | x(0)) | x(t)
]

= Eq

[
∇r(t) log q(r

(t) | r(0)) | x(t)
]

≈ ∇r(t) log q(r
(t) | r(0) = r̂(0))

= ∇r(t) log IGSO(3)(r
(t); r̂(0), σ2

t ),

(8)

where the first line is known as the denoising score matching identity [68], the second line is ob-

tained from the conditional independence structure of the forward process, the third line is an

approximation that can be thought of as replacing q(r(0) | r(t)) with a point mass on the noise-

less rotation r̂(0) predicted by RFdiffusion, and the final line recognizes the approximation as

the gradient of the tractable IGSO(3) log density. In the expressions above, we use the notation

Eq[g(x
(0), x(t)) | x(t)] =

∫
g(x(0), x(t))q(x(0) | x(t))dx(0) to describe the conditional expectation ac-

cording to q of g(x(0), x(t)) given x(t). We compute the score approximation in the final line of

Equation (8) by applying the chain rule to obtain

∇r log IGSO(3)(r; r̂, σ
2
t ) = ∇rω(r̂

⊤r)
d

dω
log f(ω;σ2

t ) |ω=ω(r̂⊤r)

= r
log(r̂⊤r)

ω(r̂⊤r)

d

dω
log f(ω, σ2

t )|ω=ω(r̂⊤r)

(9)

where log(r̂⊤r) is the matrix logarithm and ω(rr̂⊤) and f are as defined in Equation (5) [64, Proposi-

tion 3.4]. r log(r̂
⊤r)

ω(r̂⊤r)
is a unit length perturbation in the direction of r log(r̂⊤r), and d

dω
log f(ω, σ2

t ) |ω=ω(r̂⊤r)

is a scaling of this direction.

We reasoned that the approximation in Equation (8) may be reasonably accurate for two

reasons. First, in the case of diffusion probabilistic models with Gaussian noise, where optimizing to

convergence would provide ẑ(0)(x(t)) = Eq

[
z(0) | x(t)

]
, this approximation holds exactly in the sense

that Eq[∇z(t) log q(z
(t) | z(0)) | x(t)] = ∇z(t) log q(z

(t) | z(0) = ẑ) for ẑ = ẑ(0)(x(t)) (see Proposition
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Algorithm 1 RFdiffusion rotation score approximation

1: function f(ω, σ2, L = 2000) ▷ IGSO(3) density factor, truncated to L terms

2: return
∑L

l=0(2l + 1)e−l(l+1)σ2/2 sin((l+
1
2
)ω)

sin(ω/2)

3: end function
4:

5: function RotationScoreApproximation(rt, r̂0, σ
2
t )

6: r⃗0t = log(r̂⊤0 rt) ▷ r⃗0t ∈ R3,3, r⃗0t = −r⃗⊤0t
7: ω0t = arccos[(trace(r̂⊤0 rt)− 1)/2] ▷ angle of rotation ω0t ∈ [0, π]
8:

9: ▷ Compute score approximation
10: s = rtr⃗0t

ω0t
· d
dω

logF(ω;σ2
t )|ω=ω0t ▷ s ∈ R3,3

11: return s
12: end function

1 below). Though this does not hold with equality with IGSO(3), because SO(3) is a Riemannian

manifold and is therefore locally Euclidean, IGSO(3) closely resembles a Gaussian for low t. Second,

again when t is low, x(t) will be close to a plausible structure and, if the model is trained well,

q(r(0) | x(t)) will be concentrated near r(0). Although approximation error may be non-trivial for

larger t, we find this approximation to be empirically useful nonetheless. We present computation

of this approximation to the score in Algorithm 1.

Altogether, the above derivation suggests updates for the rotations in the reverse process as

r(t−1) = r(t) expI3

{
(σ2

t − σ2
t−1)r

(t)⊤∇r(t) log IGSO(3)(r
(t); r̂(0), σ2

t ) +
√
σ2
t − σ2

t−1

3∑
d=1

ϵdfd

}
, (10)

with ∇r(t)IGSO(3)(r
(t); r̂(0), σ2

t ) computed as in Equation (9).

Proposition 1. Suppose z(0), z(t) ∼ q(z(0), z(t)), and that z(t) | z(0) ∼ N (z(t);αz(0), σ2) according
to q for some α and σ2. If ẑ(0)(z(t)) = Eq[z

(0) | z(t)] for every z(t), then

Eq[∇z(t) log q(z
(t) | z(0)) | z(t)] = ∇z(t) log q(z

(t) | z(0) = ẑ), for ẑ = ẑ(0)(z(t)). (11)
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Proof. To prove the result, we re-write the left hand side of Equation (11) to obtain

Eq[∇z(t) log q(z
(t) | z(0))|z(t)] = Eq[−(z(t) − αz(0))/σ2 | z(t)]

= −(z(t) − αEq[z
(0) | z(t)])/σ2

= −(z(t) − αẑ(0)(z(t)))/σ2

= ∇z(t) log q(z
(t) | z(0) = ẑ), for ẑ = ẑ(0)(z(t)),

(12)

as desired.

2.4 Self-conditioning in reverse process sampling

Self-conditioning was introduced by Chen et al. [25], who showed the technique dramatically im-

proves diffusion performance on image generation and image captioning tasks. We implement

self-conditioning in the manner similar to how it is described in Chen et al. [25].

For sampling in diffusion generative models without self-conditioning, at each denoising step

once x(t) has been sampled, the prediction of the denoised data from the previous step (x̂
(0)
prev. =

x̂(0)(x(t+1))) is discarded. However, since each denoising step is typically small, successive x̂(0)(x(t))

predictions can be similar, so much of the denoising computation must be repeated. By con-

trast, with self-conditioning one saves the denoising predictions at each step and provides them as

an input to the denoising model at the next iteration, instead predicting x(0) as x̂(0)(x(t), x̂
(0)
prev.).

This process of providing previous network outputs as an input to subsequent iterations is remi-

niscent of “recycling” in AlphaFold [17] and our updated variant of RoseTTAFold (Section 1.2).

When training with self-conditioning, on 50% of examples one performs a usual denoising step,

setting x̂
(0)
prev. = 0 and computing a loss as L(x(0), x̂

(0)
prev. = 0). The other 50% of the time, one

(i) simulates an additional forward noising step to obtain x(t+1) ∼ q(x(t+1) | x(t)), (ii) computes

x̂
(0)
prev. = x̂(0)(x(t+1), x̂

(0)
prev. = 0), and (iii) computes a loss as L(x(0), x̂(0)(x(t), x̂

(0)
prev.)), backpropagating

gradients only through the second denoising step. Training and sampling with self-conditioning
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Algorithm 2 RFdiffusion generation

1: function SampleReference(L)
2: ▷ Random initial structure for L residues
3: for l = 1, . . . , L do
4: r

(T )
l ∼ Uniform(SO(3))

5: z
(T )
l ∼ N (0, I3)

6: x
(T )
l = (r

(T )
l , x

(T )
l )

7: end for
8: return x(T )

9: end function
10:

11: function ReverseStep(x(t), x̂(0))
12: ▷ One step of reverse diffusion
13: for l = 1, . . . , L do
14: (r

(t)
l , z

(t)
l ) = x

(t)
l

15: (r̂
(0)
l , ẑ

(0)
l ) = x̂

(0)
l

16: ▷ Update translations

17: z
(t−1)
l ∼ N (

√
ᾱ(t−1)β(t)

1−ᾱ(t) ẑ
(0)
l +

√
α(t)(1−ᾱ(t−1))

1−ᾱ(t) z
(t)
l , β(t)I3)

18:

19: ▷ Update rotations
20: sl =RotationScoreApproximation(r

(t)
l , r̂

(0)
l , σ2

t )

21: ϵl,1, ϵl,2, ϵl,3
iid∼ N (0, 1)

22: r
(t−1)
l = r

(t)
l expI3

{
(σ2

t − σ2
t−1)r

(t)
l

⊤
sl +

√
σ2
t − σ2

t−1

∑3
d=1 ϵl,dfd

}
23: x

(t−1)
l = (r

(t−1)
l , z

(t−1)
l )

24: end for
25: return x(t−1)

26: end function
27:

28: function Sample(L)
29: ▷ RFdiffusion generation of L-residue backbone structure
30: x(T ) = SampleReference(L)

31: x̂
(0)
prev. = 0⃗ ▷ Initialize self-conditioning

32: for t = T, . . . , 1 do
33: x̂(0) = RFdiffusion(x(t), x̂

(0)
prev.)

34: x(t−1) = ReverseStep(x(t), x̂(0))

35: x̂
(0)
prev. = x̂(0)

36: end for
37: return x̂(0)

38: end function
39:
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are described in Algorithms 2 and 3.

In RFdiffusion, we input x̂
(0)
prev. through the template structure feature (xyz t, see Supplemen-

tary Methods Table 1) and we input x(t) as coordinates to the 3D track of RF (xyz prev, see

Supplementary Methods Table 1). Inputting x(t) as coordinates, as opposed to the distogram and

anglegram used in the template structure feature, allows the network to keep the motif fixed in

coordinate space.

2.5 Mean squared error loss on residue frames

The primary objective used to train RFdiffusion is mean squared error loss, averaged across training

examples, time steps and the forward noising process,

MSEFrame =
1

T

T∑
t=1

Eq[dframe(x
(0), x̂(0)(x(t)))2],

where

dframe(x
(0), x̂(0)) =

√√√√ 1

L

L∑
l=1

∥z(0)l − ẑ
(0)
l ∥22 + ∥I3 − r̂

(0)⊤
l r

(0)
l ∥2F ,

is a metric on the sets of predicted frames consisting of Euclidean distance on the Cα coordinates

(∥z(0)−ẑ(0)∥2), and a metric on rotation matrices (∥I3−r̂0⊤r(0)∥2F , where ∥·∥F denotes the Frobenius

norm [69]. In practice, we use slight modification of MSEFrame chosen to improve stability of training

(see Section 4.1 for details).

In each training step, we compute an unbiased Monte Carlo estimate of this objective by

sampling a time step t ∼ U(1, . . . , T ), a single structure x(0) from our dataset, simulating the

forward process to obtain x(t) | x(0) ∼ q(x(t) | x(0)), and taking a gradient step on our slight

modification of MSEFrame. Algorithm 3 summarizes the training procedure.

Our choice of MSEFrame takes inspiration from [11]. In particular, Ho et al. [11, section 3.2]

comment that when the forward process consists of adding Gaussian noise, the training objective
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Algorithm 3 RFdiffusion Training

1: function ForwardNoise(x(0), t)
2: for l = 1, . . . , L do
3: (r

(0)
l , z

(0)
l ) = x

(0)
l

4: z
(t)
l ∼ N

(√
ᾱ(t)z

(0)
l , (1− ᾱ(t))I3

)
5: r

(t)
l ∼ IGSO(3)

(
r
(0)
l , σ2

t

)
6: x

(t)
l = (r

(t)
l , z

(t)
l )

7: end for
8: return x(t)

9: end function
10:

11: function Train
12: while not converged do
13: x(0) ∼ TrainingSet
14: t ∼ Uniform({1, . . . , T})
15: if Uniform(0, 1.0) < 0.5 or t = T then
16: ▷ Train step without self-conditioning
17: x(t) = ForwardNoise(x(0), t)

18: x̂
(0)
prev. = 0⃗

19: else
20: ▷ Train step with self-conditioning
21: x(t+1) = ForwardNoise(x(0), t+ 1) ▷ Sample (x(t+1), x(t)) ∼ q(x(t:t+1) | x(0))
22: x(t) = ReverseStep(x(t+1), x(0))
23:

24: ▷ Compute self-conditioning input
25: x̂

(0)
prev. = RFdiffusion(x(t+1), 0⃗)

26: x̂
(0)
prev. = StopGradient(x̂

(0)
prev.)

27: end if
28: x̂(0) = RFdiffusion(x(t), x̂

(0)
prev.)

29: Take gradient step on dframe

(
x(0), x̂(0)

)2
30: end while
31: end function
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of minimizing the Kullback-Leibler divergence of q(z(t−1) | z(t)) to p(z(t−1) | z(t)) can be rewritten

as a rescaling of the expected squared error of a prediction of z(0) from noisy observations z(t). In

particular if we fix the variance of the backward transitions to βt as in Section 2.2, then for each t

Eq[KL(q(z(t−1) | z(t))∥p(z(t−1) | z(t)))] = Eq

[
ᾱ(t−1)(1− αt)

2

2βt(1− ᾱ(t))2
∥z(0) − ẑ(0)(z(t))∥22

]
+ c, (13)

where c is a constant that does not depend on p (see [70, Equation 99] and [11]). Consequently

when one minimizes the right-hand-side of Equation (13) for every t, they maximize a weighted

variational lower bound on the likelihood of the data. Moreover, this bound is globally minimized

only when each p(z(t−1) | z(t)) matches q(z(t−1) | z(t)), and p(z(0)) therefore matches the data-

distribution [11]. Although Ho et al. [11] found better performance in generative modeling of

images when predicting the noise added in the forward process (rather than x(0)), we reasoned that

by predicting x(0) we could better leverage the inductive biases of RoseTTAFold pre-trained for

structure prediction to produce realistic structures.

However, the equivalence of learning to optimally denoise according to average squared distance

and matching the reverse process is only known to apply when the forward process consists of

Gaussian noise, and likely does not hold for the IGSO(3) noise used for rotations. However the

squared Frobenius norm metric seemed to be a sensible choice because (1) our chosen forward

noising process for rotations is approximately Gaussian in the tangent space of SO(3) at r(0) for t

close to zero, and (2) this metric is approximately equal to a scaling of squared Euclidean distance

in the tangent space of SO(3) when r̂(0) is close to r(0) [71].

2.6 Geometric invariances and RFdiffusion

RFdiffusion leverages the SE(3)-equivariance of RoseTTAFold to parameterize a distribution over

protein backbones that is invariant to rotation. In this subsection, we describe why this invariance

property is desirable, and how it is conferred by the SE(3)-equivariance of RoseTTAFold.
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Our goal of achieving rotational invariance builds on previous work [27, 5], and is motivated by

the observation that biochemical characteristics of proteins are conferred by relative geometry of

the atoms which comprise them. However, when we describe the structure of protein backbone as a

collection of rigid bodies parameterized by Cα coordinates and per-residue N−Cα−C orientations,

our description invariably relies on the choice of a semantically arbitrary coordinate system. A

naive approach to learning a distribution over protein backbones might assign different probabilities

to the same structure when viewed from different angles. By contrast, we seek to model any protein

structure as equally likely upon a rigid rotation. Indeed, prior work has established that imposing

geometric invariances in neural networks imparts inductive biases that can improve generalization

and training efficiency [72].

Invariance to translation has also been considered in generative modeling of proteins. While

one approach to addressing translational invariance would be to explicitly parameterize an SE(3)-

invariant measure, this introduces the challenge of contending with unnormalized measures because

no normalized probability distribution can be invariant to translation. In practice, we obviate this

challenge by centering all training examples at the origin to eliminate the degrees of freedom

corresponding to translation, and considering only invariance to rotation; as demonstrated by

Yim et al. [64, proposition 3.5], this does not sacrifice any generality because any SE(3)-invariant

measure on SE(3)L may be represented a rotationally invariant probability measure on rigid bodies

with center of mass set to the origin.

More formally, our goal is ensure that for any structure x and rotation R, p(x) = p(R ∗ x),

where p denotes the density parameterized by the model and R ∗ x = [R ∗ x1, . . . , R ∗ xL] =

[(Rr1, Rz1), . . . , (RrN , RzL)] describes the structure obtained by rotating x about the origin by R.

To enforce invariance of p with respect to rotations in our DDPM, we follow prior work [73, 5]

by (1) using a rotation invariant reference distribution (satisfying p(x(T )) = p(R ∗ x(T )) for every

R ∈ SO(3)) and (2) constraining the reverse transitions to be rotationally equivariant, i.e. to

satisfy p(x(t−1)|x(t)) = p(R ∗ x(t−1)|R ∗ x(t)). Criterion (1) is readily satisfied by the choices of the
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zero mean Gaussian with isotropic covariance as the reference distribution for translations, and the

uniform distribution on SO(3) for rotations.

That criterion (2) above is satisfied owes to the SE(3) equivariance of the denoising network

inherited from RoseTTAFold. In particular, because by construction of the reverse process, for any

x(t−1), x(t), and R

p(R ∗ x(t−1)|R ∗ x(t)) =
L∏
l=1

p(R ∗ z(t−1)
l |R ∗ x(t))p(R ∗ r(t−1)

l |R ∗ x(t)),

we see that it is sufficient to show independently for translations and rotations that the distri-

butions sampled in the reverse process are rotationally equivariant. For translations, because

RoseTTAFold’s prediction ẑ(0) is rotationally equivariant with respect to x(t), and because µ̂(x(t))

in Equation (2) is a linear combination of ẑ(0) and z(t), µ̂(x(t)) and therefore also p(z(t−1) | x(t)) are

equivariant with respect to x(t).

For rotations, we can confirm equivariance by noticing that the update in Equation (10) for

each residue l is computed as the matrix exponential of a rotationally invariant quantity multiplied

by r
(t)
l . In particular, the drift term in Equation (10) may be rewritten as

r(t)⊤∇r(t) log IGSO(3)(r
(t); r̂(0), σ2

t ) = r̃⊤∇r̃ log IGSO(3)(r̃; I3, σ
2
t ),

for r̃ = r̂(0)⊤r(t), which is rotationally invariant because r̂(0) is rotationally equivariant.
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3 RFdiffusion: methodology for controlled design

We next describe several techniques to control generation of backbones in RFdiffusion to meet

specific design criteria. Section 3.1 describes generation of symmetric oligomers. Section 3.2

describes our approach to training RFdiffusion for generation via conditional training. Section 3.3

then describes how we modify the architecture of and fine-tune RFdiffusion for targeted binder

design, and design subject to topology constraints. Finally, Section 3.4 describes how we can guide

generation with extrinsically defined “potentials”.

3.1 Generation of oligomers with point group symmetries

As discussed in the main text, generating oligomeric assemblies obeying desired point-group sym-

metry constraints is crucial in several design contexts. Point group symmetries may be represented

by a finite collection of rotation matrices that form a mathematical group with respect to matrix

multiplication as the group operation [36]. For example, we may represent the cyclic symmetry

group of order K by the set of rotation matrices that rotate increments of (360/K)o about the

z-axis, Ck = {R(k/K)360o

z }K−1
k=0 . Analogous representations exist for all other point groups (includ-

ing dihedral, octahedral, tetrahedral, and icosahedral). Without loss of generality we set the first

rotation to be the identity R1 = I3. We represent an oligomer with K monomer subunits each

with L residues by X = [x1, . . . , xK ] where each subunit k consists of the translations and ro-

tations xk = ([zk1 , . . . , z
k
L], [r

k
1 , . . . , r

k
L]). Then we say an oligomer obeys a point group symmetry

R = {R1, . . . , Rk}, ifX = [R1∗x1, . . . , RK∗x1] where R∗x1 = ([R∗zk1 , . . . , R∗zkL], [R∗rk1 , . . . , R∗rkL])

denotes the rotation of a monomer backbone structure by R.

Previous work has demonstrated some success generating designs with symmetry through Hal-

lucination [6, 7] with the inclusion of penalty terms on the deviation of predicted structures from

the desired symmetry, but this work suffered from large computational cost (on the order of 1 GPU
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Algorithm 4 Generation of symmetric oligomers

1: function SampleSymmetric(M,R = {Rk}Kk=1)
2: ▷ RFDiffusion generation of oligomer with symmetry R
3: x(T,1) = SampleReference(M)
4: for t = T, . . . , 1 do
5: X(t) = [R1x

(t,1), . . . , RKx
(t,1)] ▷ Symmetrize chains

6: X̂(0) = RFdiffusion(X(t))
7: [x(t−1,1), . . . , x(t−1,K)] = ReverseStep(X(t), X̂(0))
8: end for
9: return X̂(0)

10: end function

day per design) and low success rates, presumably due to the inability to precisely control the de-

sired symmetry [7]. We hypothesized that RFdiffusion by contrast could provide improved control

over symmetries in design by maintaining symmetry in denoising predictions, and by allowing us

to enforce hard symmetry constraints during the reverse process (Algorithm 4).

Although we do enforce exact symmetry through explicit symmetrization at each denoising

step, we observed that RFdiffusion provides predictions of the denoised oligomer structures that

preserve the desired symmetry nearly exactly, even in the first denoising steps (Extended Data

Fig. 5A). This property of denoised predictions owes to the exact equivariance of RoseTTAFold

with respect to global rotations and the approximate equivariance with respect to permutation

(i.e. relabeling) of chains. In particular, Proposition 2 guarantees that rotation and permutation

equivariance of a neural network are sufficient conditions for maintenance of point group symmetries

in the neural network’s output. In RFdiffusion, exact rotation equivariance is inherited from the

SE(3)-transformer architecture used in the structure module of RoseTTAFold [62]. Permutation

equivariance by contrast arises if the intermediate representations and outputs for each residue are

unaffected by the ordering of chains. This is nearly the case with RFdiffusion, with the exception

that the RoseTTAFold pair representation contains directional sequence distance feature inputs for

each pair of residues, clipped between -32 and 32 residues away; since oligomers are presented to

RoseTTAFold by incrementing the sequence position index at the start of each chain, the sign of
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these features breaks exact permutation equivariance. However, we find empirically that deviation

from exact symmetry in RFdiffusion predictions is minimal (Extended Data Fig. 5A).

Proposition on preservation of symmetry: We next provide a proposition that more pre-

cisely illuminates the mechanism by which predictions of denoised structures maintain the desired

symmetry at each step.

Proposition 2. Consider any function F : [x1, . . . , xK ] → [y1, . . . , yK ] and point group symmetry
R = {R1, . . . , RK}. If F is both

1. rotation equivariant, that is F ([R ∗ x1, . . . , R ∗ xK ]) = [R ∗ y1, . . . , R ∗ yK ] for every rotation
matrix R, and

2. permutation equivariant, that is F ([xσ(1), . . . , xσ(K)]) = [yσ(1), . . . , yσ(K)] for every permutation
σ,

then F is symmetry preserving. In particular, for any x, F ([R1∗x, . . . , RK∗x]) = [R1∗y, . . . , RK∗y]
for some y.

Notably, Proposition 2 holds for any neural network satisfying assumptions on F above. We

now prove the proposition.

Proof. We first establish some basic properties about permutations of point groups. First note

that every member Rk ∈ R defines a permutation of R since {RkR1, RkR2, . . . , RkRK} = R. Let

σk denote the permutation associated with R1R
T
k ∈ R. In particular, σk is the permutation such

that for each m, Rσk(m) = (R1R
T
k )Rm. Notably, σk(k) = 1 because Rσk(k) = (R1R

T
k )Rk = R1. For

any permutation σ, we let σ̄ denote its inverse, the permutation such that σ̄(σ(k)) = k for every

k. Lastly, note that for Rσ̄k(m) = (RkR
T
1 )Rm, and so Rσ̄k(1) = (RkR

T
1 )R1.

Assume without loss of generality that F ([R1∗x, . . . , RK∗x])1 = R1∗y. To prove the proposition,

it suffices to show that for any k, F ([R1 ∗ x, . . . , Rk ∗ x])k = Rk ∗ y. Consider σk as defined above.

We can write

F ([R1 ∗ x, . . . , RK ∗ x])k = F (Rσ̄k(1)x, . . . , Rσ̄k(K)x)σk(k)

= F ((RkR
T
1 )R1x, . . . , (RkR

T
1 )RKx)1
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where the first equality follows from permutation equivariance of F , and the second equality follows

from the definitions of σk and σ̄k. Finally, by the rotation equivariance of F ,

F ((RkR
T
1 )R1x, . . . , (RkR

T
1 )RKx)1 = (RkR

T
1 )F (R1x, . . . , RKx)1

= (RkR
T
1 )R1y = Rky.

Therefore F (R1x, . . . , Rkx)k = Rky as desired.

3.2 Conditional training for functional-motif scaffolding

Our approach to scaffolding functional motifs with RFdiffusion follows Trippe et al. [5], who treat

motif-scaffolding as a conditional generative modeling problem. We partition the residues of a

structure into the residues comprising the motif and those comprising the remainder of the back-

bone, which we refer to as the scaffold that supports it. For a structure with L residues, we let

M denote the (potentially discontiguous) set of indices corresponding to the motif and S be the

remaining scaffold indices, such that the union of M and S is the set of indices up to L (i.e.

M ∪ S = {1, . . . , L}).

We write xM to denote the structure of the motif residues and xS to be the scaffold residue

frames such that we may write the whole (un-noised) protein structure as x(0) = [x
(0)
M , x

(0)
S ]. Our

goal is to sample scaffold backbones from the conditional distribution q(x
(0)
S | x(0)M). To do this,

we aim to learn the reversal of the forward noising process applied only to scaffold residues, with

the motif held fixed, p(x
(t−1)
S | x(t)S , x

(0)
M) ≈ q(x

(t−1)
S | x(t)S , x

(0)
M), where q(x

(t−1)
S | x(t)S , x

(0)
M) is the

conditional forward noising process described in Sections 2.2 and 2.3.

In earlier work, Wang et al. [4] demonstrated that RoseTTAFold may be trained to respect motif

constraints provided as inputs through the template structure input features through retraining.

Because the division of residues into motif and scaffold is specific to each design problem, we

desired to train RFdiffusion such it may be used for any location of the motif within the sequence.
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To this end, we took an amortized training approach, wherein for each motif-scaffolding training

example we 1) begin with a structure x(0), 2) choose a random division into motif and scaffold

x(0) = [x
(0)
M , x

(0)
S ] (see Section 4.1 for details), 3) apply noise to the scaffold to obtain x

(t)
S ∼ q(x

(t)
S |

x
(0)
S ), and 4) compute a loss on the RFdiffusion prediction x̂(0)([x

(0)
M , x

(t)
S ]) of x(0) = [x

(0)
M , x

(0)
S ]. In

order to encourage RFdiffusion to not move the motif, we set the time-step input for motif residues

to t = 0, we include both the motif and the scaffold residues when we compute the loss on the

prediction. We center motif-scaffolding training examples on the center of mass of x
(0)
M ; if the

training example is instead centered at the center of mass of the full chain, information is leaked

about the relative position of the bulk of x
(t)
S relative to x

(0)
M .

Because motif sidechain geometry is crucial for most motif-scaffolding problems, we addition-

ally provide the amino acid sequence and sidechain torsion angles for motif residues as inputs to

RFdiffusion (provided through RoseTTAFold’s template feature inputs). Overall this strategy is

akin to the diffusion model inpainting training and generation described by Saharia et al. [74], who

use randomly generated image masks.

In summary, generation of scaffolds conditional on a motif with RFdiffusion differs from uncon-

ditional generation only in (1) the inclusion of noise-free motif backbone and sidechain structure in

the template inputs and (2) replacement of the motif backbone coordinates in x(t) with un-noised

motif coordinates at each step, (3) setting of the timestep for motif residues to 0, and (4) centering

examples based on x
(0)
M rather than based on x(0).

3.3 Fine-tuning and architecture modifications

We wish to train a diffusion model which can condition on arbitrary features; to accomplish this, ad-

ditional features must be input to RFdiffusion beyond the features already taken by RoseTTAFold.

Given the vast difference in performance between models trained from scratch versus those initial-

ized from RF weights (Extended Data Fig. 1F), we also wish to continue to initialize training
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from RF weights. To allow the addition of more features, we choose to expand the size of existing

features in RF and to expand the corresponding size of the weights of the embedding layer which

initially embeds the feature into the model. We initialize the weights associated with these newly

added dimensions in these embedding layers to zero. With this initialization, the model gives ex-

actly the same output as unmodified RF with the initial weights. Upon training, the model can

then learn to use the newly expanded features.

In Section 4.3, we describe how we do this in detail for binder design, by controlling secondary

structure adjacency and fold family of designs and directing generated binders to target hotspots.

In addition to architectural modifications, RFdiffusion can also be further fine-tuned on different

conditional tasks; we describe how we have done this for improved scaffolding of functional motifs

in Section 4.2.

3.4 Guiding RFdiffusion inference with external potentials

In addition to the network’s ability to condition on structural motifs, the inference process can

be guided by external potential functions to generate proteins which possess arbitrary desired

properties, such as the existence of contacts with another protein or a desired surface concavity.

Previous work has demonstrated that diffusion models can be made to sample from conditional

distributions p(x(0) | y) without retraining if given a classifier able to operate on noisy samples, p(y |

x(t)) [65, Appendix I]. In particular, p(y = 1 | x(t)) may be understood as a predicted probability

that an example x(0) has a property of interest (or is in a given “class”) given only the noised

observation x(t). In contrast to unguided generation, wherein one noisily moves in the direction

∇x(t) log p(x(t)) (which points toward x̂(0)), with guidance one instead follows ∇x(t) log p(x(t)) +

∇x(t) log p(y = 1 | x(t)) in the reverse step[65].

In the present work, we construct heuristic approximations of these classification log proba-

bilities P (x(t)) ≈ log p(y = 1 | x(t)) for two protein conditional generation objectives, symmetric
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oligomer design (Fig. 3, Extended Data Fig. 5) and enzyme design with concave pockets (Extended

Data Fig. 6E-H). We show how to incorporate them into the sampling procedure in Algorithm 5,

and detail the functional forms of these potentials in Section 4.4. In this work, we consider po-

tentials the are defined as a function of the Cα coordinates alone, and so (in each individual step)

these potentials do not impact residue orientations.

Algorithm 5 Generation with guidance

1: function SampleGuided(L, P, GuideScale)
2: ▷ Generation of L-residue backbone structure, guided by potential P
3: x(T ) = SampleReference(M)
4: for t = T, . . . , 1 do
5: x̂(0) = RFDiffusion(x(t))
6: x(t−1) = ReverseStep(x(t), x̂(0))
7: x(t−1) = x(t−1) +GuideScale(t)∇x(t)P (x(t)) ▷ Apply guidance
8: end for
9: return x̂(0)

10: end function

3.5 Tuning diversity by scaling noise at inference

For some problems, reported throughout the manuscript, we reduce the noise added at each step,

by including a multiplicative factor to the variance of the noise. Typically, this improves design

quality, at the expense of design diversity.
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4 RFdiffusion: training and fine-tuning

Sections 2 and 3 described key aspects of our formulation of RFdiffusion and how we have ap-

proached using it to generate designs with desired properties. In this section, we provide precise

details on RFdiffusion training. Section 4.1 details the inputs to and outputs of a “base” version of

RFdiffusion; these inputs and outputs are adapted from their uses in RoseTTAFold (Section 1.2).

Section 4.1 also describes the precise losses used and other training information. Section 4.2 pro-

vides details of the variant of RFdiffusion fine-tuned on an enzyme active site-scaffolding task.

Section 4.3 describes modifications to and funetuning of RFdiffusion for design of protein-protein

interactions. Finally, Section 4.4 describes two specific instances of guiding potentials. We subse-

quently present final details of how we applied RFdiffusion and these fine-tuned variants to specific

design tasks in Sections 5 and 6.

4.1 RFdiffusion base model

RFdiffusion was trained on monomer structures in the PDB used for RoseTTAFold training. Train-

ing examples consist of the unconditional task 20% of the time and the motif-conditional task 80%

of the time. For the motif-conditional task, a contiguous set of residues is selected as the motif,

and the true sequence and structure are provided to the model. RFdiffusion is trained starting

from the final RF weights. RFdiffusion does not use recycling.

Losses: RFdiffusion was trained with a loss comprising two terms,

LDiffusion = LFrame + w2DL2D,
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Input name (Shape) Description

msa masked

(1,1, L, 48)
The truncated MSA now contains only the masked sequence
(20aa, zeros (1), mask (1), repeat aa (20), zeros (1), repeat
mask (1), zeros (2), N-term/C-term (2))

msa full

(1, 1, L, 25)
The full MSA now contains only the masked sequence (20aa,
zeros (1), mask (1), zeros (1), N-term/C-term (2))

seq

(1, L, 22)
The masked sequence (20aa, zeros (1), mask (1))

xyz prev

(L, 27, 3)
The coordinates of all atoms (N-Ca-C-O backbone (4), (up
to) 10 sidechain atoms, (up to) 13 hydrogen atoms)

idx pdb

(L)
The integer index of each residue. Used to assign each
residue its neighboring residue. This feature has the same
definition as in RF

t1d

(1, L, 22)
The one-dimensional features associated with x(t) (20 amino
acids, mask (1), timestep (1)). The timestep is set to 1 for
all fixed motif residues, and to 1− t

T in all other positions.

t2d

(1, L, L, 44)
The two-dimensional features associated with x(t) structure.
These features are computed from x(t), not from x̂

(0)
prev.. (36

distance bins (2-20Å, 0.5Å bins) + 1 final distance bin (>
20Å), angle maps (sine and cosine of omega, theta and phi
angle) (6), missing residue mask (1))

xyz t

(1, L, 27, 3)
The self-conditioning feature. As described in Section 2.4,

this is x̂
(0)
prev.. This feature is immediately converted to a

distogram and anglegram representation by the model. (N,
Cα, C backbone atoms)

alpha t

(1, L, 30)
The sidechain torsions of the motif region of x(t). For posi-
tions with a masked sequence, zeros are provided. Initially
T, L, 10, 2, with sine and cosine of (omega, phi, psi angles
(3), (up to) 4 torsion angles, Cβ bend (1), Cβ twist (1), Cγ

bend (1)). This is concatenated with a mask (T, L, 10, 1)
indicating which torsion angles are present for a given amino
acid, and reshaped to T, L, 30.

msa prev

(1, L, Cm)
The MSA embedding recycling information. This is the
model’s previous embedding at each position in the masked
sequence. Cm = 256

pair prev

(L, L, Cp)
The 2-D embedding recycling information. This is the
model’s previous embedding at each edge between each
node. Cp = 128

state prev

(L, Cs)
The 1-D embedding recycling information. This is the
model’s previous embedding at each position in the query
sequence. Cs = 16

Supplementary Methods Table 4: Description of features input to RFdiffusion.
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Output name (Shape) Description

msa

(1, L, Cm)
The model’s final embedding at each position in the masked se-
quence. Cm = 256

pair

(L, L, Cp)
The model’s final embedding at each edge between each node. Cp
= 128

state

(L, Cs)
The model’s final embedding at each position in the query se-
quence. Cs = 16

xyz

(L, 27, 3)
The model’s full-atom prediction of structure (N-Ca-C-O back-
bone (4), (up to) 10 sidechain atoms, (up to) 13 hydrogen atoms)

Supplementary Methods Table 5: Outputs returned by RFdiffusion.

where LFrame is a modified variant of squared distance loss in MSEFrame (Section 2.5), L2D is a

distogram and anglegram loss, and w2D is a weighting factor. We now describe each loss.

LFrame includes two modifications from MSEFrame intended to improve the stability of optimiza-

tion. First, whereas MSEFrame relies on a distance computed simply as sum of squared distances

defined on the translation and rotation components of residue frames, LFrame relies on a weighted

sum of these components that includes clamping on translation distance,

dFrame(x
(0), x̂(0)) =

√√√√ 1

L

L∑
l=1

(
wtransmin(∥z(0)l − ẑ

(0)
l ∥2, dclamp)2 + wrot∥I3 − r̂

(0)⊤
l r

(0)
l ∥2F

)
,

where wtrans and wrot are weights on the rotation and translation distances, and dclamp is a maximum

distance above which translation distances are clamped. Note that the translation distance is only

clamped 90% of the time. Second, LFrame includes contributions from dFrame(x
(0), x̂(0)) computed at

each intermediate structure module iteration with an exponential weighting, γ that places greater

importance on later outputs. In particular, we have

LFrame =
1∑I−1

i=0 γ
i

I∑
i=1

γI−idFrame(x
(0), x̂(0),i)2

where x̂(0),i is the ith structure block output.

The second term in the loss, L2D, is inspired by trRosetta [63]. In contrast to the definition-
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ally unimodal structure track outputs, the model outputs multimodal distributions of expected

distances, dihedral angles, and planar angles between all pairs of contacting residues. D:,l,l′ , Ω:,l,l′ ,

Φ:,l,l′ , Θ:,l,l′ , together describe the orientation of residue l relative to residue l′. The following loss

consists of the cross entropy between the one-hot histogram of the known inter-residue distances

and orientations and the corresponding distributions predicted by the model.

L2D(logitsd, logitsω, logitsθ, logitsϕ, z0) =CrossEntropy(logitsdist, D)+

CrossEntropy(logitsω,Ω)+

CrossEntropy(logitsθ,Θ)+

CrossEntropy(logitsϕ,Φ)

where:

D ∈ R[CdistxLxL];Db,l,l′ = 1[binlow
D,b ≤ max(∥Cβ,l′ − Cβ,l′∥2, 18.5) < binhigh

D,b ]

Ω ∈ R[CdistxLxL]; Ωb,l,l′ = 1[binlow
Ω,b ≤ Dihedral(Cα,l, Cβ,l, Cα,l′ , Cβ,l′) < binhigh

Ω,b ]

Θ ∈ R[CdistxLxL]; Ωb,l,l′ = 1[binlow
Θ,b ≤ Dihedral(Nα,l, Cα,l, Cβ,l, Cβ,l′) < binhigh

Θ,b ]

Φ ∈ R[CphixLxL]; Ωb,l,l′ = 1[binlow
Φ,b ≤ Planar(Cα,l, Cβ,l, Cβ,l′) < binhigh

Φ,b ]

and the bin edges for converting these angles and distances into a one-hot distribution are given

by:

binD,i = [
i

2
,
i+ 1

2
]

binΩ,i = binΘ,i = [−π +
2πi

37
,−π +

2π(i+ 1)

37
]

binϕ,i = [
πi

19
,
π(i+ 1)

19
].
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Supplementary Information Table 2: Diagrams for how to compute the four inter-residue
distance and dihedral degrees of freedom.

And the formulae for computation of dihedral and planar angles are given by

Dihedral(a, b, c, d) = atan2(

[c− b] · (([b− a]× [c− b])× ([c− b]× [d− c])),

∥c− b∥([b− a]× [c− b]) · ([c− b]× [d− c]))

Planar(a, b, c) = arccos(
(a− b) · (c− b)

∥a− b∥∥c− b∥
).

Motif-centering during training: For both training and scaffold generation, we center the

motif at the origin. In preliminary computational experiments, we found that a model trained
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with non-centered motifs extracted from structures that were globally centered exhibited biased

motif placement. In particular, for motifs not placed at the origin we found that the scaffolds

sampled from this model typically placed most residues towards the side of the motif oriented

towards the origin. We interpreted this as subtle instance of undesirable label–leakage, and so

trained RFdiffusion with motifs centered at the origin to correct this.

Once the distance loss is computed on the motif, motif coordinates are detached from the

computation graph. As such, predicted motif coordinates are treated as constants for the purpose

of all other loss comptutations. While this does not affect the values of any losses, this choice ensures

that the components of loss on which gradients are computed with respect to the predicted motif

coordinates are minimized when by predictions which doe not move from its initial coordinates.

We made this choice to prevent the possibility that other computed losses would drive the motif

from its (desired) initialization, but have not thoroughly explored this choice empirically.

Hyperparameters and coordinate scaling: We train RFdiffusion using the hyperparameters

in Supplementary Methods Table 6. Although the coordinate inputs and outputs of RoseTTAFold

are in units of Angstroms, we define the diffusion process in a downscaled space by dividing all

coordinate values of x(t) and x(0) before performing each diffusion step by a factor of 4 (chosen

empirically), and then scaling back up to Angstroms.

Training time: RFdiffusion trained to convergence when initialized from RF weights in 5 epochs.

This took 3 days on 8 NVIDIA A100 GPUs.

4.2 Enzyme active site scaffolding by fine-tuning on minimal motifs

The version of RFdiffusion fine-tuned for enzyme active site scaffolding is trained starting from

the base version of RFdiffusion. During fine-tuning 30% of tasks are from the base model task

72



Parameter name Value

Crop size 384

Pseudo-batch size 64

wtrans 0.5

wrot 1.0

w2D 1.0

dclamp 10

pclamp 0.9

Structure block iteration decay rate
γ

0.99

Learning rate 0.0005, No warm-up. Decay learning rate by
0.95 after every 10000 optimization steps.

Examples per epoch 25600

Number of diffusion timesteps (T) 200

Variance schedule for translations β(t) = βz
min+( t

T )(β
z
max−βz

min) with βz
min = 0.01

and βz
max = 0.07.

Variance schedule for rotations σt = σmin + t
T β

r
min + 1

2(
t
T )

2(βr
max − βr

min), with
σmin = 0.02, βr

min = 1.06, and βr
max = 1.77

Fraction of protein residues masked
(when motif is provided)

Randomly picked from a uniform distribution
between 20% and 100%, inclusive.

Probability of motif being contigu-
ous or discontiguous

0.5

Probability of providing self-
conditioning information

0.5

Coordinate scaling 0.25

Supplementary Methods Table 6: RFdiffusion training hyperparameters.
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set Supplementary Methods (Table 6) and the other 70% are a “triple-contact” task, in which

a random set of 3 residues all > 10 residues apart in sequence space but with pairwise Cβ–Cβ

distances < 6Å is selected to form a model “active site”. These three residues are included in the

motif, and for each, there is a 50% chance of including one flanking residue. If no such triad is

found in the monomer (as is the case for approximately 23% of training PDBs), the task would fall

back to the base model training task. With the base RFdiffusion model, we note that the model

sometimes fails to keep very small input motifs fixed in the output structures. As such, for this

enzyme active site model, the motif-specific displacement loss is upweighted by a factor of 10 to

encourage the network to keep the motif fixed, in order to compensate for the fact that otherwise

motif recapitulation would comprise a significantly lower portion of the overall loss due to the much

shorter motif length in this task. The network was fine-tuned for 5 epochs in this manner.

4.3 Architectural modifications for protein-protein interaction design

In this subsection, we describe RFdiffusion architecture modifications to incorporate target “hotspots”

(Section 4.3.1) and desired binder topology (Section 4.3.2), and detail fine-tuning training (Sec-

tion 4.3.3) for protein-protein interaction (PPI) design.

4.3.1 Protein–protein interface hotspots

When designing protein–protein interfaces, it is critical to be able to control the area of the target

(fixed) protein to which the designed binding (diffused) protein should associate. To allow this

control, we train the model to perform complex design conditioned on “interface hotspot” residues.

We define an interface hotspot residue as any residue on the target (fixed) chain of the example

that is within 10Å Cβ–Cβ distance of the binder (diffused) chain.

The 1-D one-hot tensor of interface hotspot residues is concatenated to RF’s 1-D template

feature (t1d, Supplementary Methods Table 1). We train two models for complex design, one which
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Input name (shape) Description

t1d

(1, L, 24)
The one-dimensional features associated with x(t). A concate-
nation of one hot amino acids (20 features), mask (1 feature),
timestep (1 feature), repeat mask (1 feature), hotspot (1 feature).

Supplementary Methods Table 7: RFdiffusion input feature modified for fine-tuning on complexes.

Input name (shape) Description

t1d

(1, L, 28)
The one-dimensional features associated with x(t) (20 amino acids,
mask (1), timestep (1), repeat mask (1)1, hotspot (1), secondary
structure {“helix”, “sheet”, “loop”, “mask”} (4) )

t2d

(1, L, L, 44)
The two-dimensional features associated with x(t) structure.
These features are computed from x(t), not from x̂

(0)
prev.. (36 dis-

tance bins (2–20Å, 0.5Å bins) + 1 final distance bin (> 20Å),
angle maps (sine and cosine of omega, theta and phi angle) (6),
missing residue mask (1), secondary structure {“adjacent”, “non-
adjacent”, “mask”} (3))

Supplementary Methods Table 8: Modified features used in fine-tuning on complexes and fold-
conditioning.

includes just hotspot information and another that includes fold–conditioning information and

hotspot information. The updated feature shapes and definitions of the entries in each dimension

for each model are provided in Supplementary Methods Table 7, respectively.

4.3.2 Secondary structure and block adjacency

The idea to use secondary structure and block-adjacency information was first introduced by Anand

and Achim [8]. We review the idea here, discuss the motivation behind the idea, and describe our

implementation in depth.

Often, a protein designer will desire a protein with a specific fold (for example: a transmembrane

pore made of a beta barrel or a protein binder made of a three-helix bundle). A protein fold is

defined by (1) the secondary structure blocks (contiguous regions of alpha helix, beta strand, or

loop) it contains and (2) the exact orientation (translation and rotation) of these blocks with

respect to one another. A protein designer will often desire to generate diversity within a specific

type of fold as well. In such cases, it is critical to allow the under-specification of the exact fold to
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allow for diversity within the generated structures; we call these broad collections of folds of the

same type a “fold family”.

We wish to train a model which can be conditioned on a fold family. To allow the under-

specification of a fold we choose to provide the model coarse information on which secondary

structure blocks are within a distance cutoff of one another. Specifically, we provide the following

features to the model: (1) an [L,4] one-hot tensor where each position is assigned to a secondary

structure type {helix, sheet, loop, mask} and (2) an [L,L,3] one-hot tensor (called the block adja-

cency matrix) where entries indicate membership in blocks that are within a distance cutoff of one

another {non-adjacent, adjacent, mask} (as in Extended Data Fig. 4A).

Secondary structure annotations of every residue in the training set were calculated using DSSP

[75]. DSSP is a structure-based algorithm that assigns a per-residue classification of secondary

structure type. The block-adjacency matrix of every structure in the training set was calculated

from the secondary structure string returned by DSSP. Blocks are marked as “adjacent” in the

block-adjacency matrix if (1) neither block is of loop type and (2) the minimum Cα–Cα distance

of any pair of inter-block residues is within 8Å.

The 1-D secondary structure tensor is concatenated to RF’s 1-D template feature (t1d, see

Supplementary Methods Table 1). The 2-D block-adjacency matrix is concatenated to RF’s 2-D

template feature (t2d, see Supplementary Methods Table 1). The updated feature shapes and the

definitions of the entries in each dimension are provided in Supplementary Methods Tables 7 and 8.

4.3.3 Fine-tuning for protein–protein interaction design

The version of RFdiffusion fine-tuned on protein complexes, is trained starting from the base

version of RFdiffusion trained for 5 epochs. The training task consists of monomer examples

(50%) and complex examples (50%). When the model is shown a complex example, only one

side of the complex is noised, the other side is kept fixed (this is in keeping with established

PPI design methods [26] where the target protein is kept fixed). When the model is shown a
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complex example the model is provided with the residue indices of 0–20% of the residues (“hotspot

residues”) in the interface on the fixed chain side (the interface is defined as all residues within 10Å

Cβ–Cβ distance of another chain), to permit targeting of the designed binder at inference time. In a

separate model, also trained on protein complexes, during both complex and monomer training the

model is provided with secondary structure 50% of the time and (independently) block-adjacency

information 50% of the time for the noised region. The junctions between blocks of secondary

structure and their corresponding entries in the block-adjacency matrix are masked during training,

such that at inference time, one does not need to specify exact, per residue secondary structure and

block-adjacency matrices. Specifically, 0–75% of secondary structure (and corresponding adjacency,

when provided) is masked, with this masking occurring over junctions in secondary structure (mask

length 1–8 residues). In totality, this training regimen permits the provision of partial secondary

structure and/or adjacency information at inference time.

4.4 Use of potentials for symmetric oligomers and pocket design

Section 3.4 describes our approach to guiding the reverse diffusion process with potentials. We now

describe the details of our choices of P (x(t)) in applications to symmetric oligomer design and design

of enzymes with concave pockets. When designing symmetric oligomers, we employ an inter-chain

and intra-chain contact potential to promote the formation of contacts between subunits. Letting

Z = [z1, . . . , zK ] denote the Cα coordinates in oligomer with K subunits and L residues in each

subunit (so for each k, zk = [zk,1, . . . , zk,L] with each zk,l ∈ R3) we set

Psym(Z) =
∑

1≤k,k′,≤L

∑
1≤l,l′≤L

(1[k ̸= k′]winter + 1[k = k′]wintra)Switch(∥zk,l − zk′,l′∥22),

where winter and wintra weight the inter-chain and intra-chain potentials, respectively. We set

winter = 2 and wintra = 0.2 to prioritize the formation of inter-subunit contacts while encouraging

individual subunits to be well–packed.
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Switch(r) =
1−(

r−d0
rc

)n

1−(
r−d0
rc

)m
, is a switching function which smoothly transitions from 1 if two atoms

are within contact range to 0 when they are out of range. We set the hyperparameters that control

its functional dependence on distance as n = 6, m = 12, d0 = 8, and rc = 4, to reflect the contact

distances we would expect between interacting sidechains. It is sufficient to predominantly bias

only the early sampling steps (t ≈ T ) to promote contacts in the higher order structure, and

unnecessary to continue to do so at towards the end of design trajectories, by which point the

quaternary structure is sufficiently determined. As such, we scale the potential by a “guide-scale”,

g(t), as

Psym′(Z, t) = g(t)Psym(Z),

for g(t) = ( t
T
)2.

When designing enzymes, in addition to recapitulating the sidechain geometry of the active site,

a pocket must be formed which has shape complementarity to the substrate. This condition can

be captured effectively by a simple attractive-repulsive potential parameterized by the minimum

distance between enzyme Cα carbons and substrate atoms. Denoting the coordinates of a substrate

with K atoms by s = {sk}Kk=1 and the Cα coordinates by z = [z1, . . . , zL], we set: Penzyme(z, s) =

wattr[
∑

1≤l≤L Switch(min1≤k≤K∥zl−sk∥22)−wrep[
∑

1≤l≤L Rep(min1≤k≤K∥zl−sk∥22)], where Rep(r) =

I{r < r0} |r0−r|p

pr
(p−1)
0

, and we set wattr = 1, wrep = 4, r0 = 2, p = 1.5.

The gradient of Rep(r) decays smoothly from −1 at r = 0 to 0 at r = r0, penalizing clashes

between the protein backbone and the substrate. We do not use a guide scale with Penzyme, as the

potential relates to fine-grained details of the structure which are not fully determined until late

in the reverse diffusion process. Empirically, we find the model is sufficiently receptive and robust

to bespoke potentials with hyperparameters chosen based on physical intuition. We find that were

able to achieve our objectives of interface production in the case of symmetric oligomer design,

and implicit substrate modeling in the case of enzyme design without exhaustive hyperparameter

tuning.
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5 In silico experimental methods

5.1 Justification for using AlphaFold2 as an in silico metric

Throughout this work, we generally rely on AF2 for in silico validation of designs. A potential

concern with the use of a structure prediction network, such as AF2, for validation of the accuracy of

RFdiffusion (which is fine-tuned from the RF structure prediction network) is the risk of adversarial

examples, given the architectural and training similarities of AF2 and RF. This has been discussed

previously [4], and we revisit this concern in this section.

AF2 and RF share notable architectural similarities, and RF is also trained on a distillation set of

AF2-predicted structures. ESMFold [21] also shares such similarities (it is similarly trained on AF2-

predicted structures). Therefore, these networks are only partially-orthogonal means of validating

designed sequences, when one of these structure prediction networks (or a fine-tuned variant of it) is

used for protein design. Conveniently, while designing proteins with a structure prediction network

and validating designs with the same network has been demonstrated not to work [7, 76], significant

literature now demonstrates that using a different structure prediction network, after sequence re-

design with, for example, ProteinMPNN [1], provides sufficient orthogonality for predictions to be

indicative of experimental success [4, 7, 77, 56, 78, 79, 80, 54].

5.2 ProteinMPNN and AlphaFold2 settings

The precise settings in which ProteinMPNN and AF2 were used differs slightly for the different

benchmarks and design campaigns in the paper, and these settings derive from prior established

work. These modifications are described in full here.

ProteinMPNN: For protein binder design (Fig. 6), ProteinMPNN is used with a non-default

very low sampling temperature, 0.0001. We additionally tested using ProteinMPNN, Rosetta

FastRelax [58], and a second round of ProteinMPNN. These settings follow current best practice
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[26]. In all other cases, ProteinMPNN was used with default parameters (sampling temperature

= 0.1). Cysteines were generally omitted during sequence design, to help with expression and

solubility.

AlphaFold2: Throughout the manuscript, AF2 is used in single-sequence mode (no multiple

sequence alignment is provided).

For unconditional design, fold-conditioned design and functional motif scaffolding, we use AF2

model 4 ptm, without templates (following previous work [4]).

For validation of symmetric oligomers (cyclic and dihedral; the symmetries for which we report

in silico success, Extended Data Fig. 5B), we use AF2 model 4 ptm to predict the whole com-

plex (with n chains, each separated by a 200 amino acid residue offset). AF2 coordinates were

initalized at the design structure (the so called “initial guess” method), following previous work

designing symmetric oligomers [7]. For icosahedral and octahedral designs, the same pipeline was

followed, except that only the C3 symmetric unit was validated, for computational tractability.

For tetrahedral designs, we validated only on the monomers.

For validation of nickel-binding oligomers, the validation was the same as for other symmetric

oligomers, except that AF2 model 5 ptm was used.

For validation of protein binders, we 1) template the (sometimes cropped) target protein and

use AF2 model 1 ptm, and use 2) the “initial guess” method. These settings exactly mirror current

best practice, where they have been shown to predict experimental success [26].

ESMFold: For unconditional and fold-conditioned monomer designs in the manuscript, we further

validated designs using ESMFold [21]. ESMFold was run using default parameters.

5.3 In silico success rate

For all monomer-design tasks we define in silico success as backbone RMSD AF2 vs RFdiffusion

< 2Å and Motif backbone (when present) RMSD AF2 vs native < 1Å, AF2 pAE < 5; these
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choices are largely in line with previous work. They were chosen because they have been shown to

be stringent filters indicative of experimental success (Wang et al., 2022 [4]). The only change with

respect to Wang et al., 2022 is to use pAE < 5 rather than plDDT > 80 as the AF2 confidence

metric. pAE is more stringent, and was chosen to prevent edge cases with high plDDT (e.g. single

long helices), that are unlikely to behave well as real proteins. For other tasks, there are additional

measures of success. These are all grounded in theory and/or data from prior work:

Binder design: In line with current best practice [26] we additionally filter on an inter-chain AF2

pAE of < 10. We also require binders to be within 1Å of the design structure, and use plDDT as

the confidence metric, in line with [26].

Enzyme active site scaffolding: We additionally filter on sidechain RMSD between the AF2

prediction and the design model < 1.5Å. This is because sidechain placement is crucial for enzyme

activity.

Fold-conditioned design: We additionally filtered on a TM score between the design and the

desired fold of > 0.5. A TM score of > 0.5 is used to define “similar” folds [81], so we ensure that

the design is of that specific fold.

Symmetric oligomer design: For symmetric oligomer design, we follow prior work [7] and use

plDDT > 80 as the AF2 confidence metric indicating in silico success. For the nickel-binding

oligomers, where the placement of the imidazole group of the histidine is important for nickel

binding, we additionally filter on sidechain RMSD < 1.5Å, in line with the enzyme active site

scaffolding metrics.

5.4 Unconditional benchmarking

To test RFdiffusion on unconditional generation of monomers (Fig. 2B-E), we generated 100 designs

for lengths 100, 200, 300, 400, 600, 800 and 1000 amino acids. For each backbone, we generated 8

sequences with ProteinMPNN and subsequently predicted their structures with AF2 (or ESMFold
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- Fig. Extended Data Fig. 1B, Extended Data Fig. 4D, Supplementary Information Fig. 2B).

The best sequence (by alignment of the predicted structure to the design model) was taken for

each backbone. We benchmarked against the recently-published RoseTTAFold Hallucination [6].

As some knowledge of how best to use RoseTTAFold for Hallucination is required, these samples

were generated by the respective expert. ProteinMPNN was used to design sequences for all

benchmarking designs. For ProteinMPNN, a sampling temperature of 0.1 was used, and cysteines

were omitted from the designs (as these are often problematic for protein purification). Fourteen

300 amino acid proteins and four 200 amino proteins generated with RFdiffusion were ordered and

tested experimentally for expression and CD profiles.

5.5 Conditional benchmarking

The full conditional benchmark is described in Supplementary Methods Supplementary Methods

Table 9, and encompasses 25 design challenges from six recent publications [4, 5, 29, 38, 39, 40].

RFdiffusion was compared to RoseTTAFold Hallucination and RFjoint Inpainting. While both

Hallucination and Inpainting are able to generate sequences directly, for the fairest comparison, we

also redesigned the sequence with ProteinMPNN, and took the best of 8 sequences per backbone.

Both RFjoint Inpainting and RF Hallucination are able to scaffold structure without sequence, so in

cases where functional-site residues were not required for function, these methods were permitted

to redesign the sequence of the non-functional residues, which is generally beneficial for design.

Finally, as Hallucination requires some expert knowledge and empirical hyperparameter tuning,

some exploration of the benchmark set was permitted, and these designs were generated by the

respective expert.

For a number of comparisons made in the paper (Extended Data Fig. 1, Extended Data

Fig. 2B-C, Supplementary Information Fig. 1, Supplementary Information Fig. 2D), a smaller

benchmark encompassing a subset of unconditional and conditional benchmark problems described
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above was used.
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Name [Ref.] Description Input Total
Length

Sequence to be redesigned*

1PRW[4] Double EF-hand motif 5-20,A16-35,10-
25,A52-71,5-20

60-105 A16-19,A21,A23,A25,
A27-30,A32-35,A52-55,
A57,A59,A61,A63-66,A68-71

1BCF[4] Di-iron binding motif 8-15,A92-99,16-
30,A123-130,16-
30,A47-54,16-30,A18-
25,8-15

96-152 A19-25,A47-50,A52-53,A92-
93,A95-99,A123-126,A128-129

5TPN[4] RSV F-protein Site V 10-40,A163-181,10-40 50-75 A163-168,A170-171,A179
5IUS[4] PD-L1 binding inter-

face on PD-1
0-30,A119-140,15-
40,A63-82, 0-30

57-142 A63,A65,A67,A69,A71,A72,A76,
A79,A80,A82,A119,A120,A121,
A122,A123,A125,A127,A129,
A130,A131,A133,A135,A137,
A138,A140

3IXT[39] RSV F-protein Site II 10-40,P254-277,10-40 50-75 P255,P258-259,P262-263,
P268,P271-272,P275-276

5YUI[4] Carbonic anhydrase
active site

5-30,A93-97,5-
20,A118-120,10-
35,A198-200,10-30

50-100 A93,A95,A97,A118,A120

1QJG[4] Delta5-3-ketosteroid
isomerase active site

10-20,A38,15-
30,A14,15-30,A99,10-
20

53-103 n/a

1YCR[4] P53 helix that binds to
Mdm2

10-40,B19-27,10-40 40-100 B20-22,B24-25

2KL8[4, 29] De novo designed pro-
tein

A1-7,20,A28-79 79 n/a

7MRX 60[29] Barnase ribonuclease
inhibitor

0-38,B25-46,0-38 60 n/a

7MRX 85[29] Barnase ribonuclease
inhibitor

0-63,B25-46,0-63 85 n/a

7MRX 128[29] Barnase ribonuclease
inhibitor

0-122,B25-46,0-122 128 n/a

4JHW[38] RSV F-protein Site 0 10-25,F196-212,15-
30,F63-69, 10-25

60-90 F196,F198,F203,F211-
212,F63,F69

4ZYP[38] RSV F-protein Site 4 10-40,A422-436,10-40 30-50 A422-427,A430-431,A433-436
5WN9[39] RSV G-protein 2D10

site
10-40,A170-189,10-40 35-50 A170-175,A188-189

6VW1[4, 40] ACE2 interface bind-
ing SARS-CoV-2

E400-510/20-30,A24-
42,4-10, A64-82,0-5†

62-83 A25-26,A29-30,A32-34,A36-
42,A64-82

5TRV short[5] De novo designed pro-
tein

0-35,A45-65,0-35 56 n/a

5TRV med[5] De novo designed pro-
tein

0-65,A45-65,0-65 86 n/a

5TRV long[5] De novo designed pro-
tein

0-95,A45-65,0-95 116 n/a

6E6R short[5] Ferridoxin Protein 0-35,A23-35,0-35 48 n/a
6E6R med[5] Ferridoxin Protein 0-65,A23-35,0-65 78 n/a
6E6R long[5] Ferridoxin Protein 0-95,A23-35,0-95 108 n/a
6EXZ short[5] RNA export factor 0-35,A28-42,0-35 50 n/a
6EXZ med[5] RNA export factor 0-65,A28-42,0-65 80 n/a
6EXZ long[5] RNA export factor 0-95,A28-42,0-95 110 n/a
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Supplementary Methods Table 9: A benchmarking set of recently published functional-
motif scaffolding problems. To benchmark RFdiffusion at functional-site scaffolding, against existing
methods, we generated a benchmark set encompassing problems described in six recent publications
[4, 5, 29, 38, 39, 40], which utilize a range of design methodologies to address these problems. For each
problem, named by PDB accession (and, where applicable, the length of the designs to be generated,
left column), we recapitulated the inputs as closely as possible with respect to details available in each
publication. So that others can test methods on this benchmark, the exact input is specified in the third
column. In bold, prefixed by a letter, are the inputs (chain, residues) from the PDB structure provided to
the model (the “functional-site”). In non-bold text are the lengths that the different methods randomly
sampled to generate good designs. The final lengths of the proteins were either specified by the input
to the model, or were provided as constraints (for example, for “6EXZ Long”, the model could sample
any N- and C-terminal length between 0 and 95 residues, but the total length of the output had to equal
110 amino acids). For each design challenge, 100 designs were generated, and ProteinMPNN was used to
design the sequence of the designed scaffold (the motif sequence was fixed). 8 sequences were designed,
with the best sequence chosen for each backbone. *Both the RFjoint and RoseTTAFold constrained hal-
lucination approaches can simultaneously redesign sequences during generation, which can, in some cases,
be helpful (if extracting the motif exposes hydrophobic residues which may subsequently end up as surface
residues in the output designs, for example). Therefore, in this benchmark, these methods were allowed
to redesign non-functional residues, listed in the right-most column. † This example is multi-chain gener-
ation (scaffolding a functional-site in the presence of a second chain). All methods benchmarked here can
represent chain breaks (with large residue index jumps). Full results are shown in Fig. 4A, and tabulated
in Supplementary Methods Table 10.

Additionally, to test whether the ability of RFdiffusion to scaffold functional sites was related

to their presence in the RF or RFdiffusion training set (Supplementary Information Fig. 7), we

compiled a benchmark of proteins either 1) in the RF and RFdiffusion training set, or 2) from

orphan proteins not present in the RF, AF2 or RFdiffusion training sets, without known homologs

in nature. The 15 orphan proteins are those listed in Fig. 2 of [20]. The 15 proteins from the

training set were randomly sampled. To construct a benchmark set, we randomly sampled “motifs”

from these 30 structures. We sampled both “single” and “double” motifs. For “single” motifs, we

randomly sampled a contiguous 15 amino acid stretch from the structures. For the “double” motifs,

we sampled two motifs, each internally contiguous, separated by at least 20 amino acids in primary

sequence, but close in Euclidean space. Motif scaffolding was then run with a consistent number

of residues, chosen without prior visualization of the motif structures. This is detailed, along with

success rates, in Supplementary Methods Table 11.
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Problem
Name

RFdiffusion
(noise=0)

RFdiffusion
(noise=1)

RFjoint RFjoint +
Protein-
MPNN

RF Hallu-
cination

RF Hal-
lucination
+ Protein-
MPNN

1BCF 100 98 65 100 0 0
6E6R med 89 67 0 27 2 9
2KL8 88 96 71 95 20 34
6E6R long 86 63 0 4 0 1
6EXZ long 76 51 0 0 1 4
1YCR 74 58 12 57 11 61
6VW1 69 66 0 24 2 32
5TPN 61 59 0 3 0 1
6EXZ med 49 33 0 3 5 15
4ZYP 40 31 1 21 1 18
6E6R short 39 29 0 23 3 7
5TRV long 37 30 0 0 0 2
3IXT 35 16 21 62 2 34
5TRV med 24 20 0 3 0 3
7MRX 85 11 6 0 0 0 0
7MRX 128 9 4 0 0 0 0
1PRW 8 9 0 22 0 0
5TRV short 4 7 0 2 0 1
7MRX 60 2 0 0 0 0 0
6EXZ short 2 4 1 27 4 15
5IUS 2 0 0 1 0 0
5YUI 0 0 0 1 0 0
5WN9 0 1 0 0 0 0
4JHW 0 0 0 0 0 0
1QJG 0 2 0 0 0 0

Supplementary Methods Table 10: Functional-site scaffolding benchmark results. Full re-
sults for the benchmark test described in Fig. 4A and Supplementary Methods Table 9. In each
case, values represent the success rate (%) in a set of 100 designs generated with each method.
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PDB Set Input, Single Mo-
tif

Total
Length,
Single
Motif

Success
Rate
(%)

Input, Double Motif Total
Length,
Double
Motif

Success
Rate
(%)

7F7P Orphan 0-100,B7-21,0-100 115 64 0-60,B32-46,30-60,A7-21,0-60 140 1
7AD5 Orphan 0-100,A99-113,0-100 115 0 0-60,A89-103,30-60,A37-51,0-60 140 0
7MQQ Orphan 0-100,A115-129,0-100 115 42 0-60,A115-129,30-60,A80-94,0-60 140 1
7DGW Orphan 0-100,A30-44,0-100 115 97 0-60,A70-84,30-60,A22-36,0-60 140 3
7KWW Orphan 0-100,B14-28,0-100 115 5 0-60,B38-52,30-60,B10-24,0-60 140 0
7AHO Orphan 0-100,A199-213,0-100 115 18 0-60,E119-133,30-60,E216-230,0-60 140 0
7WRK Orphan 0-100,A80-94,0-100 115 0 0-60,A99-113,30-60,A132-146,0-60 140 0
7TJL Orphan 0-100,A32-46,0-100 115 67 0-60,A67-81,30-60,A31-45,0-60 140 54
7A8S Orphan 0-100,A14-28,0-100 115 83 0-60,A41-55,30-60,A72-86,0-60 140 2
7KUW Orphan 0-100,A38-52,0-100 115 85 0-60,A30-44,30-60,A2-16,0-60 140 26
7BNY Orphan 0-100,A85-99,0-100 115 0 0-60,A83-97,30-60,A111-125,0-60 140 0
7S5L Orphan 0-100,A365-379,0-100 115 58 0-60,A27-41,30-60,A77-91,0-60 140 32
7CG5 Orphan 0-100,A95-109,0-100 115 0 0-60,A6-20,30-60,A63-77,0-60 140 21
7DNS Orphan 0-100,A58-72,0-100 115 81 0-60,B3-17,30-60,B48-62,0-60 140 52
7K3H Orphan 0-100,B47-61,0-100 115 83 0-60,A5-19,30-60,A55-69,0-60 140 84
4JWC Train 0-100,B583-597,0-100 115 44 0-60,B459-473,30-60,B424-438,0-60 140 0
4WSF Train 0-100,A44-58,0-100 115 24 0-60,A53-67,30-60,A23-37,0-60 140 0
3ES3 Train 0-100,A143-157,0-100 115 85 0-60,A56-70,30-60,A17-31,0-60 140 55
3FKA Train 0-100,D103-117,0-100 115 54 0-60,C22-36,30-60,C103-117,0-60 140 38
2W7Y Train 0-100,A141-155,0-100 115 1 0-60,A290-304,30-60,A374-388,0-60 140 0
5ECF Train 0-100,D62-76,0-100 115 74 0-60,H125-139,30-60,F119-133,0-60 140 4
4M1T Train 0-100,A111-125,0-100 115 0 0-60,C121-135,30-60,C83-97,0-60 140 0
6FFW Train 0-100,B99-113,0-100 115 0 0-60,A183-197,30-60,A212-226,0-60 140 73
1YES Train 0-100,A38-52,0-100 115 12 0-60,A75-89,30-60,A209-223,0-60 140 3
5NE0 Train 0-100,A63-77,0-100 115 1 0-60,A11-25,30-60,A89-103,0-60 140 58
2FYD Train 0-100,D297-311,0-100 115 17 0-60,D150-164,30-60,D382-396,0-60 140 8
5JKB Train 0-100,D33-47,0-100 115 0 0-60,A131-145,30-60,A79-93,0-60 140 31
3TQB Train 0-100,A57-71,0-100 115 4 0-60,A65-79,30-60,A37-51,0-60 140 13
2EF5 Train 0-100,F208-222,0-100 115 18 0-60,D140-154,30-60,D94-108,0-60 140 0
4XJC Train 0-100,F109-123,0-100 115 11 0-60,D52-66,30-60,D160-174,0-60 140 0

Supplementary Methods Table 11: Scaffolding sites from orphan proteins or proteins in the
training dataset. Full description of the protein motifs and lengths used to compare RFdiffusion
performance at scaffolding motifs from the training set and motifs from orphan proteins with no
homology to proteins in the training set. The single 15 residue “motif” was randomly selected. The
double motifs were randomly selected as being separated (> 20 amino acids) in primary sequence,
but close in Euclidean space. The length ranges used to scaffold these motifs were the same for all
motifs. In silico success rates are also reported.
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5.6 Assessing diversity of designs

Designs were assessed for their structural diversity both to each other, and to the PDB (PDB100

April 19, 2022), using the TM score [82]. Full results (encompassing 5th, 25th 50th 75th and 95th

percentiles) for all design campaigns shown in the paper are detailed in Extended Data 1. For

motif scaffolding cases, the motif region was extracted from the structure that was TM aligned, to

prevent undue bias from the (native) motif within the designed structures. In Extended Data Fig.

1I and Extended Data Fig. B-C, designs were clustered at a 0.6 pairwise TM score cutoff.

5.7 Using protein BLAST to check for similar sequences in UniRef90

In Extended Data 1, we provide statistics on protein BLAST hits from the 2022-04-25 version of

UniRef90 for designed sequences from each problem attempted in the paper. Here, we outline the

methods used to procure those results.

For each problem, a fasta format file was created containing the sequences designed by Protein-

MPNN for RFdiffusion backbones. The fastas were split, and then commands were created to run

Protein-Protein BLAST version 2.11.0+ against the UniRef90 database, an example of which is

shown below (note back slashes are denoting new lines in a shell script):

b l a s tp −query example fa s ta . f a s t a \

−db /path/ to / databases / un i r e f 9 0 \

−eva lue 1e−1\

−num threads $SLURM JOB CPUS PER NODE > output . f a s t a

This execution meant that only hits with e-value below 1e-1 (a generous cutoff) were reported by

BLAST into the output file. The output files were then parsed into a pandas DataFrame, and hits

per design were de-duplicated to keep the strongest hit (lowest e-value) if a hit existed for a design.

Statistics could then be reported on (a) the fraction of designs for a problem that had BLAST
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hits below e-value 1e-1 and (b) the 5th, 25th, 50th, 75th, and 95th percentile sequence identity

fractions outside of the motif (if applicable) for the most significant BLAST hit, normalized to

the number of query/design positions. In other words, when calculating the fraction of identities

normalized to the query sequence, amino acids in the query and the target that were aligned and

identical but were part of the motif did not contribute towards the sequence ID fractions. These

data are reported in Extended Data 1.

5.8 Assessing choice of losses

Previous work on using DDPMs for protein design has used Frame Aligned Point Error (FAPE)

as the loss function [8]. FAPE was introduced in AF2 and was also used to train RoseTTAFold.

FAPE is SE(3) invariant but not invariant to reflections, this makes it an ideal loss for protein

structure prediction where the exact global orientation of the predicted structure is arbitrary, but

chirality within the structure is important. With a DDPM, however, x(0) must be in the same

global frame as x(t) since x(0) and x(t) are interpolated between to generate x(t−1). We reasoned

that, as FAPE is SE(3) invariant, a model trained with FAPE would not learn to make predictions

in the same global frame as the inputs. We tested this by comparing a model trained with FAPE

to a model trained with the Cα and rotation squared distance losses described in Section 1.4. By

contrast these losses are not SE(3) invariant.

We found that the model trained with FAPE was quite poor at unconditional generation (Extended

Data Fig. 1D, left). In the motif scaffolding task, x(0) and x(t) can be aligned to one another using

the fixed motif. This effectively eliminates the global frame problem as any arbitrary SE(3) action

applied by the model can be reversed by this motif-alignment step. In the motif-scaffolding task we

found that the model trained with FAPE performed comparatively to the model trained with MSE

losses (Extended Data Fig. 1D, right). We conclude that maintaining a global coordinate frame

is vitally important for coherence of RFdiffusion trajectories. We further conclude that, while the
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squared distance nature of the MSE loss promotes matching the reversal of the forward process

(Section 2.2, 2.3, 2.5), the L1 FAPE loss, when a global coordinate system is available (through

alignment to a fixed motif), empirically performs equivalently.

5.9 Design of fold-conditioned proteins

To design TIM barrels, we constructed secondary structure and block adjacency inputs from a

previously-designed TIM barrel (PDB: 6WVS). Any regions of loop secondary structure were

masked, and to generate larger TIM barrels than the original, we randomly sampled additional

length (1-15 residues inserted as “mask” tokens into the loops). We generated a total of 2400 de-

signs, generating designs with three different noise scales during inference (0, 0.5, 1). No external

potentials were used. Designs were classified as TIM barrels if the TM score against 6WVS was

greater than 0.5, and AF2 repredicted the designs (pAE < 5, RMSD to design < 2Å). 11 designs

passing stringent filters (AF2 pAE < 3.5, RMSD AF2 vs design < 0.75Å) were ordered.

To design NTF2 folds, we constructed secondary structure and block adjacency inputs from a

preexisting set of 1000 NTF2 proteins. These were randomly selected and used as input to RFdif-

fusion. 900 designs were generated in total, at three different noise scales (0, 0.5, 1). Designs were

classified as NTF2 folds if they had a TM score greater than 0.5 to PDB: 1GYS.

5.10 Design of symmetric oligomers

To better understand RFdiffusion’s capacity to design symmetric oligomers, we generated back-

bones for the following groups: dihedral (D2, D3, D4, D5), cyclic (C3, C5, C6, C8, C10, C12),

tetrahedral, octahedral, and icosahedral. We tested RFdiffusion’s ability to design symmetry for

these groups both with and without a guiding potential function for inter- and intra- chain con-

tacts, weighting in all cases the intrachain contacts over the interchain. For dihedral, cyclic, and

tetrahedral symmetries, protomers had 60-110 amino acids per chain, and for a subset of the cyclic
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symmetries (C3, C5, C6), additional models were designed with large protomers (150-400 amino

acids per chain) to test RFdiffusion’s ability to design unconditional yet large oligomers. The

octahedral and icosahedral models were designed by modeling the minimal number of subunits

(100-200 amino acids per protomer) required to capture all axes of symmetry (O: 4-, 3-, and 2-fold;

I: 5-, 3-, and 2-fold).

Original backbones were filtered by sufficient oligomeric interfaces (determined by Cα-Cα backbone

distances between chains) to enrich for backbones with a higher likelihood for assembly following

design. Cyclic and D2 symmetries were filtered for backbones consisting of protomers forming

at least two distinct 10 residue interfaces, whereas all other symmetries were required to form at

least three distinct 10 residue interfaces. Following filtering, all backbones were redesigned with

ProteinMPNN, and then sequences were validated by AF2 (for the cyclic and dihedral symmetries).

Given the complexity and challenge these symmetries present, we provided AF2 with an initial

guess, as done in Bennett et al. [26], and increased the number of recycles the model could use in

the predictions. Tetrahedra were predicted using RoseTTAFold, and octahedron and icosahedron

were predicted with AF2 along their C3 axes of symmetry only. Designs were considered successful

(success rates for cyclic and dihedral shown in Extended Data Fig. 5B) if the structure predictions

had a mean plDDT > 80 and an RMSD between prediction and design model of < 2Å. This

same filtering regime was also used for the cage symmetries, but applied to the C3 predictions (for

octahedra and icosahedra), and the monomer predictions (for tetrahedra).

5.11 Design of p53 helix scaffolds

To design scaffolds able to hold the Mdm2-binding helix of p53, we used the version of RFdiffusion

fine-tuned for protein-protein interaction design (Section 4.2), and provided the network with both

the p53 helix and the whole Mdm2 protein structure from PDB: 1YCR. To encourage extra contacts

with the target protein, we explored using an external potential to encourage inter-chain contacts
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(Section 4.4). The set of 96 designs were filtered by RMSD between the AF2 model and design

< 1.2Å, AF2 pAE < 6.6, AF2 pAE between the two chains < 10, and a radius of gyration of

the monomer < 16 Å. 45/96 designs were generated without external potentials, and 51 with

potentials. No fold information was provided to the network in this design case.

5.12 Design of theoretical scaffolds to enzyme active sites

To design scaffolds able to hold the catalytic sites of enzymes, we used the version of RFdiffu-

sion fine-tuned for sparse motif masks. Curated enzyme active site annotations were obtained

from M-CSA. There are 7 enzyme classes in M-CSA, but enzyme classes 1-5 comprise 96% of

curated M-CSA entries with annotated residues, cofactors, reactants and products. For each en-

zymes class a random M-CSA ID corresponding to a triadic active site was selected. Multiple

structures exist for any given M-CSA ID, so for each M-CSA ID structures containing that ac-

tive site PDBs were pulled from at random from RCSB. A PDB was accepted for the category

if the active site residues were at least 10 residues apart in order to fully capture the difficulty

of catalytic site scaffolding. The selected (PDB ID, active site) for enzyme classes 1-5 were:

(1a4i, Lys56-Gln100-Asp125), (1cwy, Asp293-Glu340-Asp395), (1de3, His50-Glu96-His137), (1p1x,

Asp102-Lys167-Lys201), (1snz, His107-His176-Glu307). For each active site, 100 designs of length

150 with 10-100 residues spacing the active site residues were made for each of the six permutations

of the active site residue orderings. 8 ProteinMPNN sequences per design were computed, and AF2

was used to predict structure of the design. Designs were considered successful (success rates for

enzyme active site scaffolding shown in Fig. 4) if AF2 Motif RMSD vs native: backbone < 1 Å,

backbone and sidechain atoms < 1.5 Å, RMSD AF2 vs design < 2 Å, AF2 pAE < 5.
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5.13 Design of theoretical C3-symmetric spike SARS-CoV-2 spike pro-

tein binding oligomers

To design the theoretical C3-symmetric oligomers to scaffold the ACE2 mimic AHB2, we started

with the C3-symmetric cryo-EM structure of the minibinders against the spike protein from [43].

The first 55 residues of the minibinder were used as the asymmetric unit in a C3-symmetric motif

input to the model.

The model weights from both the 5th epoch of RFdiffusion training as well as the 8th epoch were

used with T=200 length trajectories. All combinations of inter- and intrachain contact potentials

with weights (0.1, 0.3, 0.5, 1) and (0.5, 1), respectively, were applied to the trajectories, with 25

designs being computed per combination. 32 ProteinMPNN sequences per design were computed,

and AF2 was used to predict the structure of the oligomers via the inference method described by

Wicky et al. [7].

5.14 Design of symmetric Nickel binding oligomers

To design the C4-symmetric Ni2+-binding proteins, we started from three sets of imidazole groups

positioned in square planar coordination geometry bearing C4 rotational symmetry with the as-

sociated symmetry axis being aligned to the Z-axis (Fig 5B, Supplementary Information Fig. 9).

The imidazoles were placed with the NE2 atoms at a distance of 2.2Å from the metal center (a

common bond length for His–Ni2+ in the MetalPDB [83]) and the different sets of imidazole groups

were positioned such that they formed dihedral angles of 0◦, 22◦, and 45◦ between the Z-axis and

the plane of the heterocyclic system (Supplementary Information Fig. 9A). We note that larger

dihedral angles resulted in clashing imidazole moieties and were therefore not considered in our

designs.

Next, three sets of backbone dependent, non-clashing inverse rotamers [59] from the Dunbrack
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rotamer library were sampled for pieces of ideal alpha-helix (ϕ = −40◦, ψ = −60◦) containing

the histidine rotamers in the middle, and an alanine residue on either side of the histidine (three

residues total per asymmetric unit going into the model). For set 1, rotamers chosen were of

probability 0.3502, 0.1207, 0.0647, 0.0474, 0.0469 (Supplementary Information Fig. 9B), for set 2

probability 0.0365, and for set 3 probabilities 0.3502, 0.0648, 0.0305, and 0.0131 (Supplementary

Information Fig. 9E). Note that the differences between the sets is that set 1 is associated with

scaffolding the imidazole groups with no shear (0◦ dihedral) while sets 2 and 3 are associated with

scaffolding the imidazole groups with shear (22◦, 45◦).

After construction of the inverse rotamers, the imidazole groups from their histidines were aligned to

the aforementioned square-planar imidazole groups, resulting in various C4-symmetric motifs that

could then be input to the model. 100 reverse diffusion trajectories were run for the full T=200

steps for all symmetric motifs, with 50 residues designed on either side of the inverse rotamer

helix chunks in each chain (total complex length 412 residues, coordinating histidine always at

position 52 in each chain). As in Section 4.4, an intra-chain guiding potential was used during the

trajectory with a weight of 1, an inter-chain guiding potential with a weight of .06, and a global

multiplicative factor of 2. For set 1, half (50) of the designs per motif were designed such that

the effect of the external potential decayed quadratically during the trajectory, while the other

half having potentials decay cubicly, while for sets 2 and 3 only a quadratically decaying external

potential was utilized. Importantly, multiple models from the training session which produced

RFdiffusion were tested to see which checkpoint could scaffold the sites most accurately, and pilot

experiments suggested the set of weights after the 8th epoch, rather than the 5th epoch (standard

used for this paper) should be used.

Before sequence design with ProteinMPNN, RFdiffusion outputs were filtered to only allow designs

for which the backbone RMSD from the model < 1Å RMSD from the true motif. This yielded

199 backbones for set 1 and 201 backbones for sets 2 and 3, and ProteinMPNN was then used to

perform symmetric sequence design on all residues except the histidines (the original alanines in
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the motif were also re-designed), with 16 sequences per backbone. AF2 was then used to predict

the structure of all designed sequences.

To assemble a final set of 24 designs to order for testing from set 1, designs from the set were filtered

with the following criteria: (1) full-atom RMSD on all 4 histidines between the AF2 prediction and

the motif ≤ 0.6Å, (2) AF2 plDDT ≥ 90 (3) AF2 PAE ≤ 6. This filtering yielded 39 designs. From

here, these 39 designs were clustered at a TM-score cutoff of 0.85 using a simple greedy clustering

algorithm, yielding 20 representative backbones. 4 additional designs passing the RMSD, plDDT

and PAE metrics (presumably with TM-score > 0.85 vs some of the aforementioned 20) were

hand-picked to create a final 24 designs from set 1.

To assemble a final set of 24 designs to order for testing from sets 2 and 3, designs from these

sets were filtered with the following criteria: (1) Full atom RMSD on all 4 histidines between the

AF2 prediction and the motif ≤ 0.66Å, (2) AF2 plDDT ≥ 90, (3) AF2 PAE ≤ 6. This yielded

exactly 24 designs without clustering by TM-score. Unlike designs from the first set, in some cases,

multiple ProteinMPNN sequences were ordered for a single designed backbone. This set of 24

proteins therefore comprised 10 unique RFdiffusion-generated backbones, all with a TM score of

< 0.8 to the other backbones in the set.

Mutant sequences for all 48 ordered designs were created by simply replacing the histidine at

position 52 with alanine. 44 of the wild-type designs were successfully transformed into E. coli,

which is what is reported on in the main text and the experimental methods.

5.15 Design of protein binders to rigid targets

To test the ability of RFdiffusion to design de novo binders to rigid targets, we designed binders to

five targets: PD-L1 (PDB: 5O45), IL7 Receptor subtype Alpha α (PDB: 3DI3), Insulin Receptor

(PDB: 4ZXB), TrkA Receptor (PDB: 1WWW) and Influenza Hemagglutinin (PDB: 5VLI). We

generated designs both with and without fold conditioning, with the folds used derived from
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scaffold sets typically used for Rosetta-based protein binder design [12]. In all cases, we targeted

binders, using input “hotspot” residues, to a specific site on the target protein. The hotspots

selected were as follows (chain and residue index from PDB):

PD-L1: A56, A115, A123

IL7 Receptor subtype Alpha: B58, B80, B139

Insulin Receptor: E64, E88, E96

TrkA Receptor: X294, X296, X333

Influenza Hemagglutinin: B521, B545, B552

In line with current best practice, we tried using the ProteinMPNN-FastRelax protocol de-

scribed in Bennett et al. [26], this protocol starts with a round of ProteinMPNN and then cycles

between FastRelax [58] and ProteinMPNN to attempt to iteratively improve the sequence and

structure agreement. We did not find ProteinMPNN-FastRelax to be systematically helpful for

design success rates, perhaps because RFdiffusion generates high quality backbones to start with

and the FastRelax refinement is not needed.

For the five design cases, we generated several thousand designs. To filter designs we ran AF2

with an initial guess and target templating [26]. Briefly, this configuration of AF2 runs without

a multiple sequence alignment and without template information for the de novo binder, which

ensures that predictions are not biased towards examples which have sequence or structual

homology to the PDB. This configuration uses the template feature in AF2 to provide the

exact structure of the target protein, as we are designing with a rigid target and know the

structure of the target a priori, we desire for AF2 to keep the target fixed and only predict

the dock and structure of the de novo binder. Finally, this configuration of AF2 initializes the

dock and structure of the de novo binder with the RFdiffusion design model of the dock and

structure; this protocol is well-characterized retrospectively and prospectively as described in

Bennett et al [26]. We classed a design as successful if it had AF2 pAE of interaction between
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binder and target < 10 (this has been shown to be highly indicative of design success), as

well as RMSD between the designed binder and the AF2 prediction < 1Å, and AF2 plDDT

> 80. Success rates are reported in Fig. 6B, and were orders of magnitude higher than

with traditional Rosetta binder design. Retrospective success rates, reported in Fig 6 legend,

were calculated by filtering the previously ordered design library to only those designs which

passed the AF2 interchain pAE cutoff which was used in the RFdiffusion binder campaign for

each target. The previously ordered libaries were generated using the method of Fleishman et

al [84] for Flu HA and the method of Cao et al [12] for the others. The interchain pAE cutoffs were:

PD-L1: interchain pAE < 5

IL7 Receptor subtype Alpha: interchain pAE < 8

Insulin Receptor: interchain pAE < 5

TrkA Receptor: interchain pAE < 6

Influenza Hemagglutinin: interchain pAE < 10

The Influenza Hemagglutinin design campaign performed with the Rosetta pipeline was small

(88 designs) and none of these designs passed the interchain pAE filter so this analysis was not

included in Fig 6.

Before ordering designs we also manually removed edge case examples where a binder has only

two helices and did not form a well-packed protein core since these proteins were not likely to

express in solution.

5.16 Figures and statistics shown in the paper

Protein structures depicted in this paper were rendered in PyMOL V2.5.0 [85], and graphs were

plotted with Matplotlib V3.6.2 [86] and Seaborn V0.11.2 [87]. Note that for all boxplots displayed in

the paper, for aesthetic reasons, outliers are not displayed. SEC data was analyzed using PyCORN
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0.19, and BLI data was analyzed using ForteBio data analysis software. Appropriate statistical

tests were performed using SciPy [88], as indicated in figure legends.

5.17 Ablations

Throughout the manuscript, we include ablations to core aspects of RFdiffusion to provide an

understanding of the determinants of high sample quality. These ablations, along with the results,

are summarized in Supplementary Methods Supplementary Methods Table 12.

Furthermore, during design with RFdiffusion, we often include additional conditioning inputs to

the model, which are useful in specific design contexts. As a summary of the specific design

scenarios when such inputs are useful, we further provide Supplementary Methods Supplementary

Methods Table 13. The table includes both the use case, and the associated data demonstrating

the additional feature achieves the desired outcome.
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Variable Description Ablation

conclusion

Figure(s)

Self-conditioning Allowing the model to
condition on X̂0

t (its
previous prediction of
the final structure) to
make the prediction
of X̂0

t−1

Using
self-conditioning is
necessary

2F, S3E,G

Structure prediction pre-training Training RFdiffusion
starting from
pre-trained
RoseTTAFold
structure prediction
weights, or from
randomly initialized
weights

With a fixed compute
budget of 5 training
epochs, structure
prediction pretraining
is necessary

2F, S3F

RFdiffusion training Whether to perform
diffusion training at
all (i.e., performing
diffusion style
sampling from the
original structure
prediction network)

Training the diffusion
task is necessary

2F

MSE training loss (as opposed to
FAPE)

When training,
whether to use MSE
loss on coordinate
and frame orientation
(default) or use FAPE

MSE loss is necessary
for performance on
unconditional
sampling, but not
strictly necessary for
performance on motif
scaffolding

2F, S3D

Supplementary Methods Table 12: Training ablations for RFdiffusion.
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Variable Description Ablation

conclusion

Figure(s)

Oligomer inter- and
intra-chain contact

potentials

Using an auxillary
potential function to
bias oligomer
trajectories to have
more inter- and/or
intra-chain contacts

Significantly increases
in silico success rate
for oligomer design.

S10C

Ligand “pocket”
potential

Using auxillary
potential function to
bias trajectories to
contact but not clash
with the ligand

Using the pocket
potential reduces
protein-substrate
clashes, increases
protein-substrate
contacts, and is
necessary in practice
when scaffolding
enzyme active sites.

S16B

Interface hotspot
feature

Binary feature
indicating whether or
not a residue is part
of the binding
interface in a complex

The hotspot feature
grants desirable
control over binder
location.

S19B

Secondary structure /
block adjacency

features

Coarse grained 1D
and 2D features input
to the model,
encoding secondary
structure type and
secondary structure
element proximity,
respectively.

SS/Block adj.
features allow efficient
sampling of a fold
family.

2H,S7,S17D

Supplementary Methods Table 13: Inference time ablations for RFdiffusion.
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6 In vitro experimental methods

6.1 Plasmid construction

Symmetric oligomer, unconditional proteins, TIM barrels and protein binder designs were ordered

as synthetic genes (eBlocks, Integrated DNA Technologies) with compatible BsaI overhangs to

the target cloning vector, LM0627 (see Wicky et al. [7]) for Golden Gate assembly. LM0627

is a modified expression vector containing a Kanamycin resistance gene and a ccdb lethal gene

between BsaI cut sites. Subcloning into LM0627 results in the following product: MSG-[protein]-

GSGSHHWGSTHHHHHH, with the C-terminal SNAC [89] cleavage tag and 6XHis affinity tag

respectively underlined. Helical peptide binders were ordered in a similar format, except for the

addition of adaptors (GGGSGGGGSASHMRS, SSEISFCSEPPPSRRS) permitting cloning into

the pETcon3 vector (as well as LM0627), to permit both purification in E. coli and yeast surface

display.

6.2 Protein expression and purification

For the oligomeric, unconditional proteins, TIM barrels and protein binder expression screens, a

previously reported protocol was followed [7], with some modifications as denoted. In short, Golden

Gate subcloning reactions of designs were carried out in 96-well PCR plates in 1µL volume. Reac-

tion mixtures were then transformed into a chemically competent expression strain (BL21(DE3)),

and 1-hour outgrowths were split directly into four 96-deep well plates containing 0.9-1.0mL of

auto-induction media (autoclaved TBII media supplemented with Kanamycin, 2mM MgSO4, 1X

5052) for a final total volume of approximately 4ml. The following day (20-24 hrs later), cells were

harvested and lysed, and clarified lysates were applied directly to a 50µL bed of Ni-NTA agarose

resin in a 96-well fritted plate equilibrated with a Tris wash buffer. After sample application and

flow through, the resin was thoroughly washed, and samples were eluted in 200µL of a Tris elution
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buffer containing 300mM imidazole. For oligomers, 0.5 M EDTA was spiked into the eluates (10

mM final) to reduce self-association due to the 6XHis tag. All eluates were sterile filtered with a

96-well 0.22µm filter plate (Agilent 203940-100) prior to size exclusion chromatography.

Protein designs were then screened via SEC using an AKTA FPLC outfitted with an autosampler

capable of running samples from a 96-well source plate. The symmetric oligomers, unconditional

proteins and TIM barrels were run on a Superdex200 Increase 5/150 GL column (Cytiva 28990945).

The protein binders were run on a Superdex75 Increase 5/150 GL column (Cytiva 29148722). The

icosahedral designs were run on a Superose6 5/150 GL column (Cytiva 29091597). For the cyclic

and dihedral symmetric oligomers, and the unconditional proteins and TIM barrels, either a running

buffer of 20 mM NaPhos pH 7.4, 100 mM NaCl or 20 mM Tris pH 8, 50 mM NaCl was used. For

the tetrahedral, octahedral, and icosahedral oligomers, samples were run in 20 mM Tris pH 8, 50

mM NaCl, 100 mM Glycine. To improve peak resolution, the SEC column was connected directly

in line from the autosampler to the UV detector. 0.25 mL fractions were collected from each run,

and selected fractions were pooled for further analysis (LC-MS, native mass spectrometry, negative

stain EM, SDS-page).

Genes encoding the designs for Ni2+-binding were cloned into a C-terminal Strep-tag construct

via the Golden Gate method. Resulting plasmids were transformed into BL21(DE3) cells and

protein expression was performed at 50 mL scale via autoinduction for approximately 24 hours, in

which the first 4 hours cultures were grown at 37◦C and the remaining time at 18◦C. Cultures were

harvested at 4000g for 10 minutes in a tabletop centrifuge, supernatant discarded, and resuspended

in approximately 30 mL lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 0.1 mg/mL

lysozyme, 0.01 mg/mL DNAse, 1
2
tablet of pierce protease inhibitor tablet/50 mL culture, pH

8.0). Sonication was performed with a 4-prong head for 5 minutes total, 10s pulse on-off at 80%

amplitude. The resulting lysate was clarified by centrifugation at 14000g for 30 minutes. Resulting

supernatant was applied to 1 mL of Streptactin resin equilibrated with wash buffer (50 mM Tris-

HCl, 150 mM NaCl, 1 mM EDTA, pH 8.0) and incubated for approximately 15 minutes with mild
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agitation. Resin was subsequently washed with at least 10 CVs of wash buffer and 0.4 CVs of

elution buffer (50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 2.5 mM desthiobiotin, pH 8.0).

Another 1.3 CV of elution buffer was applied to the resin and eluate was collected for purification

by size-exclusion chromatography. Samples were applied to an S200 column equilibrated once with

20 mM HEPES, 50 mM NaCl, 1 mM EDTA, pH 7.4 to ensure removal of any trace metals, then

again with the same buffer without EDTA.

6.3 Negative-stain EM sample preparation

De novo designed oligomeric proteins were diluted to ∼ 0.1mg/mL for negative stain. 3µL of the

diluted complexes were immediately negatively stained after diluting using Gilder Grids overlaid

with a thin layer of carbon and 0.75% uranyl formate.

6.4 Negative-stain EM data collection, processing, and validation

Data were collected on an Talos L120C 120kV electron microscope equipped with a CETA camera.

A total of ∼150-250 images were collected per sample by using a random defocus range of 1.3–2.3

µm, with a total exposure of between 30 and 50 e-/A2, with a pixel size of either 1.54 or 2.49

Å/pixel. All data were automatically acquired using EPU (ThermoFisher Scientific). All data

processing was performed using CryoSPARC V4.0.3 [90]. The parameters of the contrast transfer

function (CTF) were estimated using Patch CTF, with minimal and maximal fitting resolutions set

to 40Å and 8Å, respectively. Particles were picked initially in a reference-free manner using blob

picker, followed by template picking using well-defined 2D classes of intact oligomers. Particles

were extracted after correcting for the effect of the CTF for each micrograph with a box size of 80

pixels, except for icosahedron HE0902, which was extracted with a box size of 180 pixels to account

for its large relative size. Extracted particles were sorted by reference-free 2D classification over

20 iterations. Given the small size of these particles, 2D classification was performed both in the
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presence and absence of CTF correction, with the best resulting classes selected for 3D ab initio

reconstruction. More often than not, turning off CTF correction dramatically improved 2D class

average quality. Notably, only constructs that displayed a combination of both “top-down” and

“side” views (to ensure complete angular coverage) were selected for nsEM 3D reconstruction

attempts. 3D ab initio jobs for each RFdiffusion construct displaying good angular coverage

were performed by sorting into 3-4 classes, in a single attempt, in the presence and absence of

the appropriate symmetry operator and compared. Resulting ab initio jobs which immediately

converged on a map that exhibited clearly discernible features bearing a striking degree of similarity

to both the 2D class average projections and computational design model were subsequently rigid-

body docked against the AlphaFold2 prediction model for validation. All ab initio 3D maps with

near perfect agreement to the design model were next run through homogenous refinement in the

absence of applied symmetry to further validate their authenticity. Any 3D maps where any level of

ambiguity was observed were immediately discarded. Furthermore, any 3D reconstruction attempts

requiring multiple rounds of ab initio generation to yield convergence on a map in agreement with

the design model were deemed as “low confidence” and were also discarded. For both cases, only

the 2D classification results were reported in the supplementary material.

Design ID Symmetry 10Å 20Å 30Å

HE0822 C3 0.9339 0.9521 0.9522

HE0626 C6 0.8181 0.825 0.813

HE0675 C8 0.8677 0.8877 0.8859

HE0490 D3 0.9321 0.9368 0.9274

HE0537 D4 0.942 0.9424 0.9302

HE0902 I 0.9032 0.9176 0.9163

NiB16 C4 0.866 0.883 0.8823
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Supplementary Methods Table 14: Correlation of simulated model density with obtained 3D re-
construction using ChimeraX map fitting. Coefficients are calculated at three different resolutions:
10Å, 20Å, and 30Å.

6.5 CryoEM sample preparation and data collection

Symmetric oligomers

CryoEM grids were prepared by diluting protein samples with TBS 1 to 10 times immediately

before applying 3.5 µL to glow-discharged 400 mesh, C-flat, 2 micron holes, 2 micron spacing,

CF-2/2-4C (CF-224C-100) (Electron Microscopy Sciences) cryoEM grids. For D4 samples,

6 consecutive blots were applied in order to obtain the highest particle density [91]. Grids

were blotted using a blot force of 0 and 5.5 second blot time at 100% humidity and 4◦C and

plunge-frozen in liquid ethane using a Vitrobot Mark IV (FEI Thermo Scientific). cryoEM grids

were screened on a Glacios transmission electron microscope (FEI Thermo Scientific) operated

at 200 kV and equipped with a K3 Summit direct detector. Automated Glacios data collection

was carried out using SerialEM software at a nominal magnification of 36,000x (0.883 Å/pixel).

Movies were acquired in counting mode fractionated in 50 frames of 200 ms at 8.5 e-/pixel/sec for

a total dose of ∼ 65e-/Å
2
. Details of data processing are illustrated in Extended Data Fig. 9.

Influenza H1 + HA 20 minibinder Prior to freezing, 5 µM of Influzena H1 monomer (strain

A/USA:Iowa/1943 H1N1) was allowed to co-incubate at 4°C for 10 minutes with 5 µM (i.e. a 3-fold

molar excess relative to each H1 monomer) of the RFdiffusion HA 20 minibinder in 150 mM NaCl,

25 mM Tris (pH = 8.0) buffer. To prepare cryoEM sample grids for the bound protein-protein

complex, 3 µL of calculated 0.28 mg/mL Influenza H1 was applied to glow-discharged Quantifoil

R 2/2 300 mesh copper grids overlaid with an additional thin layer of carbon. Vitrification was

performed on a Mark IV Vitrobot at 22°C at 100% humidity, with a wait time of 7.5 seconds, a

blot time of 0.5 seconds, and a blot force of 0 before being immediately plunged frozen into liquid
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ethane. The sample grids were clipped following standard protocols before being loaded into a

ThermoFisher Titan Krios 300 kV transmission electron microscope for imaging.

Data collection was performed automatically using Leginon [92] to control a ThermoFisher Titan

Krios 300 kV equipped with a standalone K3 Summit direct electron detector with an energy filter.

Influenza H1 bound to the RFdiffusion HA 20 minibinder was collected using counting mode with

random defocus ranges spanned between -0.7 and -1.8 µm using image shift, with five shots per

hole for a total of 9,431 collected movies with a calculated pixel size of 0.84 Å/pix and a calculated

total dose of 64.27 e-/Å2.

6.6 CryoEM data processing and model building

Symmetric oligomers

Multiple datasets were collected for each design and combined early on during processing. See

Extended Data Fig. 9 and processing flowcharts for details. Briefly, images were manually curated

to remove poor quality acquisitions such as bad ice or large regions of carbon. Dose-weighting and

image alignment of all 50 frames was carried out using MotionCor2 [93] with 5X5 patch or with

cryosparc v4 patch alignment tool with default parameters. Super-resolution data was binned 2X

during alignment. Initial CTF parameters were estimated using CTFfind4 [94]. Particle picking

was done with a Gaussian blob picker and in some cases followed by a template picker. Particles

were extensively classified in 2D to remove ice and noisy particles, but unfortunately yielded

practically no “top” or “tilted” view particles. However, multiple orthogonal side views down the

2-fold axis were observed displaying high agreement to the design model. Starting models for all

designs were always obtained ab initio. FSC curves were generated using cryoSPARC. All EM

maps will be deposited in the EMDB and can be found in the supplementary data.

Influenza H1 + HA 20 minibinder
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All data processing was carried out in CryoSPARC (v4.0.3) [90] and CryoSPARC Live. Alignment

of movie frames was performed using Patch Motion with an estimated B-factor of 500Å
2
, with a

maximum alignment resolution set to 5. Defocus and astigmatism values were estimated using

Patch CTF with default parameters. Influenza A Hemagglutinin particles bound to diffused

minibinder HA 20 were initially picked in a reference-free manner using Blob Picker and extracted

with a box size of 340 pixels. This was followed by a round of 2D classification and subsequent

template-picking using the best 2D class averages low-pass filtered to 20Å. Particles were next

picked with Template Picker and were manually inspected before extracting with a box size of

340 pixels for a total of 1,077,686 particles. A round of reference-free 2D classification was next

performed in CryoSPARC with a maximum alignment resolution of 6Å. The best classes which

revealed clearly visible secondary-structural elements were used for 3D ab initio determination

using the C1 symmetry operator. This was followed by a round of 3D heterogeneous refinement

using C1 symmetry and sorting into 3 distinct classes, all of which revealed stoichiometric binding

of the diffused HA 20 minibinder to the Influenza A Hemagglutinin stem. Non-uniform 3D

refinement with C3 symmetry was performed on 308,846 of the best particles, yielding a final

high-resolution map with an estimated global resolution of 2.93Å, following per-particle defocus

refinement. This map was sharpened using local B-factor sharpening with DeepEMhancer using

the highRes deep learning model for display and model building purposes. Local resolution

estimates were determined in CryoSPARC using an FSC threshold of 0.143. 3D maps for the half

maps, final unsharpened maps, and the final sharpened maps were deposited in the EMDB under

accession number EMD-40557.

The 2009 H1N1 pandemic influenza virus H1 glycoprotein (PDB: 3LZG) was used as an initial

reference for building the cryoEM structure of the A/USA:Iowa/1943 H1N1 bound to the dif-

fused HA 20 minibinder. The model was manually edited and trimmed using Coot to match the

A/USA:Iowa/1943 H1N1 sequence used for structural determination [95]. The de novo predicted
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design model for the HA 20 minibinder was used as an initial reference for building into the cor-

responding density. We further refined each structure in Rosetta using density-guided protocols

[96]. EM density-guided molecular dynamics simulations were next performed using Interactive

Structure Optimization by Local Direct Exploration (ISOLDE), with manual local inspection and

guided correction of rotamers and clashes throughout simulated iterations. ISOLDE runs were

performed at a simulated 25 Kelvin, with a round of Rosetta density-guided relaxation performed

afterward. This process was repeated iteratively until convergence and high agreement with the

map was achieved. Multiple rounds of relaxation and minimization were performed on the com-

plete capsids, followed by human inspection for errors after each step. Throughout this process, we

applied strict non-crystallographic symmetry constraints in Rosetta[96]. Phenix real-space refine-

ment was subsequently performed as a final step before the final model quality was analyzed using

Molprobity[97]. Figures were generated using either UCSF Chimera [98] or UCSF ChimeraX [99].

The final structure was deposited under PDB accession number 8SK7.

6.7 Circular dichroism experiments

For circular dichroism (CD) experiments, designs (TIM barrels or unconditional designs) were

diluted to 0.2mg/ml in 20mM Tris (pH 8.0) and 50mM NaCl. Spectra were acquired on a JASCO

J-1500 CD Spectrophotometer. Thermal melt analyses were performed between 25◦C and 95◦C,

measuring CD at 222 nm. All reported measurements were acquired within the linear range of the

instrument.

6.8 Bio-layer inferometry (BLI) binding experiments

BLI experiments were performed on an Octet Red96 (ForteBio) instrument, with streptavidin

coated tips (Sartorius Item no. 18-5019). Buffer comprised 1X HBS-EP+ buffer (Cytiva BR100669)

supplemented with 0.1% w/v bovine serum albumin. Prior to target loading, each design was tested
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for binding against unloaded tips via a 120 s baseline, 120 s association and 120 s dissociation cycle.

For IL7-Ra, PD-L1, Mdm2, hemagglutinin, Insulin Receptor (Sino Biological 11081-H08H-B), and

TrkA, 40nM of biotinylated target protein was loaded on the tips for 300 s followed by a 60 s

baseline measurement. After loading, all designs underwent a 120 s baseline, 120 s association

and 120 s dissociation. For each design, a previously validated de novo binder [12] was included

alongside 95 new designs. Four out of five positive controls were the same sequence as the previously

reported designs with the addition of an MSG on the N-terminus with SNAC and His tags on the C-

terminus, as per the cloning protocol described. The influenza positive control was a reengineered

version of the previously reported HA binder (PDB: 7RDH) where non-interface residues were

redesigned using ProteinMPNN to improve expression. Baseline measurements of unloaded tips

were subtracted from their matched measurement of the loaded tip. The response was taken as

the average reading from 105 - 115 s during association. Binders were classified as those whose

response was > 50% of the control. Up to 20 of the hits were taken forward for further titration

experiments where concentration, association and dissociation times were chosen based on apparent

affinity from the single point screen. Global kinetic fitting was used to determine KDs across the

dilution series [100]. Insulin Receptor contains two independent binding sites so it was fit with a

2:1 heterogeneous ligand model and both KDs are reported.

6.9 Comparison of experimental success rates between design cam-

paigns

All 5 targets chosen for de novo binder design were previously targeted for binder design with earlier

Rosetta-based methods. The success rates in Fig 6B under “Rosetta” come from the following

publications: IL-7Rα, Insulin Receptor, and TrkA are from Cao et al. [12] in Extended Data 1;

PD-L1 is from an unpublished binder campaign using the method of Cao et al. [12]. For PD-L1

a binder is called a success if the upper bound KD estimate calculated from yeast surface display
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enrichment is less than 50 µM; Influenza HA is from Fleishman et al. [101], where a success rate

of 2 / 88 is reported.

6.10 Isothermal titration calorimetry

Protein and NiSO4 samples were prepared in buffer containing 20 mM HEPES, 50 mM NaCl, pH

7.4. Protein sample concentrations ranged from 30 µM to 100 µM and NiSO4 samples were prepared

at 10 times the effective concentration of Ni2+ coordination sites (e.g. 100 µM of a designed

tetramer yields 25 µM Ni2+ coordination sites in the sample cell, and thus a NiSO4 concentration

of 250 µMwas used in the syringe). Isothermal titration calorimetry experiments were performed on

an automated Microcal PEAQ-ITC. Fits of the resulting data for the determination of dissociation

constants (KD) was performed in the Microcal PEAQ-ITC Analysis Software.
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[2] Noelia Ferruz, Steffen Schmidt, and Birte Höcker. ProtGPT2 is a deep unsupervised language

model for protein design. Nature Communications, 13(1):4348, July 2022. ISSN 2041-1723.

[3] Jedediah M. Singer, Scott Novotney, Devin Strickland, Hugh K. Haddox, Nicholas Leiby,

Gabriel J. Rocklin, Cameron M. Chow, Anindya Roy, Asim K. Bera, Francis C. Motta,

Longxing Cao, Eva-Maria Strauch, Tamuka M. Chidyausiku, Alex Ford, Ethan Ho, Alexander

Zaitzeff, Craig O. Mackenzie, Hamed Eramian, Frank DiMaio, Gevorg Grigoryan, Matthew

Vaughn, Lance J. Stewart, David Baker, and Eric Klavins. Large-scale design and refinement

of stable proteins using sequence-only models. PLOS ONE, 17(3):e0265020, March 2022.

ISSN 1932-6203.

[4] Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Joseph L. Watson, Karla M. Cas-

tro, Robert Ragotte, Amijai Saragovi, Lukas F. Milles, Minkyung Baek, Ivan Anishchenko,
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