Supplementary Information for:

The latent reservoir of inducible, infectious HIV-1 does not decrease despite decades of antiretroviral therapy

Natalie F. McMyn^{1,} Joseph Varriale¹, Emily J. Fray¹, Carolin Zitzmann², Hannah MacLeod³, Jun Lai¹, Anushka Singhal¹, Milica Moskovljevic¹, Mauro A. Garcia¹, Brianna M. Lopez¹, Vivek Hariharan¹, Kyle Rhodehouse¹, Kenneth Lynn^{4,5}, Pablo Tebas⁵, Karam Mounzer⁶, Luis J. Montaner⁴, Erika Benko⁷, Colin Kovacs⁷, Rebecca Hoh⁸, Francesco R. Simonetti¹, Gregory M. Laird³, Steven G. Deeks⁸, Ruy M. Ribeiro², Alan S. Perelson², Robert F. Siliciano^{1,9}, and Janet M. Siliciano^{1,*}

Figures

Figure S1. Plasma HIV-1 RNA levels and CD4⁺ T counts of participants R1-R15

Figure S2. Plasma HIV-1 RNA levels and CD4⁺ T counts of participants R16-30

Figure S3. Plasma HIV-1 RNA levels and CD4⁺ T counts of participants R31-R42

Figure S4. Correlation between reservoir assays

Figure S5. Fits to the QVOA data using a linear, segmented exponential and biexponential models

- Figure S6. Participant-specific clustering of env sequences
- Figure S7. Large expanded clones dominate the population of persistent proviruses
- Figure S8. Near full-length sequences of proviruses from PWH on very long-term ART

Tables

Table S1. Characteristics of study participants

- Table S2. Changes in drug regimens during suppressive ART
- Table S3. Blips during suppressive ART

Table S4. Decay of cells with inducible, replication-competent proviruses as measured by QVOA

Table S5. Models for decay of inducible, replication-competent HIV-1 with very long-term ART

Table S6. Best fit models for decay of intact proviruses as measured by IPDA

Table S7. Best fit models for decay of defective proviruses as measured by IPDA

Figure S1. Plasma HIV-1 RNA levels and CD4⁺ T counts of participants R01-R15. Levels of plasma HIV-1 RNA in copies/ml (solid orange squares) and CD4⁺ T cells in cells/µl (blue circles) are plotted as a function of time on suppressive ART. Plasma HIV-1 RNA values below the limit of detection are denoted using open orange squares and plotted at the limit of detection of the assay used. Fluctuations in plasma HIV-1 RNA levels prior to initiation of suppressive ART mostly reflect regimen changes. Fluctuations after initiation of suppressive ART largely reflect differences in the limit of detection of the assay used. The limit of detection for most assays was 50 copies/ml or 20 copies/ml. ART regimens for each participant are listed in **Table S2**.

Figure S2. Plasma HIV-1 RNA levels and CD4⁺ T counts of participants R16-R30. Levels of plasma HIV-1 RNA in copies/ml (solid orange squares) and CD4⁺ T cells in cells/µl (blue circles) are plotted as a function of time on suppressive ART. Plasma HIV-1 RNA values below the limit of detection are denoted using open orange squares and plotted at the limit of detection of the assay used. Fluctuations in plasma HIV-1 RNA levels prior to initiation of suppressive ART mostly reflect regimen changes. Fluctuations after initiation of suppressive ART largely reflect differences in the limit of detection of the assay used. The limit of detection for most assays was 50 copies/ml or 20 copies/ml. ART regimens for each participant are listed in **Table S2**.

Figure S3. Plasma HIV-1 RNA levels and CD4⁺ T counts of participants R31-R42. Levels of plasma HIV-1 RNA in copies/ml (solid orange squares) and CD4⁺ T cells in cells/µl (blue circles) are plotted as a function of time on suppressive ART. Plasma HIV-1 RNA values below the limit of detection are denoted using open orange squares and plotted at the limit of detection of the assay used. Fluctuations in plasma HIV-1 RNA levels prior to initiation of suppressive ART mostly reflect regimen changes. Fluctuations after initiation of suppressive ART largely reflect differences in the limit of detection of the assay used. The limit of detection for most assays was 50 copies/ml or 20 copies/ml. ART regimens for each participant are listed in **Table S2**.

Figure S4. Correlation between reservoir assays. For 44 samples from PWH on very long-term ART, enough cells were available to perform both the QVOA and IPDA. The mean duration of suppressive ART at the time of sampling for these samples was 22.1 years. Samples for which infected cell or proviral frequencies were below the limit of detection (BLD) of the relevant assays are indicated by unshaded half or full circles. In these cases, frequencies were estimated as described in **Figure 2**. Correlation between assay values was evaluated using the Spearman rank correlation.

Figure S5. Fits to the QVOA data using a linear model (red), segmented exponential model (blue) and a biexponential model (black). For the linear model, the half-life is 89 yrs. For the segmented model, the first phase half-life was fixed at 44 months, the break point was fixed at 7 years, and the estimated second phase doubling time was 23 years. For the biexponential model, the estimated first phase half-life was 6 months and the second phase doubling time was 28 years (**Table S5**).

Figure S6. Participant-specific clustering of *env* sequences from positive viral outgrowth wells and proviral sequencing. A neighbor-joining phylogenetic tree of combined *env* sequences from 12 representative participants for whom sequencing was done is shown. The tree was rooted to HXB2. Bar indicates number of nucleotide substitutions per site.

Figure S7. Large expanded clones dominate the population of persistent proviruses in PWH on very long-term ART who have less viral outgrowth. Maximum likelihood phylogenetic trees of *env* sequences for participants not shown in **Figure 5**, each rooted to HXB2. Single genome

sequencing of *env* was performed on cDNA reverse-transcribed from extracted viral RNA from QVOA wells scored positive for viral outgrowth (red) or proviral DNA from resting CD4⁺ T cells (rCD4, grey). Near full-length genome sequences were obtained using the same proviral DNA and are annotated as intact (yellow) or defective (blue). Bootstrap values greater than 70% are noted by an asterisk. Genetic distance is represented by the scale in nucleotides.

Figure S8. Near full-length sequences of proviruses from PWH on very long-term ART. (**A**) Properties of 195 independent sequences from 9 representative study participants. Sequences were classified as previously described (34, 38, 92) into the following categories: intact (no deletions, hypermutation, or internal stop codons), Ψ deletions (small deletions in the packaging signal region), other deletions, and other deletions plus G \rightarrow A hypermutation. We did not find any defective proviruses that had internal stop codons as the sole defect. All of the hypermutant proviruses also had deletions. (**B**) Unique sequences from the sequence set in **A**. Independent sequences identical to each other were collapsed into a single sequence to reduce distortions in the landscape resulting from expansion of a single clone.

						Time on	Age at	CD4	Plasma
				Time		Suppressive	initiation of	nadir	HIV-1
ID	Age*	Sex	Race [†]	HIV+	Current ART regimen [‡]	ART	suppressive	(cells/	RNA*
				(years)		regimen ^s	ART (vrs)	(lul)	(copies/
				05.0	570/505	(years)	10.0	P /	ml)
R01	68	M	AA	25.3	DIG/DOR	21.7	46.3	>200	<20
R02	57	F	AA	22.9	ABC/DIG/3IC	22.8	34.2	320	<20
R03	48	M	AA	30.4	BIC/FIC/TAF	23.6	24.4	316	<20
R04	58	M	VV	28.4	ABC/DIG/31C	17.4	40.6	216	<20
R05	65	IVI	VV	26.1	31C/DTG/DRV/r	25.9	39.1	214	<20
R06	62	IVI	AA	30.5	BIC/FTC/TAF	21.4	40.6	18	<20
R07	62	IVI	AA	29.8		19.1	42.9	280	<20
R08	62		AA	26.0		21.4	40.6	180	<20
R09	68 70	F		35.8		19.9	48.1	64	<20
R10	12		VV	30.8		22.8	49.2	80	<20
R11 R12	67			24.8		22.4	44.0	145	<20
	00			30.0		24.3	33.7	33	<20
RI3	60	Г		20.0		22.9	43.1	100	<20
R14	60			30.3		17.3	40.7	0	<20
RID D16	63 56			20.0		21.0	41.Z	90	<20
	20			30.6		25.4	31.7	32	<30
R17	67			27.4		20.7	40.3	9	<30
R10	67 57			30.7		21.3	40.7	200	<30
R 19	57		VV 0.0	19.9		19.0	37.2	200	<30
R20 P21	22 91			23.0		23.0	51.2	20	<30
R21	75	N		30.3		20.7	10.0	12	<30
R22	75	IVI M		30.7		20.0	40.2	120	<30
R23	63	M		20.8	BIC/ETC/TAE	20.0	42.0	120	<20
R24	70	M	M W	20.8		25.8	40.2	3	<20
R26	70	M	νν \\\/	35.3		21.3	44.2	370	<20
R20	64	M	νν \\\/	20.8		21.3	37.2	2	<20
R28	56	M	<u>۷۷</u>	23.0		26.3	20.7	270	<20
R20	60	M	<u>۷۷</u>	20.4		1/ 9	<u> </u>	107	<20
R30	62	M	W	35.4	BIC/FTC/TAF	26.4	35.6	475	<40
R31	59	M	Ŵ	26.4	BIC/FTC/TAF	26.2	32.8	24	<20
R32	57	M	W	20.1	BIC/FTC/TAF	20.3	36.7	329	<40
R33	59	M	W	21.1	ABC/DTG/3TC	21.0	38.0	180	<40
R34	57	M	W	29.8	ABC/DTG/3TC	20.6	36.4	140	<40
R35	58	M	Mixed	22.5	ABC/DTG/3TC	21.7	36.3	20	<40
R36	86	M	W	22.5	ABC/DTG/3TC	17.6	68.4	350	<40
R37	53	M	Н	23.4	ABC/DTG/3TC	21	32.0	8	<40
R38	52	M	AS	20.7	ABC/DTG/3TC	20.6	31.4	<200	<40
R39	72	M	W	29.4	BIC/FTC/TAF_DOR	24.2	47.8	10	<40
R40	47	M	Ŵ	20.5	BIC/FTC/TAF	20.3	26.7	536	<40
R41	60	M	Ŵ	32.7	MVC/DOR/DTG	20.3	39.7	258	<40
R42	65	Μ	W	30.7	ABC/DTG/3TC	17.9	47.1	<200	<40
Mean	63			28.6		22.1	40.8	161	
Median	62	1		29.1		21.7	40.6	150	

 Table S1.
 Characteristics of study participants.

*At most recent sample date.

[†]AA, African-America; W, White; H, Hispanic, PI, Pacific Islander; AS, Asian.

[‡]Abbreviations: 3TC, lamivudine; ABC, abacavir; BIC, bictegravir; /c, cobicistat; DOR, doravirine; DRV, darunavir; DTG, dolutegravir; ECV, entecavir; EVG, elvitegravir; FTC, emtricitabine; MVC, maraviroc; RAL, raltegravir; RPV, rilpivirine; /r, ritonavir; TAF, tenofovir alafenamide; TDF, tenofovir disoproxil fumarate.

[§]Time on an ART regimen or regimens that maintained continuous suppression of viremia to below the limit of detection through the most recent sampling date (except for isolated blips).

ID	Regimen*	Time on suppressive ART
		(years)
R1	3TC/ZDV/EFV	0.0
	FTC/TFV/EFV	6.3
	FTC/RAL/ATV/RTV	7.5
	DTG/DOR	18.1
R2	d4T/3TC/EFV	0.0
	3TC/ABC/FEV	3.0
	3TC/ABC/NVP	4.3
	3TC/ABC/DTG	16.7
R3	NEV/EEV/d4T/3TC	0.0
	EFV/d4T/3TC	1.3
	EFV/ABC/3TC	5.4
	FTC/RPV/TDF	14.1
	FTC/RPV/TAF	19.2
	BIC/ETC/TAE	20.5
R4	FTC/ddl/ABC/ATV/RTV	0.0
1.57	ABC/3TC/ATV/RTV	4.0
	ABC/3TC/DTG	11 7
R5	3TC/IDV/ZDV	0.0
1.0	3TC/EEV/ABC/ZDV	43
	3TC/EFV/ABC/ATV/RTV	8.8
		18.7
P6		10.7
NU		0.0
		3.0
		10.3
D7		21.3
		0.0
		4.0
		8.1
		0.1
	RTV/ATV/FTC/FTP	0.2
		14.0
		14.0
P8		13.0
1.0		7.4
		18.0
PO		0.0
113		5.4
		0.4
		11.5
	DRV/RTV/FTC/TDF	12.8
	DTG/RPV/3TC/TAF	13.8
	DRV/COBI	15.0
R10	RTV/3TC/ABC	0.0
		<u> </u>
		9.2
	3TC/ABC/RAL/FTR	12.3
	BIC/FTC/TAF	18.5
R11	3TC/d4T/FFV	0.0
	3TC/EEV/TDE/ABC	2.9
	3TC/FEV/TDF	3.5
	FTC/TDF/FFV	<u> </u>
	ABC/DTG/3TC	14.6
	BIC/FTC/TAF	17.8
R12	RTV/SOV/EEV/ddl	0.0
1112	ddl/EEV	0.0
<u> </u>		1.0
<u> </u>		22
		2.2 6.8
		10.0
1		10.4

Table S2. Changes in drug regimens during suppressive ART.

	RTV/DRV/EFV/FTC/TDF	12.3
	FTC/TAF/EVG/COBI	17.7
	FTC/TAF/EVG/COBI/DRV	21.3
	FTC/TAF/EVG/COBI	19.1
	BIC/FTC/TAF	20.2
R13	NFV/d4T/3TC	0.0
	ABC/3TC/AZT/NFV	2.4
	3TC/AZT/EFV	2.8
	EFV/FTC/TDF	8.9
	ABC/DTG/3TC	16.0
R14	LPV/RTV/ABC/3TC/AZT/TDF/EFV	0.0
	LPV/RTV/ABC/3TC/AZT/TDF	1.1
	DRV/RTV/RAL/ETR	2.9
	DTG/RPV	15.8
R15	3TC/AZT/NFV	0.0
	3TC/AZT/NFV/ABC	0.2
	ABC/3TC/AZT/TDE/NEV	1.0
	ABC/3TC/AZT/TDE/ATV/RTV	2.9
	FTC/TDE/ATV/RTV	79
	FTC/TAF/EVG/COBI	15.2
	BIC/FTC/TAF	18.7
R16		0.0
IN IO		4.0
		4.U 1 2
		4.J 11.6
		12.1
		20.4
		20.4
D47		21.0
R17		0.0
		10.1
		14.4
	ABC/DIG/31C	19.5
D40		22.6
R18		7.8
		9.1
D40	RPV/IAF/FIC/DIG	15.8
R19	EFV/AZ1/31C	0.0
		4.3
		12.2
Dee		16.5
R20	ABC/D41/31C/EFV	0.0
	ABC/31C/EFV	1.9
	RPV/IDF/FIC	15.0
R21	ABC/D4T/3TC/TDF/EFV	8.0
	ABC/3TC/TDF/EFV	8.6
		13.3
	FTC/ABC/3TC/EFV	16.6
	ABC/31C/EFV	17.2
		18.1
	BIC/FTC/TAF	26.7
R22	ABC/3TC/IDV	0.0
	AZT/3TC/ABC	7.8
	ABC/3TC/TDF	8.1
	AZT/TDF/ABC/3TC	8.9
	ABC/31C/ATV/RTV	9.5
	ABC/31C/ATV	10.5
	ABC/31C/RAL	16.6
<u> </u>	ABC/DTG/3TC	20.5
	BIC/FTC/TAF	26.7
R23	ABC/D4T/NFV	0.0
	TDF/ABC/3TC/ATV/RTV	8.7
	TDF/ABC/3TC/RTV/DRV	15.1
	ABC/3TC/RTV/DRV	17.3
	ABC/DTG/3TC	18.3
	FTC/TAF/DTG	25.7
	ABC/DTG/3TC	26.0

R24	ATV	0.0
	ATV/RTV	3.8
	ATV	4.0
	3TC/AZT/ATV	8.1
	ATV/FTC/TAF	12.3
	BIC/FTC/TAF	13.2
R25	3TC/IDV/d4T	0.0
	3TC/SQV/RTV/d4T	2.5
	SQV/RTV/NVP/ABC	3.5
		5.9
	SQV/LPV/RTV/NVP/ABC	8.4
		12.2
		14.6
Dae		18.9
1120		0.0
		2.4
		2.4
		2.0
	RTV/ATV/TDF	3.2
	ATV/d4T	3.3
	3TC/RTV/ATV/TDF	3.3
	3TC/EFV/TDF	4.3
	3TC/NVP/TDF	6.3
	FTC/TDF/NVP	7.7
	3TC/NVP/TDF	8.1
	FTC/TDF/NVP	8.7
	MVC/ETR/RAL	11.8
	FTC/TAF/EVG/COBI/DRV	15.7
	BIC/FTC/TAF/DOR	18.3
R27	SQV/LPV/RTV/EFV/ABC/3TC/AZT	10.3
	MVC/RAL/LPV/RTV/ABC/TDF	12.4
	MVC/RAL/ABC/RTV/DRV/TDF	16.4
	MVC/RAL/ABC/RTV/DRV	16.7
	MVC/RAL/ABC/RTV/DRV	19.6
	FIC/IAF/RPV/DIG	20.8
		21.0
		22.0
		22.3
		22.0
	DTG/RPV	23.0
	ETC/TAE/DTG/RPV	23.0
	MVC/DRV/COBI	23.6
	3TC/DTG/DOR	23.8
	RALHD/DOR	24.5
	MVC/RALHD/DOR	25.8
R28	3TC/AZT	10.3
	LPV/RTV/FTC/TDF	16.8
	LPV/RTV/FTC/TDF/EVG/COBI	17.8
	FTC/TDF/EVG/COBI	17.8
	ETR/FTC/TDF/EVG/COBI	18.8
	RPV/DRV/COBI/DTG	19.1
	RPV/RTV/DRV/COBI/DTG	19.4
	RPV/RTV/DRV/DTG	20.3
		20.6
		21.4
		21.9
		22.1
R20		20.1
1129		0.0
	FTC/TDF/NVP	1.0
	ABC/NVP	4.3
	BIC/FTC/TAF	11.8
R30	3TC/SQV/AZT	0.0

	3TC/IDV/AZT	0.4
	3TC/IDV/RTV/AZT	3.4
	3TC/AZT/LPV/RTV	7.5
	3TC/AZT/LPV/RTV/TDF	11.0
	LPV/RTV/FTC/TDF	11.1
	MVC/RAL/LPV/RTV/FTC/TDF	11.6
	LPV/RTV/FTC/TDF	12.6
	RTV/DRV/FTC/TDF	16.5
	MVC/ETR/RAL	19.6
	FTC/TAF/DTG	20.4
DOI	FTC/TAF/EVG/COBI	21.5
R31	31C/SQV/AZI	0.0
		0.3
	3TC/AZT/EFV 2TC/AZT/NIV/D	5.0
	3TC/NIVP/ABC	7.7
	ABC/NV/P	9.8
	BIC/FTC/TAF	25.8
R32	3TC/AZT/LPV/RTV	0.0
	LPV/RTV/ABC	0.0
	NFV/ABC	0.1
	DLV/NFV	3.0
	LPV/RTV	4.2
	LPV/RTV/FTC/TDF	4.9
	RAL/LPV/RTV/FTC/TDF	5.3
	MVC/RAL/LPV/RTV/FTC/TDF	5.7
	RAL/LPV/RTV/FTC/TDF	7.0
	3TC/MVC/RAL/LPV/RTV	9.2
	FTC/TAF/EVG/COBI	14.3
	BIC/FTC/TAF	17.1
R33	3TC/AZT/LPV/RTV/ABC	0.0
		0.6
		2.8
		3.9
		5.0 7.1
	ETR/ABC	8.8
	ABC/DTG	12.1
	ABC/DTG/3TC	13.1
R34	3TC/IDV/AZT	0.0
	3TC/AZT/LPV/RTV	0.2
	3TC/AZT/LPV/RTV/ABC	0.3
	LPV/RTV/ABC/3TC/AZT	0.3
	3TC/RTV/ATV/ABC	2.2
	ABC/RTV/ATV	3.7
	LPV/RTV/ABC	4.8
	MVC/RAL/LPV/RTV/ABC	6.0
	MVC/RAL/ABC/RTV/DRV	10.6
	MVC/RAL/ABC	10.8
		12./
		10.5 16 F
		16.0
		17.0
R35	3TC/AZT/I PV/RTV	0.0
1.00	3TC/LPV/RTV/TDF	2.4
	3TC/LPV/RTV/ABC	3.3
	3TC/RTV/ATV/ABC	3.5
	ABC/RTV/ATV	5.8
	EFV/FTC/TDF	8.3
	ABC/EFV	12.0
	ABC/DTG	12.8
	ABC/DTG/3TC	13.9
R36	3TC/BLINDED TRIAL/TDF	0.0
	LPV/RTV/FTC/TDF	2.6
	RAL/FTC/TDF	2.8

	RAL/ABC	8.3
	ABC/DTG	9.2
	ABC/DTG/3TC	10.3
R37	3TC/AZT/EFV/ABC	0.0
	ABC/EFV	4.6
	EFV/FTC/TDF	6.8
	ABC/DTG/3TC	13.2
R38	3TC/AZT/EFV	0.0
	3TC/EFV/ABC	1.8
	ABC/EFV	4.3
	EFV/FTC/TDF	6.3
	ABC/EFV	9.3
	ABC/DTG	12.6
	ABC/DTG/3TC	12.9
R39	EFV/ddl/NFV/d4T/ABC	0.0
	LPV/RTV/EFV/ddl/ABC	2.1
	LPV/RTV/EFV/TDF/ABC	3.6
	3TC/RTV/ATV/EFV/ABC	5.6
	ABC/RTV/ATV/EFV	7.3
	LPV/RTV/ABC/EFV	9.7
	LPV/RTV/EFV/FTC/TDF	10.0
	RAL/LPV/RTV/EFV	11.1
	RPV/DRV/COBI/DTG	16.2
	RPV/RTV/DRV/DTG	16.9
	RPV/DRV/COBI/DTG	18.0
	BIC/FTC/TAF/DOR	22.6
R40	3TC/AZT/LPV/RTV	0.0
	3TC/AZT/EFV	1.6
	3TC/EFV/ABC	1.7
	ABC/EFV	3.8
	EFV/FTC/TDF	6.4
	FTC/TAF/EVG/COBI	13.9
	BIC/FTC/TAF	18.8
R41	3TC/LPV/RTV/EFV/TDF/ABC	0.0
	ABC/RTV/ATV/EFV/TDF	3.7
	ETR/ABC/RTV/DRV	7.6
	ETR/RAL/ABC/RTV/DRV	7.9
	RPV/DRV/COBI/ABC/DTG/3TC	12.4
	DOR/DRV/COBI/ABC/DTG/3TC	17.2
	MVC/DOR/DTG	19.8
R42	3TC/AZT/NFV	0.0
	3TC/AZT/DLV	1.0
	ETR/ABC	5.2
	ABC/DTG/3TC	10.6

*Changes in drug regimens during suppressive ART. For drug abbreviations, see **Table S1**.

ID	Blips >100 (c/ml)	Time on suppressive ART (yrs)	Assay LOD* (c/ml)	Previous HIV-1 RNA† (c/ml)	Time on suppressive ART (yrs)	Next HIV-1 RNA‡ (c/ml)	Time on suppressive ART (yrs)	Time since blip (days)
R2	228	8.69	50	<400	8.59	<50	9.22	196
	121	21.50	20	<20	21.36	<20	21.71	75
R3	113	3.38	50	16	3.21	11	3.40	6
	126	5.41	50	<50	5.14	<50	5.42	3
R6	160	15.61	20	<20	15.00	<20	15.98	133
R8	109	11.24	50	<50	10.42	<20	11.30	21
R10	280	2.50	50	148	0.25	80	4.15	602
R11	158	1.72	50	25	1.04	177	1.99	100
	177	1.99	50	158	1.72	64	2.41	154
R12	186	0.88	50	11	0.64	171	1.04	57
	171	1.04	50	186	0.88	16	1.12	29
	195	3.07	50	24	3.02	16	3.27	72
	3851	10.85	50	<50	10.63	<50	10.87	7
R13	1030	0.80	50	13	0.61	17	0.84	13
	219	1.18	50	21	0.90	137	1.41	84
	137	1.41	50	219	1.18	19	1.53	44
R15	119	2.95	50	<50	2.72	<50	3.13	63
R16	138	1.92	50	<50	1.69	<50	1.96	14
R20	104	3.19	50	<50	3.10	<50	3.39	73
	319	5.03	75	<75	4.82	<75	5.25	80
R22	145	6.92	75	<75	6.71	<50	7.00	29
R23	15228	3.36	50	<50	3.08	<50	3.41	18
	103	6.11	75	<75	5.78	<75	6.28	62
R25	115	1.58	500/50	<500	1.33	<50	1.92	124
R29	102	10.36	40	<40	9.86	<40	10.41	18
R30	101	6.84	50	<50	6.67	<50	6.87	11
R31	179	9.59	50	<50	9.18	<50	9.79	73

 Table S3.
 Blips during suppressive ART

*Limit of detection of the assay for plasma HIV-1 RNA used at the time of the blip.

[†]HIV-1 RNA measurement at visit prior to the blip.

^{*}HIV-1 RNA measurement at visit after to the blip.

Table S4. Decay of cells with inducible, replication-competent proviruses as measured byQVOA.

		Fraction of	Total assays	Fraction of	Positive assays		All assays [†]	
Time on ART* (yrs)	Donors studied	donors with outgrowth (%)		assays with outgrowth (%)	Geometric mean frequency (IUPM)	Mean time on ART (yrs)	Geometric mean frequency (IUPM)	Mean time on ART (yrs)
<7 [‡]	62	95.2	171	86.5	0.54	3.1	0.44	3.0
>7	42	90.4	61	88.5	0.62	20.5	0.46	20.6

*Time from the start of a continuously suppressive ART regimen. Isolated blips were not considered an exclusion.

[†]For negative assays, the maximum value based on the number of cells plated was used.

[‡]Data from Siliciano et al., 2003 (reference 29).

	Madal	Initial decay		4	2 nd phase [‡]			
Model	constraints*	<i>t</i> ½	95% CI	le	t ₂	95% CI in yrs	-LL§	BICc [¶]
		(mo)	(mo) (mo)		(yrs)	$t_2(t_{\frac{1}{2}})$		
simple exponential		89 yr	18 yr to ∞				425	450
		21	12–110	2.9	60	15 to ∞ (29 to ∞)	410	451
segmented	initial $t_{\frac{1}{2}} = 44 \text{ mo}$	44		3.1	97	18 to ∞ (27 to ∞)	414	450
exponential	<i>t</i> _e = 7 yr	55	31–278	7	20	8 to ∞ (41 to ∞)	419	455
	$t_e = 7 \text{ yr},$ initial $t_{\frac{1}{2}} = 44 \text{ mo}$	44		7	23	10 to ∞ (73 to ∞)	419	449
biexponential		6	4–13		28	12 to ∞ (69 to ∞)	408	454

Table S5. Models for decay of inducible, replication-competent HIV-1 with very long-term ART.

*QVOA data in **Figure 3B** were modeled using simple exponential decay, segmented exponential decay, and biexponential decay (also **Figure S5**). If a model constraint is indicated, then the corresponding parameter was fixed and not fitted. The fit in **Figure 3B** corresponds to the selected model shown in the next to last row in the Table with the initial phase $t_{1/2} = 44$ months, a breakpoint at 7 year and $t_2 = 23$ years

[†]Time at which the decay rate changes.

[‡]After the initial decay for time t_e , the segmented models and the biexponential model estimated a slow increase in the levels of cells with inducible, replication-competent HIV-1. This rate of increase is expressed as a doubling time (t_2). However, the 95% CI on the second phase is very wide and includes in all cases the possibility of a constant level or even a slow decrease. Thus, in the Table we include two rows which together represent the 95% CI for the second phase. The first row indicates the limits of the CI when the levels are increasing and the second row, in parentheses, the limits when the levels are decreasing. Thus, for our selected model shown in the next to last row in the Table with the initial phase $t_{1/2} = 44$ months, a breakpoint at 7 year and $t_2 = 23$ years, the 95% CI of the second phase includes a doubling time from 10 years to infinity (i.e. no increase), and a half-life from 73 years to infinity (i.e. no decay).

[§]Log likelihood.

[¶]Bayesian information criterion corrected.

	Madal	Initial decay			2 nd phase [†]			
Model		<i>t</i> ½	95% CI	<i>t</i> e (yrs)	<i>t</i> ½	95% CI	-LL‡	BICc§
	COnstraints	(mo)	(mo)		(yrs)	(yrs)		
simple		60	E7 01				418	444
exponential		00	57-64					
segmented	$t_e = 6 \text{ yr}$	40	30-62	6	10	7-18	406	443
exponential	<i>t</i> _e = 7 yr	46	34-70	7	9	6-18	407	444
biexponential		12	6-17		10	6-17	413	459

Table S6. Best fit models for decay of intact proviruses as measured by IPDA.

*IPDA data in **Figure 3C** were modeled using simple exponential decay, segmented exponential decay, and biexponential decay. The best fits were obtained with segmented exponential decays. We varied the time at which the decay rate changed (t_e), from 2 to 12, and got the best fits with $t_e = 6$ or 7 yrs. The fit in **Figure 3C** corresponds to the next to last row in the Table with the initial phase $t_{1/2} = 46$ months, a breakpoint at 7 year and a second phase $t_{1/2} = 9$ years.

[†]After the initial decay, the best fit models all showed a second phase with a slower decay rate.

[‡]Log likelihood.

§Bayesian information criterion corrected.

Provinue		Model	Initial decay		+	2 nd phase			
type	Model*	constrai nts	t½ (vrs)	95% CI (vrs)	(yrs)	t½ (vrs)	95% CI (vrs)	-LL‡	BICc§
3'del/HM	simple exponential	1110	6	14-26		(910)	()10)	228	257
	segmented exponential	<i>t</i> _e = 9 yr	16	11-34	9	42	17 to ∞ (81 to ∞)	221	257
	biexponential		8	5-23		20	11 to ∞ (65 to ∞)	268	312
5'del/HM	simple exponential	NA	25	16-18	NA	NA	NA	302	328
	segmented exponential	<i>t</i> _e = 9 yr	38	14 to ∞ (49 to ∞)	9	27	12 to ∞ (124 to ∞)	302	338
	biexponential		20	2 to ∞ (3 to ∞)		35	12 to ∞ (43 to ∞)	337	384

Table S7. Best fit models for decay of defective proviruses as measured by IPDA.

*IPDA data in **Figure 2D** were modeled using simple exponential decay, segmented exponential decay, and biexponential decay. The best fits were obtained with segmented exponential decay for 3'del/HM (3' deleted/hypermutated) proviruses and linear decay for 5'del (5' deleted) proviruses. Entries in red refer to doubling times and corresponding limits of the confidence intervals. When the upper bound is infinite, it implies no increase or decrease.

[‡]Log likelihood.

[§]Bayesian information criterion corrected.