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Supplementary Methods 
 
Sequencing analysis 

Sequencing results were demultiplexed and processed using the MetaFlow|mics custom analysis 

pipeline1,2, which incorporated tools from VSEARCH, Mothur, DADA2, FastTree, and 

phyloseq. Several filters were imposed throughout the pipeline. Only reads longer than 20 bp 

were retained. Forward and reverse reads were truncated at 250 bp and 220 bp or at the first base 

with quality lower than 2. Reads with more than 3 expected errors were discarded. Similarly, 

paired reads that overlapped by less than 20 bp or had greater than one mismatch in the merge 

region were discarded. No sequence identity clustering was performed so that bacterial taxa were 

identified as amplicon sequence variants (ASVs). Taxonomic assignments were performed 

against the Silva database (version 138)3, with a minimum alignment length of 50 bp. Sequences 

were additionally filtered by taxonomic criteria: taxa matching mitochondria and chloroplasts 

were discarded from subsequent analyses, as were those that could not be assigned to a Domain. 

Finally, uninformative sequences were discarded based on low occurrence in the dataset: ASVs 

retained had to be observed at an abundance of 0.001% in at least 3 samples or at an abundance 

of 0.1 % in a single sample. Finally, to standardize sequencing effort, reads were randomly 

subsampled to 15,000 reads per sample. 

 

Quality control and quality assurance for metabolomics and DNA sequencing 

The metabolomics solvent extractions were conducted in 96-well plates. A blank containing the 

resuspension solvent (MeOH:H2O (1:1) containing 1 µM sulfadimethoxine) and a quality control 

containing a mixture of six standards was injected every 8 samples. The quality of the analyses 

was evaluated considering the retention time and the m/z of this mixture of standards 

(sulfamethizole, sulfamethazine, sulfachloropyridazine, sulfadimethoxine, amitryptiline, and 

coumarin). After MS/MS data processing, the features that presented a ratio of blank/sample 

abundance of > 1:3 were inspected and considered as possible contaminants (Supplementary 

Data 2). Solvent extractions were spread across two 96-well plates. The first plate contained a 

majority of the samples, while the second plate comprised all of the samples from Waimea Bay 

(N=18) and ~¼ of the samples from Sharks Cove (N=4). Because of the Waimea Bay site’s 

proximity to the river mouth, these samples were expected to vary substantially from the other 
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samples in the dataset. However, to ensure that batch effects were not responsible for the broad 

trends observed in the data, a PERMANOVA model was constructed with extraction plate 

included as an additional predictive variable (formula: Bray-Curtis Distance ~ Extraction Plate + 

Benthic Primary Producer Type * Site). Primary producer type remained the largest predictor of 

metabolite profiles  (R2 = 0.15; p = 0.001). The interaction between sample type and collection 

site likewise remained largely unchanged (R2 = 0.08; p = 0.001). Differences between collection 

sites remained significant, though, as expected, they explained less variation than when inter 

plate variation was not accounted for (R2 = 0.04; p = 0.003). The overall trends in the data, in 

particular the distinct metabolite profiles presented by the different primary producer types, 

remained consistent whether or not potential batch effects were accounted for. In our analysis, 

we elected to interpret the variation between samples, particularly the relatively distinct samples 

from Waimea Bay, as real biological variation rather than batch effects. 

 

For DNA sequencing, samples were randomized across extraction and PCR plates. DNA 

extractions were performed as part of a larger set of samples and were spread across multiple 96-

well extraction plates (N =11). A PCR negative and a DNA extraction negative from each plate 

were sequenced alongside the samples. After running both real samples and controls through the 

processing pipeline, sequences were clustered at 97% similarity to aid in the identification of 

potential contaminants. The total read counts and total number of unique OTUs were compared 

across all samples that were included in our final analysis (N = 93), all extraction negatives  (N = 

11), and all PCR negatives (N = 11). Mean read counts and OTU counts were as follows: 

extraction negatives (Avg. Reads = 35,063; Avg. OTUs = 56), PCR negatives (Avg. Reads = 

27,809, Avg. OTUs = 30), real samples (Avg. Reads = 78,491, Avg. OTUs = 889 ). Real samples 

generated more sequences than the negative controls, and the biological diversity of real samples 

was substantially higher than the negative controls. Dominant taxa in the negative controls 

included known reagent contaminants associated with freshwater or the human microbiome and 

did indicate cross-contamination between samples. The top genera associated with negative 

controls included Ralstonia, Asinibacterium, Burkholderia, Corynebacterium, and 

Bradhyrhizobium. The overall impact of microbial contaminants on our analyses was deemed to 

be minimal. 
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MS/MS data processing 

The parameters used for feature finding were as follows: mass detection (centroid, 1.0E5 and 

1.0E3 for MS1 and MS2, respectively); ADAP chromatogram builder4 (minimum group size in 

scan set to 5, group intensity threshold of 1.0E5, minimum highest intensity of 3.0E5 and m/z 

tolerance of 0.001 m/z or 20 ppm); chromatogram deconvolution (local minimum search 

algorithm: chromatographic threshold of 0.1%, a search minimum in retention time [RT] range 

of 0.2 min, minimum relative height of 1%, the minimum absolute height of 1.0E5, a minimum 

ratio of peak top/edge set to 1, and peak duration range as 0.01 to 1.5 min) with median m/z 

center calculation, m/z range for MS2 scan pairing of 0.01 Da and RT range for MS2 scan 

pairing of 0.1 min; isotope peaks grouper (m/z tolerance set at 0.001 or 10 ppm, RT tolerance of 

0.2 min, maximum charge of 3, and representative isotope set to the most intense), join 

alignment (m/z tolerance of 0.001 m/z or 10 ppm, weight for m/z and RT of 90 and 10, 

respectively, and RT tolerance of 0.2 min). The last step consisted of applying filters in which 

only the features that had MS/MS spectra eluting from 0 to 10 min that were present in at least 3 

samples were considered. 

 

Feature-Based Molecular Networking 

The data were filtered by removing all MS/MS fragment ions within +/- 17 Da of the precursor 

ion. Additionally, MS/MS spectra were window filtered to select only the top 6 fragment ions in 

the +/- 50 Da window throughout the spectrum. Both the precursor ion and the MS/MS fragment 

ion tolerance were set to 0.02 Da. A molecular network was created where edges were filtered to 

have a cosine score above 0.7 and more than 4 matched peaks. Similarly, the parameters for the 

library search (for comparison between the experimental and library spectra) were set to have a 

score above 0.7 and at least 4 matched peaks to assist in the metabolites' annotation - levels two 

or three according to the metabolomics standards initiative5. We searched the experimental data 

in the public spectral database Speclibs available in GNPS. 

 

Cytoscape molecular networking visualization 

Molecular network visualization was performed in Cytoscape (version 3.7.2, Cytoscape 

consortium, San Diego, CA, USA)6, in which the nodes correspond to the MS1 precursor ion 

features, and the edges represent the MS/MS cosine scores calculated between two nodes. 
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Molecular families containing features detected in blank samples (i.e. more than half of the 

relative abundance based on peak area) were excluded from the Cytoscape visualization to avoid 

misinterpretations due to contaminants. Sample type information was added to color the nodes as 

pie charts representing the relative abundance of the features across the samples (coral colored as 

orange, CCA as blue, and macroalgae as green). Node size is scaled relative to the sum of the 

peak areas obtained in the samples in which the feature was detected. Compounds with the same 

MS/MS spectra, but with different retention times, are represented as separate nodes, indicating 

isomers. 

 

 

Chemical hierarchy analysis 

To quantify the chemical hierarchy of the different ion features in the dataset and visualize their 

distribution across sample types, we used the Qemistree workflow 

(https://github.com/biocore/q2-qemistree)7 available on the GNPS platform8. The feature 

quantification table exported from MZmine2 was used as input, along with the file obtained from 

the SIRIUS export module (.mgf). In summary, the Qemistree workflow consists of applying 

SIRIUS9 to the feature table, which generates information regarding the predicted molecular 

formulas of each metabolite by estimating a fragmentation tree that best explains the observed 

fragmentation spectrum. The predicted molecular formulas were reranked using ZODIAC10, the 

predicted molecular fingerprints were subsequently generated using fragmentation trees via 

CSI:FingerID11, and the chemical taxonomy of the predicted metabolite structures was obtained 

by ClassyFire12 (kingdom, superclass, class, subclass, and direct parent). The Euclidean pairwise 

distances between these molecular fingerprints were calculated, and the fingerprint vectors were 

hierarchically clustered using the unweighted pair group method with arithmetic mean to 

generate a tree that represents the structural chemical relationships of this dataset. This tree was 

visualized interactively in iTOL13 for data exploration. Sample type information was added as 

relative abundance stacked bar charts for each feature and the main predicted classes of 

compounds were shown as pie charts on internal tree nodes. The Qemistree job on GNPS can be 

found at 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=55a790571af4490fbf7502d44f65e5c7.  
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Repository scale analysis 

Fragmentation spectra from entire molecular families containing features mainly detected in 

CCA samples were submitted to the Mass Spectrometry Search Tool (MASST)14, which allows 

searching a specific MS/MS spectrum in public datasets available in the MassIVE spectral 

repository. Analogously to the FBMN job, the input and library data were filtered by removing 

all MS/MS fragment ions within +/- 17 Da of the precursor m/z, and the MS/MS spectra were 

window filtered by choosing only the top 6 fragment ions in the +/- 50 Da window throughout 

the spectrum. Both the precursor ion mass tolerance and the precursor ion mass tolerance were 

set to 0.01 Da. The matches between the input spectra and the library spectra were required to 

have a cosine score above 0.7 and a minimum of 6 matched peaks. The MASST jobs in GNPS 

can be found in Supplementary Table 1. 

 

Statistical analysis 

The metabolite networks, metabolite chemical classes, microbial classes, and individual 

metabolite ion features were tested for differential enrichment in sample types. The general 

methodology was to sum relative abundance for the selected group (e.g. network, class, etc.); 

normalize the data through arc-sine square root transformation; and finally test for the effect of 

sample type using a simple anova. To account for multiple testing, P-values derived from these 

anovas were adjusted using the Benjamini-Hochberg method. A post-hoc Tukey’s test was used 

to test for pairwise differences between the three sample types. The log2 fold change in mean 

relative abundance between sample types was calculated to provide information on the 

magnitude of differential enrichment. 

 

Individual metabolite ion features were analyzed using a methodology similar to the one 

described above for classes and networks. In the case of individual metabolites, relative 

abundance was transformed using the centered log-ratio method rather than arc-sine square root. 

Apart from that, linear methods followed those described above. In addition to traditional 

statistical methods, a random forest analysis was used to identify ‘important’ features that could 

be used to predict sample type. The function randomForest, as implemented in the R package 

randomForest, was run on the entire dataset with the number of trees set to 500. The mean 

decrease in accuracy over all classes was used to assess ion feature importance. 
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Biclustering analysis 

The biclustering analysis was performed based on the results of mmvec, Qemistree, and 

phylogenetic analysis of the microbial sequences. Microbial taxa were organized 

phylogenetically using a 16S tree assembled with FastTree15. Metabolites were organized by 

structural similarity using the tree output from Qemistree. Metabolite probability scores were 

standardized for each metabolite through a z-score transformation so that uniform cutoff values 

could be applied across metabolites.  

 

In our study, samples were collected from 3 distinct types of host organisms. Host organisms 

were likely the source of a significant portion of the observed metabolites. The coloring scheme 

for the bicluster highlighted cases in which a metabolite and a microbe were 1) associated with 

each other; and 2) associated with the same sample type. Each association in the bicluster was 

filled if the z-scored probability was greater than one, indicating a co-occurrence probability at 

least one standard deviation higher than the mean for that metabolite. The association was 

colored if the microbe and metabolite both had the highest mean abundance in the same sample 

type. Conversely, if the microbe and metabolite occurred abundantly in different sample types, 

the association was colored gray (Not Same). Finally, in order to reduce noise, only metabolites 

that had a median mmvec score >= 2 were retained. After filtering, 1,266 microbes and 438 

metabolites features were retained, as shown in Supplementary Fig. 10.  
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Supplementary Note 1 

 

Inspection of the spectral matches statistically significant retrieved from the Random 

Forest and Linear Models. 

 
Spectral matches to glycerophospholipids were among the most observed within the criteria 

defined (Fig. 4a), particularly abundant in coral and macroalgae. These spectral matches are level 

2 annotations according to the 2007 Metabolomics Standard Initiative5, and the compounds 

present in the samples could be their isomers. Among the networks and library matches shown, 

five features stood out for being statistically significant in both RF and LM: 1-hexadecyl-sn-

glycero-3-phosphocholine (1901), lyso-PAF C-18 (25755), 1-stearoyl-2-hydroxy-sn-glycero-3-

phosphocholine (24792 and 7266), and lyso-PC(16:0) (166). These features were correlated to 

coral in the LM and showed to be differentially abundant for this sample type, except for feature 

166, which showed to be differentially abundant for both coral and macroalgae. Other features 

with spectral matches to glycerophospholipids were also highlighted only in LM, such as 1-(1Z-

hexadecenyl)-sn-glycero-3-phosphocholine (25753), PAF C-16 (37817), 18:1 lyso PC (5327), 1-

(1Z-hexadecenyl)-sn-glycero-3-phosphocholine (37250), 1-hexadecanoyl-sn-glycero-3-

phosphocholine (978), and 1-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine (25921). 

Features 37817, 37250, and 25921 also showed differential abundance in coral, while feature 

5327 was differentially abundant in macroalgae, and 978 in both coral and macroalgae. 

 

Several networks containing spectral matches with fatty acids and derivatives were also 

highlighted in RF, LM, or both. Pinolenic acid (9906) and 2,4-dihydroxyheptadecyl acetate (453) 

were highlighted in both statistical treatments, showing differential abundance related to coral, 

and both coral and macroalgae, respectively. Spectral matches to 19(20)-EpDPE (25194, 32167, 

15247, and 15781), 8-HETE (16992), and cis-8,11,14-eicosatrienoic acid (1450) were only 

retrieved from LM, showing to be differentially abundant in corals. Similarly, 17(18)-EpETE 

(5263) and 9(10)-EpOME (2801) were differentially abundant in macroalgae, and 13-keto-9,11-

octadecadienoic acid (8476) was retrieved from the RF algorithm. 
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A network containing spectral matches to acylcarnitines was also obtained, with library matches 

to propionylcarnitine (30486), valerylcarnitine (26352), and palmitoylcarnitine (36640). All of 

these features showed to be differentially abundant in corals in the LM evaluated. In addition, two 

networks related to glycerolipids were observed, matching 9,12,15-octadecatrienoic acid 3-

(hexopyranosyloxy)-2-hydroxypropyl ester (15641), 1-monopalmitolein (1200, 667, 6983), and 

monoelaidin (1691). From these features, 1200 was retrieved in both RF and LM (differentially 

abundant in macroalgae), while 15641 and 1691 were only retrieved from LM, with differential 

abundance in coral and macroalgae, respectively. 

 

Terpenoids were also detected in addition to the lipid-like molecules (Fig. 4b). A library match to 

fucoxanthin (127) carotenoid was obtained and showed to be differentially abundant in macroalgae 

samples according to the LM. The library searches also retrieved loliolide (an apocarotenoid, 524), 

classified as significant in both RF and LM, being differentially abundant in macroalgae. In 

addition, the LM also retrieved bisabolol (feature 14018) as being differentially abundant in 

macroalgae samples. 

 

Several matches to purine nucleosides (Fig. 4c) were also observed, in which 2'-deoxyadenosine 

(423) was differentially abundant in coral samples by the LM, besides being labeled as an 

important feature in RF. According to the LM, adenosine (42529) was differentially abundant in 

both coral and CCA samples. A small network was also observed, containing library matches to 

pheophorbide A (Fig. 4d) (404), a product from the chlorophyll catabolism, which was statistically 

significant both in RF and LM, being differentially abundant in CCA. Lastly, a network containing 

matches to phthalates (Fig. 4e) was also observed, with dibutyl phthalate (7611) being 

differentially abundant in macroalgae samples according to the LM. 
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Supplementary Figure 1. Non-metric Multidimensional Scaling plot of metabolites by primary 

producer type using Bray-Curtis distance metric produced from 11,215 ion features (acquired 

from 112 samples) relative abundances, considering the blank analyses. 

 
 
 

 
Supplementary Figure 2. Non-metric Multidimensional Scaling plot of metabolites by primary 

producer type using Bray-Curtis distance metric produced from 8,221 ion features relative 

abundances, considering the blank analyses. 
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Supplementary Figure 3. Non-metric Multidimensional Scaling plot of metabolites by site 

within each primary producer type. Bray-Curtis distance metric produced from 8054 ion feature 

relative abundances was employed. Panels show the collection sites in (A) macroalgae, (B) coral, 

and (C) CCA samples. 
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Supplementary Figure 4. Molecular networks obtained for the coral reef primary producer 

types in this study: CCA (blue), coral (orange), and macroalgae (green). Node sizes are relative 

to the sum of the precursor ion intensity in MS1 scans. Nodes with matches to the GNPS 

libraries are shown in a rounded squared shape. 
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Supplementary Figure 5. Major networks composed of metabolites mainly detected in CCA 

samples, which did not present any library match. Node sizes are relative to the summed peak 

areas of the precursor ion in MS1 scans. Information regarding the significance of each feature in 

Random Forest and Linear Model algorithms is shown. Component indexes of each network are 

depicted. 
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Supplementary Figure 6. Dendrograms obtained from the Qemistree workflow. Trees were 

pruned to keep only fingerprints classified up to a superclass, class, and subclass level 

(Classyfire ontology). Legends show the most abundant classifications obtained. 

 
 
 

 
Supplementary Figure 7. Non-metric Multidimensional Scaling plot of microbes by site within 

each primary producer type. Unifrac distance metric produced from 36,009 ASV relative 

abundances was employed. Panels show the collection sites in (A) macroalgae, (B) coral, and (C) 

CCA samples. 
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Supplementary Figure 8. Violin plots of log relative abundance for microbial families in class 

Cyanobacteriia. Only families that were present in more than half the samples are shown. The 

subtitle indicates whether the microbial family was determined to be differentially abundant in a 

particular primary producer type.  
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Supplementary Figure 9. Additional mmvec ordinations. Ellipses indicate 95% confidence 

intervals for metabolites that were enriched in the three sample types. Arrows indicate microbial 

ASVs belonging to specific families. Arrows pointing towards a highlighted sample type region 

indicate microbes co-occurring with metabolites enriched in that sample type. 
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Supplementary Figure 10. Biclustering analysis of the multi-omics data. Chemical hierarchy 

obtained from the Qemistree workflow is represented in Y-axis, while the microbial 16S 

phylogeny is shown in X-axis. The heatmap indicates the co-occurrences probabilities calculated 

by mmvec. Summed relative abundance of the metabolites and microbes in each marine 

organism were added as bar plots. Microbial taxonomic classification (class and order) and 

chemical structural classification (direct parent and network) was added. 
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