Supplementary Online Content

Serritella AV, Shenoy NK. Nivolumab plus ipilimumab vs nivolumab alone in advanced cancers other than melanoma: a meta-analysis. *JAMA Oncol.* Published online August 31, 2023. doi:10.1001/jamaoncol.2023.3295

eAppendix 1. Supplemental Methods

eAppendix 2. Supplemental Results

eAppendix 3. PFS and OS HR Calculation Analysis of Individual Studies

eFigure 1. PRISMA Schema

eFigure 2. OS and PFS Meta-analysis Without Hellman et al 2019 (Sensitivity Analysis)

eFigure 3. Grade 3 to 4 Hepatotoxicity

eFigure 4. Grade 3 to 4 GI Toxicity

eFigure 5. Grade 3 to 4 Pneumonitis

eFigure 6. Grade 3 to 4 Endocrine Dysfunction

eFigure 7. Grade 3 to 4 Fatigue

eFigure 8. Grade 3 to 4 Dermatitis

This supplementary material has been provided by the authors to give readers additional information about their work.

eAppendix 1. Supplemental Methods

Search Strategy

We searched PubMed, EBSCO Information Services, Embase, and The Cochrane Library databases for relevant English-language papers and abstracts that had been published by October 31, 2022. The following search terms were used: "nivolumab plus ipilimumab versus nivolumab." We also performed a manual search to find applicable studies in the references and related citations.

Eligibility and Inclusion Criteria

We included studies that fulfilled the following criteria: (a) **population**: patients with metastatic/advanced solid malignancies, excluding metastatic/advanced melanoma; (b) **intervention**: the following dose regimens ("nivo3 ipi1") were allowed: nivo 3 mg/kg every 2 weeks plus ipi 1 mg/kg every 6 weeks until progression; nivo 3 mg/kg every 3 weeks plus ipi 1 mg/kg every 3 weeks for four doses followed by nivo 3 mg/kg every 2 weeks maintenance (c) **control**: the following doses were allowed: nivo monotherapy at a dose of 3 mg/kg every 2 weeks; flat dosing of nivo 240 mg every 2 weeks; (d) **prospective studies**- phase I, I/II, II or III clinical trials.

Studies of advanced/ metastatic melanoma were excluded. We also excluded studies or arms within studies that had combination dosing of nivo+ipi at doses other than as defined as nivo 3 ipi 1 as above. For example, excluded doses include nivo 1 mg/kg every 2 weeks plus ipi at a dose of 3 mg/kg every 6 weeks. Nivo1 ipi3 is a dosing regimen that is known to be even more toxic than nivo3 ipi1 and is approved in only one malignancy outside of melanoma thus far (hepatocellular carcinoma), so was excluded from the analysis for homogeneity.

Outcome Measures

The primary outcome measures were overall survival (OS), progression free survival (PFS), grade 3 or 4 adverse events (AEs), and treatment related discontinuations. Detailed information about grade 3-4 adverse events were also extracted and compared including hepatotoxicity, gastrointestinal toxicity, pneumonitis, endocrine dysfunction, dermatitis, and fatigue.

Data Extraction and Synthesis

Two reviewers independently screened the titles and abstracts of the retrieved citations. Discrepancies were resolved by discussions. A standardized extraction form was prepared using Microsoft Excel. The extracted data included first author, year of publication, study design, patient population, trial phase, study title, treatments, patients in each treatment arm, total patients in the study, median patient age by treatment arm, eastern cooperative oncology group (ECOG) performance status of patients by arm, median OS, PFS with 95% CI, treatment related discontinuations and detailed information on grade 3-4 adverse events. Summary statistics of Kaplan-Meier curves (OS and PFS) were extracted separately, also using Microsoft Excel.

© 2023 Serritella AV et al. JAMA Oncology.

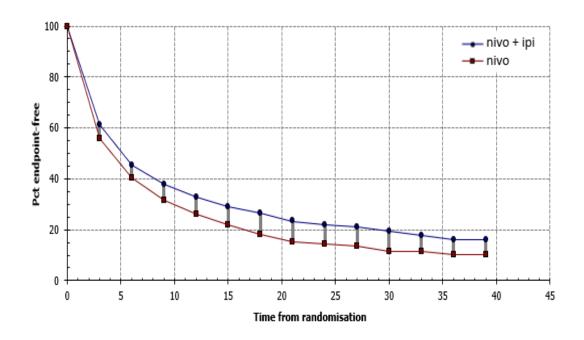
'difference in restricted mean survival time' (dRMST)- based meta-analysis; the robustness of log-rank even with small departures from proportional hazards; the included studies not having major departures; the high 'event rate' in each included study given the patient population of advanced malignancies, put together, led to the determination that estimation of HR (and In(HR), SE) for each individual study with K-M summary statistics followed by computing the pooled HR with inverse variance weighting (using the RevMan software) would be the more robust method overall for this meta-analysis. Extreme care was taken in the estimation of number of events and number censored for each specified time interval (along with the published number at risk), ensuring that the K-M curves generated from these numbers matched the published K-M curves, as explained in Tierney et al. Trials, 2007 (ref 4). The snips of calculation spreadsheets for both OS and PFS HR and the K-M curves generated have been provided for each included study (as a separate supplement file), for transparency and to enable comparison to the published K-M curves.

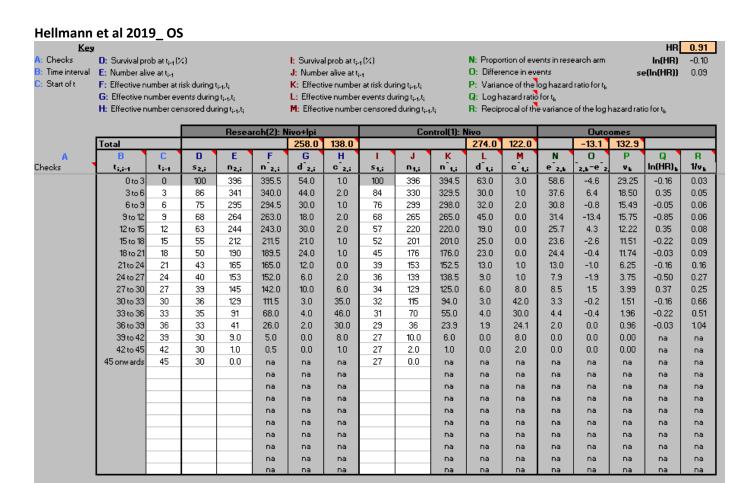
The estimation of pooled OR for dichotomous data (treatment-related high-grade adverse events and treatment-related discontinuations) using the Mantel-Haenszel method was also performed using the RevMan software.

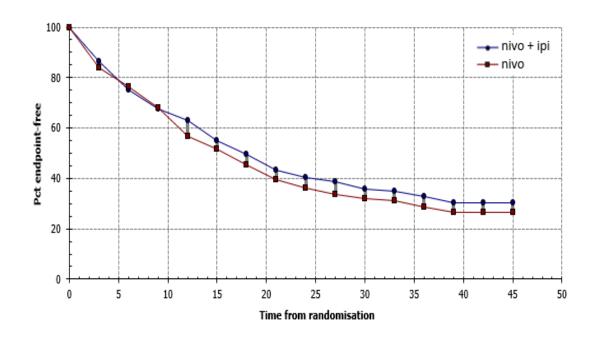
Assessment of heterogeneity:

The I-square (I2) test was used to assess impact of study heterogeneity. None of the analyses had an $I^2 > 50\%$ (i.e., no severe heterogeneity) and the main outcome measures (OS, PFS, grade 3-4 AE, treatment-related discontinuations) had an $I^2 \le 2\%$; therefore, the fixed effect model was chosen for all analyses.

eAppendix 2. Supplemental Results

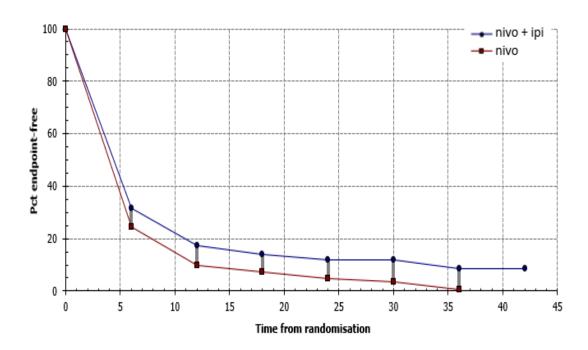

Search Results and Study Characteristics

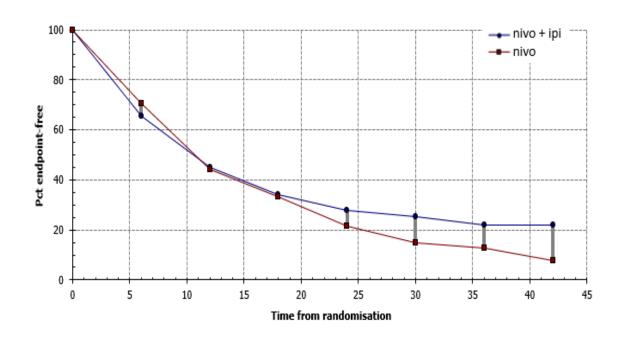

The initial search identified 168 publications. After exclusion of duplicates and unrelated publications, 57 publications remained. Of these, 36 were discarded after reading the titles and abstracts. After assessing the full text, 13 reports were further excluded and 8 studies were included for data analysis. (Process outlined in the PRISMA schema in **Figure S1**). While 3 of the studies included treatment arms dosing both nivo 3 ipi 1 as well as nivo 1 ipi 3 (Sharma, 2019; Janjigian, 2018; Antonia, 2016; Omuro, 2017), we only included data from the nivo 3 ipi 1 arms as described above. The control group of nivo monotherapy was either 3 mg/kg or 240 mg every 2 weeks.


eAppendix 3. PFS and OS HR Calculation Analysis of Individual Studies

Hellmann et al 2019_ PFS

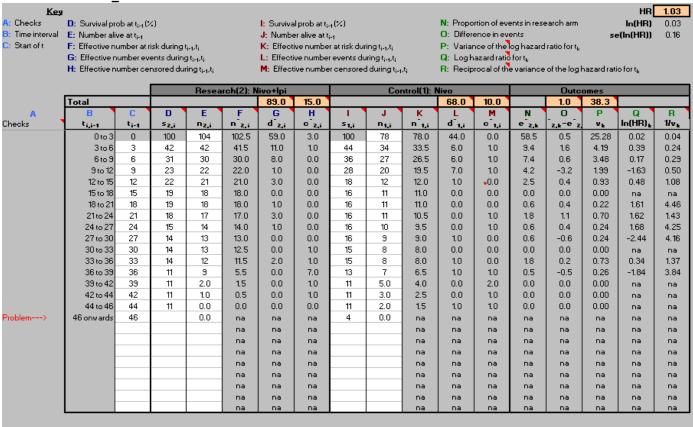
Key																HR	0.84
A: Checks	D: Survival pr	obiati _{r1} ()	()			I: Surviva	l problatit _i .	1(%)			N: Propor	tion of ev	ents in rese	earch arm		In(HR)	-0.17
B: Time interval	E: Number ali	ve at t _{i-1}				J: Numbe	er alive at t	i-1			O: Differe	nce in ev	ents		se	(In(HR))	0.08
C: Start of t	F: Effective n	umber at r	isk during i	t _{i-1} ,t _i		K: Effect	ive numbe	r at risk dui	ing t _{i-1} ,t _i		P: Varian	ce of the	log hazard	ratio for t _k			
	G: Effective n	iumber ev	ents during	g t _{i-t} ,t _i		L: Effecti	ive number	r events du	iring t _{i-1} ,t _i		Q: Logh	azard ratio	for t _k				
	H: Effective n	umber de	nsored du	ring t _{i-1} ,t _i		M: Effect	ive numbe	r censored	during t _{i-1}	t _i	R: Recipi	ocal of th	e variance	of the log l	hazard rati	o for t _k	
				Resea	rch(2): N				Cor	ntrol(1): I				Outc			
	Total					294.0	102.0				314.0	82.0		-25.7	150.9	_ •	
Α .	В	C	D	E	F	G	Ĥ	, I	J	K '	L	M	N .	. 0	Р	Q	R
Checks	t _{i,i-1}	t _{i-1}	5 _{2,i}	n _{2,i}	n _{2,i}	d z,i	C 2,i	5 _{1,i}	n _{1,i}	n _{1,i}	d 1,i	C 1,i	e 2,k	2,k-e 2,		In(HR) _k	1/v _k
	0 to 3	0	100	396	382.5	148.0	27.0	100	396	381.5	168.0	29.0	158.2	-10.2	79.01	-0.13	0.01
	3 to 6	3	61	221	217.5	56.0	7.0	56	199	194.5	54.0	9.0	58.1	-2.1	27.42	-0.08	0.04
	6 to 9	- 6	46	158	157.0	26.0	2.0	40	136	135.0	30.0	2.0	30.1	-4.1	13.91	-0.29	0.07
	9 to 12	9	38	130	127.5	17.0	5.0	31	104	103.5	18.0	1.0	19.3	-2.3	8.66	-0.27	0.12
	12 to 15	12	33	108	106.0	13.0	4.0	26	85	83.0	13.0	4.0	14.6	-1.6	6.42	-0.25	0.16
	15 to 18	15	29	91	90.5	7.0	1.0	22	68	67.5	11.0	1.0	10.3	-3.3	4.42	-0.75	0.23
	18 to 21	18	27	83	83.0	10.0	0.0	18	56	56.0	9.0	0.0	11.3	-1.3	4.56	-0.30	0.22
	21 to 24	21	23	73	71.5	5.0	3.0	15	47	46.0	3.0	2.0	4.8	0.1	1.90	0.07	0.53
	24 to 27	24	22	65	64.5	2.0	1.0	14	42	40.5	2.0	3.0	2.4	-0.5	0.94	-0.51	1.07
	27 to 30	27	21	62	57.0	5.0	10.0	14	37	33.0	5.0	8.0	6.3	-1.3	2.31	-0.58	0.43
	30 to 33	30	19	47	40.5	3.0	13.0	12	24	19.5	0.0	9.0	2.0	1.0	0.65	1.48	1.54
	33 to 36	33	18	31	20.0	2.0	22.0	12	15	9.5	1.0	11.0	2.0	0.0	0.65	-0.04	1.54
	36 to 39	36	16	7	3.5	0.0	7.0	10	3	1.5	0.0	3.0	0.0	0.0	0.00	na	na
	39 onwards	39	16	0.0	na	na	na	10	0.0	na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na l	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na

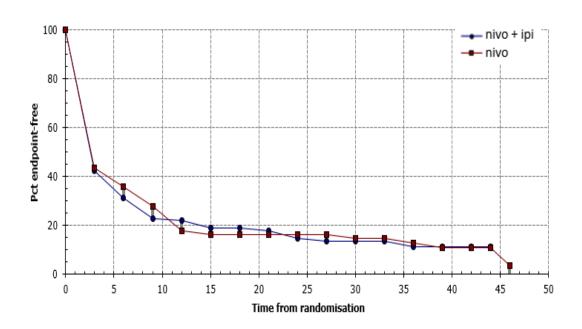




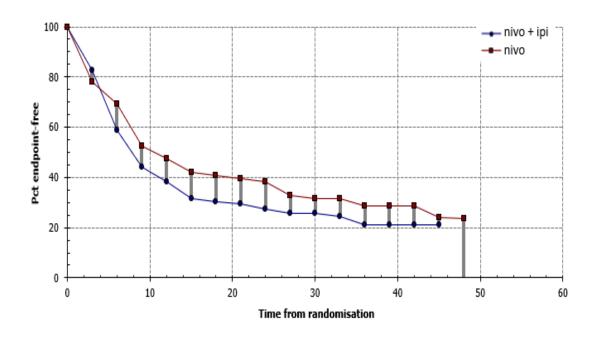
Gettinger et al 2021_ PFS

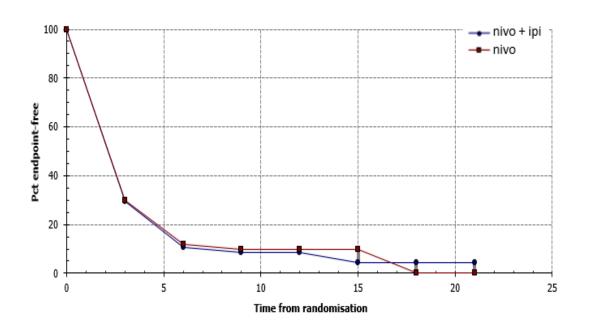
Key			-													HR	0.84
A: Checks	D: Survival pro	objetti. (9	/1			I: Surviva	l prob at t	.(2)			N: Propo	rtion of eve	ents in reso	earch arm		In(HR)	-0.18
B: Time interval	E: Number alix		•,				eralive at t				O: Differ					:(In(HR))	0.13
C: Start of t	F: Effective no		iek durina i	ь. ь				:-1 r at risk dur	ing to t					ratio for t _u	34	-(111(1111))	0.15
o. o.di. or .	G: Effective n		_			L: Effecti					Q: Logh	_	_	rrado for d _k			
	H: Effective n								during tak	ř.	_	_		of the log h	azard rati	io for t	
	II. Lileotive II	amber cer	i isorea aa	····9 4-1/4		III. Lileot	ive Hallibe	i cerisorec	a aaning 4,-1.	··i	II. Heolp	rocaror an	e valialité	or the log i	iazaiu iad	o loi q	
				Resea	rch(2): N	livo+lpi			Cor	ntrol(1): N	livo			Outco	omes		
	Total					110.0	15.0				122.0	5.0		-10.1	57.4		
A	В	С	D	Е	F	G	Н		J	К	L	M	N	0	Р	Q	R
Checks	t _{i,i-1}	t _{i-1}	5 _{2,i}	n _{2,i}	n _{2,i}	d [*] z,i	C 2,i	5 1,i	n _{1,i}	n _{1,i}	d [*] 1,i	C 1,i	e z,k	2,k-e 2	V _k	In(HR) _k	1/v _k
	0 to 6	0	100	125	124.5	85.0	1.0	100	127	126.0	95.0	2.0	89.5	-4.5	45.01	-0.10	0.02
	6 to 12	6	32	39	38.0	17.0	2.0	25	30	30.0	18.0	0.0	19.6	-2.5	8.63	-0.29	0.12
	12 to 18	12	18	20	20.0	4.0	0.0	10	12	12.0	3.0	0.0	4.3	-0.3	1.63	-0.21	0.61
	18 to 24	18	14	16	14.0	2.0	4.0	7	9	8.0	3.0	2.0	3.2	-1.2	1.17	-1.03	0.86
	24 to 30	24	12	10	9.5	0.0	1.0	5	4	4.0	1.0	0.0	0.7	-0.7	0.21	-3.38	4.80
	30 to 36	30	12	9	6.5	2.0	5.0	3	3	2.5	2.0	1.0	2.9	-0.9	0.80	-1.11	1.26
	36 to 42	36	8	2	1.0	0.0	2.0	1	0	0.0	0.0	0.0	0.0	0.0	0.00	na	na
Problem>	42 onwards	42	8	0	na	na	na		0	na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
			l		na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
			ļ		na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na



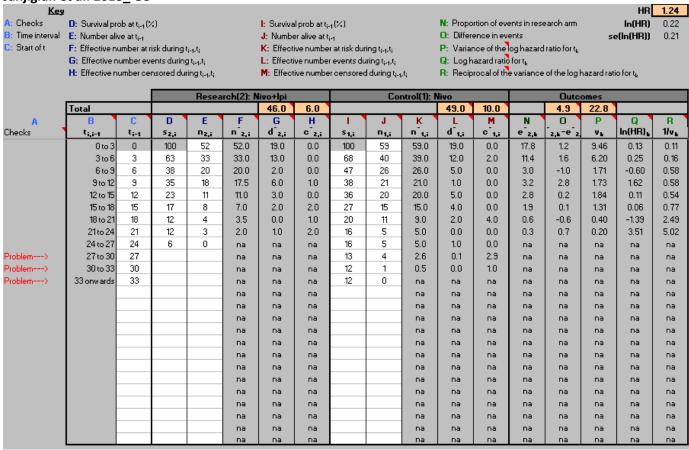

Gettinger et al 2021_OS HR 0.89 Checks D: Survival problet $t_{i+1}(\%)$ N: Proportion of events in research arm In(HR) -0.12 I: Survival problet $t_{i-1}(\%)$ O: Difference in events se(In(HR)) 0.14 Time interval E: Number alive at t_{i-1} J: Number alive at t_{i-1} P: Variance of the log hazard ratio for tk F: Effective number at risk during ti-1,ti K: Effective number at risk during t_{i-1},t_i Q: Log hazard ratio for tk G: Effective number events during t_{i-1},t_i L: Effective number events during t_{i-1},t_i R: Reciprocal of the variance of the log hazard ratio for tu H: Effective number censored during t;-t,t; M: Effective number censored during t;-1,t; Research(2): Nivo+lpi Control(1): Nivo Outcomes 92.0 49.1 Total 33.0 105.0 22.0 -5.6 D Ε G Н М N 0 P d 2, Checks C 2,i n(HR) 1/v _k n 1,i C 1,i t_{i-1} n_{2,i} $n_{1,i}$ e 2, L-e 0 to 6 0 100 125 124.5 43.0 1.0 100 127 126.0 37.0 2.0 39.8 3.3 20.00 0.16 0.05 6 to 12 65 81 80.5 25.0 1.0 71 88 87.5 33.0 1.0 27.8 -2.814.47 -0.190.07 12 to 18 54.0 13.0 2.0 13.0 0.0 6.51 -0.01 0.15 12 45 55 44 54 53.5 1.0 13.1 2.0 18 to 24 18 34 40 36.0 7.0 8.0 33 40 39.0 14.0 10.1 -3.1 5.24 -0.59 0.19 24 to 30 24 28 25 23.5 2.0 3.0 21 24 19.5 6.0 9.0 4.4 -2.3 0.50 1.99 -1.18 25 14.5 11.0 2.0 0.0 -0.03 30 to 36 30 20 2.0 15 9 7.0 1.0 4.0 0.64 1.56 36 to 42 36 22 7 3.5 0.0 7.0 13 2.5 1.0 3.0 0.6 -0.6 0.25 -2.39 3.96 42 onwards 22 42 0 na na na 8 0 na na

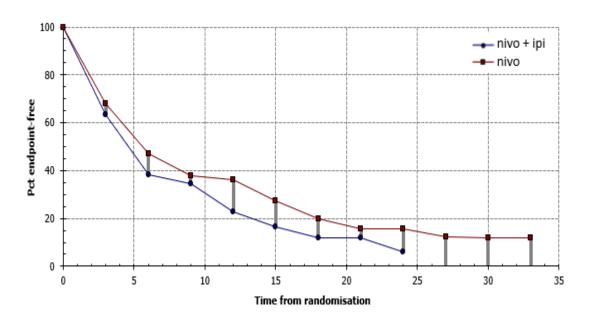
na


Sharma et al 2019_ PFS

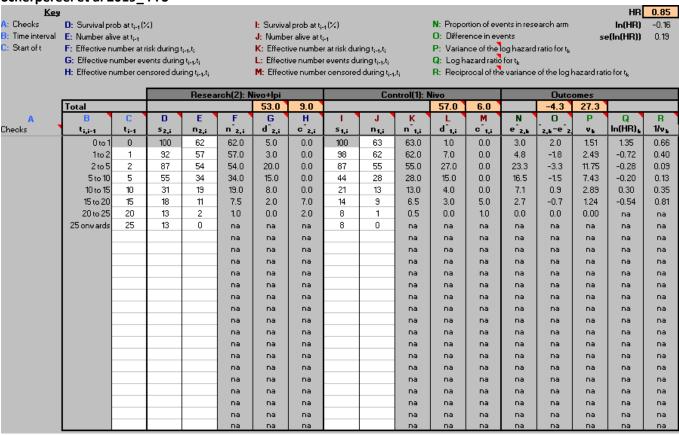

Sharma et al 2019_ OS

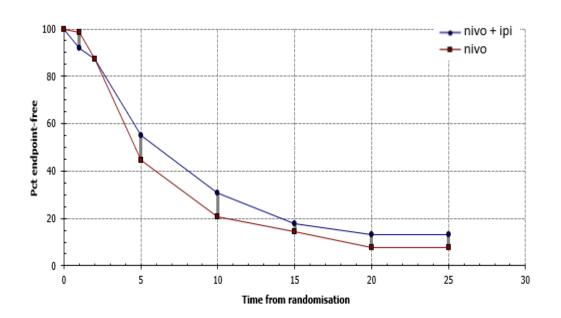
Key																HR	1.20
A: Checks	D: Survival pr	ob at t _{i-1} (%	4)			I: Surviva	al prob at t _i .	1(%)				rtion of ev		earch arm		In(HR)	0.18
B: Time interval	E: Number ali	ve at t _{i-1}				J: Numbe	er alive at t	i-1				ence in ev			50	e(In(HR))	0.17
C: Start of t	F: Effective no	umber at r	isk during)	t _{i-1} ,t _i		K: Effect	ive numbe	r at risk dui	ing t _{i-1} ,t _i		P: Variar	nce of the	og hazard	ratio for t _k			
	G: Effective n	umber ev	ents during	g t _{i-1} ,t _i		L: Effecti	ive numbe	r events du	iring t _{i-1} ,t _i			azard ratio					
	H: Effective n	umber cei	nsored dui	ring t _{i-1} ,t _i		M: Effect	ive numbe	r censore	d during t _{i-1}	,t _i	R: Recip	rocal of th	e variance	of the log h	azard rat	io for t _k	
				Resea	rch(2): N	livo+lpi	_		Cor	ntrol(1): I	Nivo			Outco	omes		
	Total					81.0	23.0				56.0	22.0		6.1	33.7		
A	В	С	D	E	F	G	H	1	J	K	L	M	N	0	Р	Q	R
Checks	t _{i,i-1}	t _{i-1}	5 _{2,i}	n _{2,i}	n _{2,i}	d z,i	C 2,i	5 _{1,i}	n _{1,i}	n _{1,i}	d 1,i	C 1,i	e 2,k	2,k-e 2	V _k	In(HR) _k	170 k
	0 to 3	0	100	104	104.0	18.0	0.0	100	78	78.0	17.0	0.0	20.0	-2.0	8.57	-0.23	0.12
	3 to 6	3	83	86	86.0	25.0	0.0	78	61	61.0	7.0	0.0	18.7	6.3	7.77	0.81	0.13
	6 to 9	6	59	61	61.0	15.0	0.0	69	54	54.0	13.0	0.0	14.9	0.1	6.97	0.02	0.14
	9 to 12	9	44	46	45.5	6.0	1.0	53	41	40.5	4.0	1.0	5.3	0.7	2.48	0.30	0.40
	12 to 15	12	38	39	39.0	7.0	0.0	47	36	36.0	4.0	0.0	5.7	1.3	2.74	0.47	0.37
	15 to 18	15	32	32	32.0	1.0	0.0	42	32	31.5	1.0	1.0	1.0	0.0	0.50	0.03	2.01
	18 to 21	18	31	31	31.0	1.0	0.0	41	30	30.0	1.0	0.0	1.0	0.0	0.50	-0.01	1.99
	21 to 24	21	30	30	30.0	2.0	0.0	40	29	29.0	1.0	0.0	1.5	0.5	0.76	0.66	1.32
	24 to 27	24	28	28	28.0	2.0	0.0	38	28	28.0	4.0	0.0	3.0	-1.0	1.50	-0.64	0.67
	27 to 30	27	26	26	26.0	0.0	0.0	33	24	23.5	1.0	1.0	0.5	-0.5	0.24	-2.11	4.15
	30 to 33	30	26	26	24.5	1.0	3.0	31	22	22.0	0.0	0.0	0.5	0.5	0.24	1.90	4.18
	33 to 36	33	25	22	22.0	3.0	0.0	31	22	21.5	2.0	1.0	2.5	0.4	1.24	0.36	0.80
	36 to 39	36	21	19	17.0	0.0	4.0	29	19	17.5	0.0	3.0	0.0	0.0	0.00	na	na
	39 to 42	39	21	15.0	10.0	0.0	10.0	29	16.0	12.5	0.0	7.0	0.0	0.0	0.00	na	na
	42 to 45	42	21	5.0	2.5	0.0	5.0	29	9.0	7.1	1.1	3.9	0.3	-0.3	0.22	-1.35	4.65
	45 to 48	45	21	0.0	0.0	0.0	0.0	24	4.0	2.0	0.0	4.0	0.0	0.0	0.00	na	na
Problem>	48 onwards	48		0.0	na	na	na	24	0.0	na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na 	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na 	na	na	na
					na na	na na	na na			na na	na na	na na	na na	na na	na na	na na	na na
					Ha	i i i i	IIa			IIa	l lia	IIa	Ha	IIa	Ha	i i i i	IIa

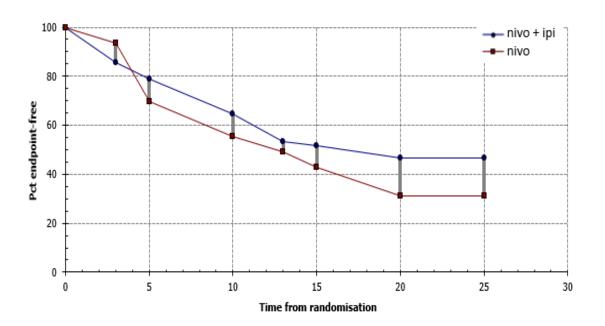


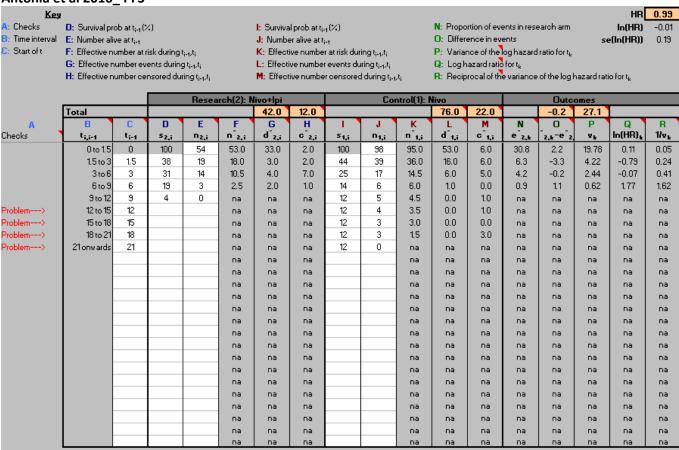

Janjigian et al 2018 PFS

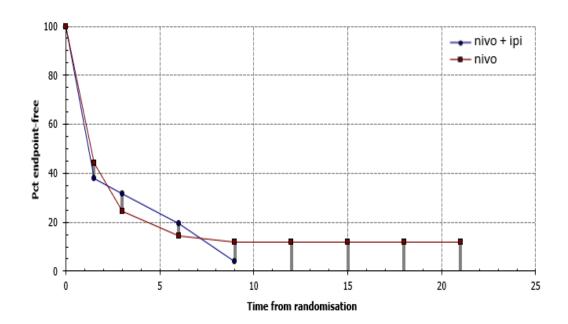
Janjigian e	ct al ZUIC	<u>_ </u>	<u>'</u>														
Key																HR	1.01
A: Checks	D: Survival pro	obiati _{ra} (%	()			I: Surviva	l problatit _i .	₄ (%)			N: Propo	rtion of ev	ents in res	earch arm		In(HR)	0.01
B: Time interval	E: Number ali	ve at t _{ist}				J: Numbe	eralive at t	i-1			O: Differ	ence in ev	ents		s	e(In(HR))	0.20
C: Start of t	F: Effective no	umberatr	isk during (ti-ezti		K: Effect	ive numbe	r at risk dui	ing t _{i-te} t;		P: Variar	nce of the	log hazard	ratio for t _u			
	G: Effective n							r events du			Q: Logh	azard ratio	for t _u	•			
	H: Effective n								during t _{i-1}	.t:				of the log l	nazard rat	io for t _i .	
										~1							
				Resea	rch(2): N	livo+lpi			Cor	ntrol(1): I	Nivo			Outc	omes		
	Total					48.0	4.0				51.0	8.0		0.2	24.5		
A	В	С	D	E	F	G	Н	_	J	K	L	М	N	0	Р	Q	R
Checks	t _{i,i-1}	t _{i-1}	5 _{2,i}	n _{2,i}	n _{2,i}	d z,i	C 2,i	5 _{1,i}	n _{1,i}	n _{1,i}	d [*] 1,i	C 1,i	e _{2,k}	2,k-e 2,	v _k	In(HR) _k	1/v _k
	0 to 3	0	100	52	51.0	36.0	2.0	100	59	57.0	40.0	4.0	35.9	0.1	18.95	0.01	0.05
	3 to 6	3	29	14	14.0	9.0	0.0	30	15	15.0	9.0	0.0	8.7	0.3	4.49	0.07	0.22
	6 to 9	6	11	5	5.0	1.0	0.0	12	6	5.0	1.0	2.0	1.0	0.0	0.50	0.04	1.99
	9 to 12	9	8	4	4.0	0.0	0.0	10	3	2.0	0.0	2.0	0.0	0.0	0.00	na	na
	12 to 15	12	8	4	4.0	2.0	0.0	10	1	1.0	0.0	0.0	1.6	0.4	0.32	1.25	3.15
	15 to 18	15	4	2	1.5	0.0	1.0	10	1	1.0	1.0	0.0	0.6	-0.6	0.24	-2.50	4.17
	18 to 21	18	4	1	0.5	0.0	1.0	0	0	0.0	0.0	0.0	0.0	0.0	0.00	na	na
	21 onwards	21	4	0	na	na	na	0	0	na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na



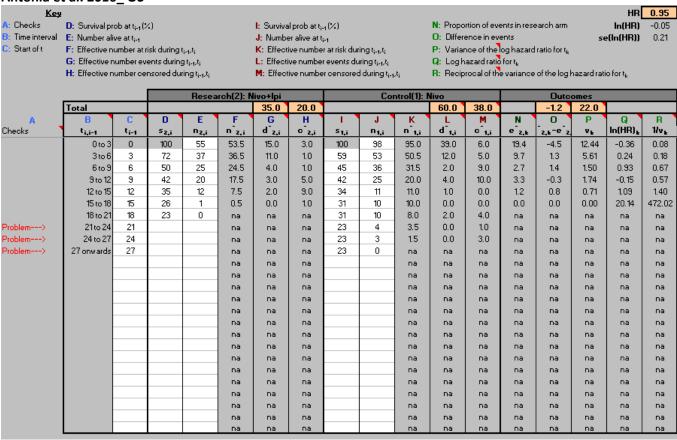

Janjigian et al. 2018_ OS

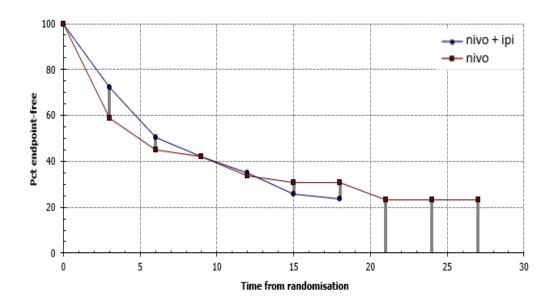

Scherpereel et al 2019_ PFS

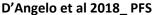


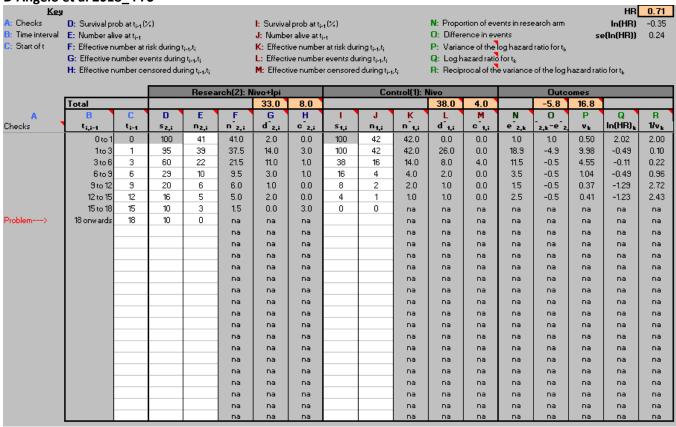

Scherpereel et al. 2019_ OS

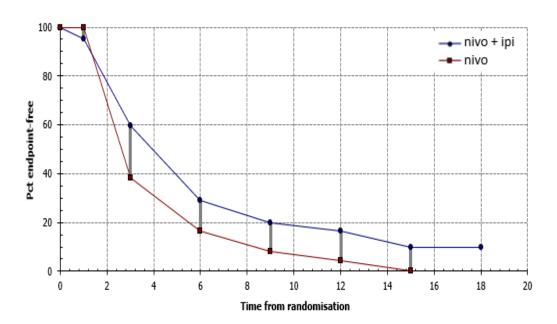
Key	ci ct aii z	_														HR	0.76
A: Checks	D: Survival pro	ob at t _{int} (%	4)			I: Surviva	l prob at t _i .	₄ (%)			N: Propo	rtion of ev	ents in rese	earch arm		In(HR)	-0.28
B: Time interval	E: Number aliv	ve at t _{i-1}				J: Numbe	eralive at t	i-1			O: Differe	ence in ev	ents		se	e(In(HR))	0.23
C: Start of t	F: Effective nu	umberatr	isk during	t _{i-1} ,t _i		K: Effect	ive numbe	r at risk dur	ing t _{i-1} ,t _i		P: Varian	nce of the	log hazard	ratio for t _k			
	G: Effective n	umber ev	ents during	g t _{i-1} ,t _i		L: Effecti	ive numbe	r events du	ring t _{i-1} ,t _i		Q: Logh	azard ratio	for t _k				
	H: Effective no	umber der	nsored du	ring t _{i-1} ,t _i		M: Effect	ive numbe	r censored	during t _{i-1}	,t _i	R: Recip	rocal of th	e variance	of the log l	nazard rati	io for t _k	
	T-1-1			Resea	rch(2): N	ivo+lpi 32.0	30.0		Сог	ntrol(1): I	41.0	22.0		-5.1	18.2		
A	Total	С	D	Е	F	32.U G	30.0 H	-		к	41.U	22.U M	N	-5.1	10.Z	Q	В
Checks	t _{i,i-1}	t _{i-1}	5 _{2,i}	n _{2,i}	n _{2,i}	d z,i	C 2,i	5 _{1.i}	n _{1.i}	n ti	d 1,i	C 1,i	e 2,k	2,k-e 2		In(HR) _k	1/0,
	0 to 3	0	100	62	62.0	9.0	0.0	100	63	63.0	4.0	0.0	6.4	2.6	3.25	0.79	0.31
	3 to 5	3	85	53	53.0	4.0	0.0	94	59	59.0	15.0	0.0	9.0	-5.0	4.74	-1.05	0.21
	5 to 10	5	79	49	49.0	9.0	0.0	70	44	44.0	9.0	0.0	9.5	-0.5	4.49	-0.11	0.22
	10 to 13	10	65	40	40.0	7.0	0.0	56	35	35.0	4.0	0.0	5.9	1.1	2.74	0.41	0.37
	13 to 15	13	53	33	33.0	1.0	0.0	49	31	31.0	4.0	0.0	2.6	-1.6	1.25	-1.26	0.80
	15 to 20	15	52	32	21.0	2.0	22.0	43	27	18.5	5.0	17.0	3.7	-1.7	1.73	-1.00	0.58
	20 to 25	20	47	8	4.0	0.0	8.0	31	5	2.5	0.0	5.0	0.0	0.0	0.00	na	na
	25 onwards	25	47	0	na	na	na	31	0	na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
	-				na na	na na	na			na na	na na	na na	na na	na na	na na	na na	na
	-				na	na	na na			na	na	na na	na na	na l	na	na l	na na
					na	na	na			na	na na	na	na	na l	na	na	na
					na	na	na			na	na	na	na	na l	na	na l	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na

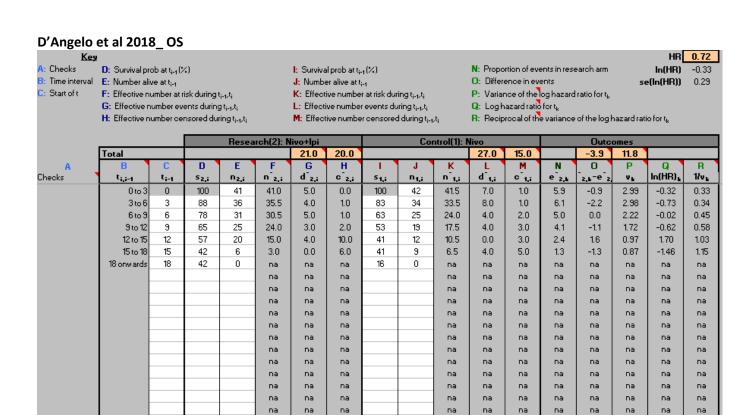


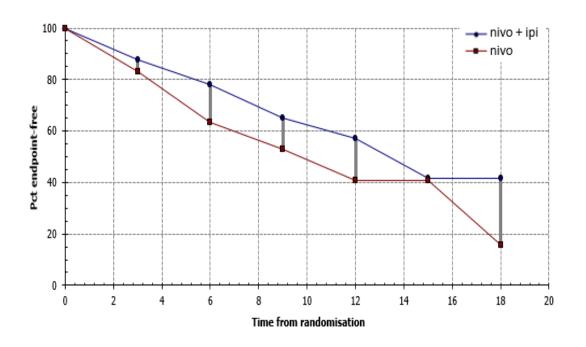

Antonia et al 2016_ PFS

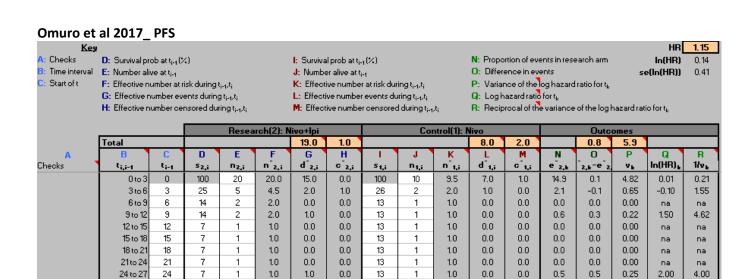





Antonia et al. 2016_OS







na

13

13

0

0.0

na

0.5

na

0.0

na

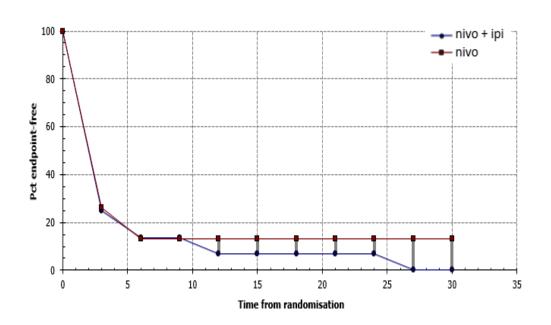
1.0

na

0.0

na

0.00


na

0.0

na

0.0

na

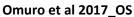
27 to 30

30 onwards

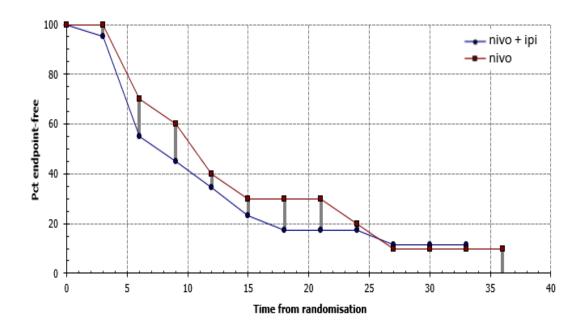
27

30

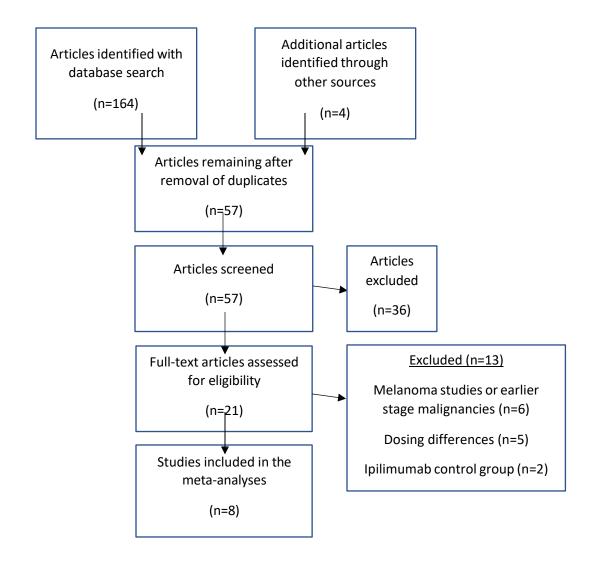
0


0

0


0

0.0


na

Key																HR	1.15
A: Checks	D: Survival pro	obiatti (S	<i>/</i> 1			I- Sumina	l prob at t;	.(%)			N: Propo	rtion of evi	ents in res	earch arm		In(HR)	0.14
B: Time interval	E: Number ali		•,				eralive at t					ence in ev			-	e(In(HR))	0.41
C: Start of t	F: Effective no		iek durina i	ь. ь				i-1 r at risk dur	ing back					I ratio for t _u	31	=(())	0.41
o. o.dicorc	G: Effective n		_					r events du				azard ratio	_	rradio for q			
	H: Effective n							r censored		t.	_	_		of the log k	nazard rati	io for t	
	. Enecuveri	amber cer	1130164444	mg 4-174		FI. Lifeon	ive Hambe	i cerisored	2 daning (;-1	^1	TI. Heolp	100010101	e valialice	or the logi	iazaiu iac	10 101 1 _k	
				Resea	rch(2): N	livo+lpi			Cor	ntrol(1): N	Vivo			Outc	omes		
	Total					17.0	3.0				9.0	1.0		0.9	6.1		
A	В	С	D	E	F	G	Н	- 1	J	K	L	M	N	. 0 .	Р	Q	R
Checks	t _{i,i-1}	t _{i-1}	5 _{2,i}	n _{2,i}	n _{2,i}	d [*] 2,i	C 2,i	S 1,i	n _{1,i}	n _{1,i}	d _{1,i}	C 1,i	e _{2,k}	2,k-e 2		In(HR) _k	1/v _k
	0 to 3	0	100	20	20.0	1.0	0.0	100	10	10.0	0.0	0.0	0.7	0.3	0.22	1.50	4.50
	3 to 6	3	95	19	19.0	8.0	0.0	100	10	10.0	3.0	0.0	7.2	0.8	2.49	0.32	0.40
	6 to 9	6	55	11	11.0	2.0	0.0	70	7	7.0	1.0	0.0	1.8	0.2	0.71	0.23	1.40
	9 to 12	9	45	9	8.5	2.0	1.0	60	6	6.0	2.0	0.0	2.3	-0.3	0.97	-0.35	1.03
	12 to 15	12	34	6	6.0	2.0	0.0	40	4	4.0	1.0	0.0	1.8	0.2	0.72	0.27	1.40
	15 to 18	15	23	4	4.0	1.0	0.0	30	3	3.0	0.0	0.0	0.5	0.4	0.23	1.75	4.29
	18 to 21	18	18	3	3.0	0.0	0.0	30	3	3.0	0.0	0.0	0.0	0.0	0.00	na	na
	21 to 24	21	18	3	3.0	0.0	0.0	30	3	3.0	1.0	0.0	0.5	-0.5	0.25	-2.00	4.00
	24 to 27	24	18	3	3.0	1.0	0.0	20	2	2.0	1.0	0.0	1.2	-0.2	0.49	-0.39	2.05
	27 to 30	27	12	2	1.0	0.0	2.0	10	1	1.0	0.0	0.0	0.0	0.0	0.00	na	na
	30 to 33	30	12	0	0.0	0.0	0.0	10	1	1.0	0.0	0.0	0.0	0.0	0.00	na	na
	33 to 36	33	12	0	0.0	0.0	0.0	10	1	0.5	0.0	1.0	0.0	0.0	0.00	na	na
Problem>	36 onwards	36		0	na	na	na	10	0	na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
	-				na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na
					na	na	na			na	na	na	na	na	na	na	na

eFigure 1. PRISMA Schema

eFigure 2. OS and PFS Meta-analysis Without Hellman et al 2019 (Sensitivity Analysis)

			Nivo+lpi	Nivo		Hazard Ratio		Hazard Ratio
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Antonia et al 2016	-0.05	0.21	54	98	13.5%	0.95 [0.63, 1.44]	2016	
Omuro et al 2017	0.14	0.41	20	10	3.5%	1.15 [0.52, 2.57]	2017	
D'Angelo et al 2018	-0.33	0.29	41	42	7.1%	0.72 [0.41, 1.27]	2018	
Janjigian et al 2018	0.22	0.21	52	59	13.5%	1.25 [0.83, 1.88]	2018	
Hellmann et al 2019	-0.09	0.09	396	396	0.0%	0.91 [0.77, 1.09]	2019	
Scherpereel et al 2019	-0.28	0.23	62	63	11.3%	0.76 [0.48, 1.19]	2019	
Sharma et al 2019	0.18	0.17	104	78	20.6%	1.20 [0.86, 1.67]	2019	+
Gettinger et al 2021	-0.12	0.14	125	127	30.4%	0.89 [0.67, 1.17]	2021	
Total (95% CI)			458	477	100.0%	0.97 [0.84, 1.13]		•
Heterogeneity: Chi² = 5.7	9, df = 6 (P = 0.45); l ²	= 0%						
Test for overall effect: Z=								0.2 0.5 1 2 5
	, ,							Favors Nivo+lpi Favors Nivo

Hazard Ratio Nivo+lpi Nivo Hazard Ratio Study or Subgroup log[Hazard Ratio] Total Total Weight IV, Fixed, 95% CI Year IV, Fixed, 95% CI SE Antonia et al 2016 -0.01 0.19 13.5% 0.99 [0.68, 1.44] 2016 Omuro et al 2017 0.14 0.41 20 10 2.9% 1.15 [0.52, 2.57] 2017 D'Angelo et al 2018 -0.34 0.24 41 42 8.5% 0.71 [0.44, 1.14] 2018 Janjigian et al 2018 0.01 0.2 52 59 12.2% 1.01 [0.68, 1.49] 2018 Hellmann et al 2019 -0.17 0.08 396 396 0.0% 0.84 [0.72, 0.99] 2019 Scherpereel et al 2019 -0.16 0.18 62 63 15.0% 0.85 [0.60, 1.21] 2019 Sharma et al 2019 0.03 0.16 78 19.0% 1.03 [0.75, 1.41] 2019 104 Gettinger et al 2021 -0.18 0.13 125 28.8% 0.84 [0.65, 1.08] 2021 Total (95% CI) 458 477 100.0% 0.91 [0.79, 1.04] Heterogeneity: $Chi^2 = 3.01$, df = 6 (P = 0.81); $I^2 = 0\%$ 0.2 0.5 Test for overall effect: Z = 1.36 (P = 0.17) Favors Nivo+lpi **Favors Nivo**

eFigure 3. Grade 3 to 4 Hepatotoxicity

	Nivo+	lpi	Nivo)		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Antonia et al 2016	0	54	0	98		Not estimable	2016	
Omuro et al 2017	2	20	0	10	3.1%	2.84 [0.12, 64.87]	2017	
D'Angelo et al 2018	5	41	0	42	3.6%	12.81 [0.68, 239.54]	2018	+
Janjigian et al 2018	3	52	5	59	12.6%	0.66 [0.15, 2.91]	2018	
Scherpereel et al 2019	8	62	0	63	3.7%	19.81 [1.12, 351.11]	2019	
Sharma et al 2019	7	104	2	78	11.0%	2.74 [0.55, 13.58]	2019	
Hellmann et al 2019	47	396	15	396	47.3%	3.42 [1.88, 6.23]	2019	─
Gettinger et al 2021	11	125	4	127	18.8%	2.97 [0.92, 9.58]	2021	-
Total (95% CI)		854		873	100.0%	2.94 [1.67, 5.15]		•
Total events	83		26					
Heterogeneity: Tau² = 0.0	8; Chi²=	6.88, d	f=6(P=	0.33);1	²=13%			0.05 0.2 1 5 20
Test for overall effect: Z=	3.76 (P=	0.0002	2)					0.00 0.2 1 5 20
								Higher in Nivo Higher in Nivo+Ip

eFigure 4. Grade 3 to 4 GI Toxicity

	Nivo-	lpi	Nivo)		Odds Ratio			Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year		M-H, Fixe	d, 95% CI	
Antonia et al 2016	3	54	0	98	3.2%	13.39 [0.68, 264.19]	2016		_		
Omuro et al 2017	2	20	0	10	5.5%	2.84 [0.12, 64.87]	2017			-	─
Janjigian et al 2018	1	52	1	59	8.7%	1.14 [0.07, 18.65]	2018	_		-	
D'Angelo et al 2018	0	41	1	42	13.8%	0.33 [0.01, 8.42]	2018		•		-
Sharma et al 2019	8	104	1	78	9.9%	6.42 [0.79, 52.42]	2019		_	•	
Hellmann et al 2019	14	396	4	396	36.4%	3.59 [1.17, 11.01]	2019				_
Scherpereel et al 2019	2	62	0	63	4.5%	5.25 [0.25, 111.56]	2019			-	\longrightarrow
Gettinger et al 2021	4	125	2	127	18.1%	2.07 [0.37, 11.49]	2021			•	
Total (95% CI)		854		873	100.0%	3.28 [1.65, 6.49]				•	
Total events	34		9								
Heterogeneity: Chi² = 4.13	3, df = 7 (P = 0.7	7); $I^2 = 09$	%				0.05	0.2	į į	
Test for overall effect: Z=	3.41 (P =	0.0007	7)							1 3	
								Highe	er in Nivo	Higher i	n Nivo+Ipi

eFigure 5. Grade 3 to 4 Pneumonitis

	Nivo-	pi	Nivo)		Odds Ratio		Odds	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Rand	om, 95% CI
Antonia et al 2016	1	54	1	98	5.4%	1.83 [0.11, 29.86]	2016		•
Omuro et al 2017	0	20	0	10		Not estimable	2017		
Janjigian et al 2018	0	52	0	59		Not estimable	2018		
D'Angelo et al 2018	0	41	0	42		Not estimable	2018		
Hellmann et al 2019	19	396	6	396	49.0%	3.28 [1.29, 8.29]	2019		
Scherpereel et al 2019	1	62	0	63	4.1%	3.10 [0.12, 77.51]	2019		· · · · · · · · · · · · · · · · · · ·
Sharma et al 2019	1	104	0	78	4.1%	2.28 [0.09, 56.61]	2019		· · · · · · · · · · · · · · · · · · ·
Gettinger et al 2021	9	125	6	127	37.4%	1.56 [0.54, 4.53]	2021		-
Total (95% CI)		854		873	100.0%	2.37 [1.24, 4.54]			•
Total events	31		13						
Heterogeneity: Tau² = 0.0	10; Chi²=	1.12, d	f= 4 (P =	0.89);1	$l^2 = 0\%$			0.05 0.2	1 5 20
Test for overall effect: Z=	2.60 (P =	0.009))						
								Higher in Nivo	Higher in Nivo+Ipi

eFigure 6. Grade 3 to 4 Endocrine Dysfunction

	Nivo-	lpi	Nivo)		Odds Ratio		Odds	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Rand	om, 95% CI
Antonia et al 2016	0	54	0	98		Not estimable	2016		
Omuro et al 2017	0	20	0	10		Not estimable	2017		
D'Angelo et al 2018	1	41	0	42	12.3%	3.15 [0.12, 79.54]	2018		•
Janjigian et al 2018	0	52	0	59		Not estimable	2018		
Sharma et al 2019	3	104	0	78	14.4%	5.41 [0.28, 106.35]	2019		- · ·
Hellmann et al 2019	24	396	2	396	60.9%	12.71 [2.98, 54.15]	2019		
Scherpereel et al 2019	1	62	0	63	12.3%	3.10 [0.12, 77.51]	2019		•
Gettinger et al 2021	0	125	0	127		Not estimable	2021		
Total (95% CI)		854		873	100.0%	7.95 [2.57, 24.65]			-
Total events	29		2						
Heterogeneity: Tau ² = 0.0	10; Chi²=	1.14, d	f=3 (P=	0.77);1	² =0%			0.05 0.0	<u> </u>
Test for overall effect: Z=	3.59 (P =	0.000	3)					0.05 0.2	1 5 20
								Higher in Nivo	Higher in Nivo+Ipi

eFigure 7. Grade 3 to 4 Fatigue

	Nivo+	lpi	Nivo)		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% CI
Antonia et al 2016	0	54	1	98	6.9%	0.60 [0.02, 14.89]	2016	+
Omuro et al 2017	3	20	0	10	3.6%	4.20 [0.20, 89.61]	2017	
D'Angelo et al 2018	2	41	1	42	6.1%	2.10 [0.18, 24.13]	2018	
Janjigian et al 2018	0	52	1	59	9.1%	0.37 [0.01, 9.32]	2018	
Hellmann et al 2019	8	396	2	396	12.7%	4.06 [0.86, 19.25]	2019	+
Scherpereel et al 2019	3	62	1	63	6.1%	3.15 [0.32, 31.16]	2019	
Sharma et al 2019	3	104	2	78	14.4%	1.13 [0.18, 6.92]	2019	•
Gettinger et al 2021	11	125	7	127	41.1%	1.65 [0.62, 4.41]	2021	- •
Total (95% CI)		854		873	100.0%	1.91 [1.03, 3.52]		•
Total events	30		15					
Heterogeneity: Chi ² = 3.29	5, df = 7 (P = 0.8	6); I² = 09	6				0.1 0.2 0.5 1 2 5 10
Test for overall effect: Z=	2.05 (P=	0.04)						
								Higher in Nivo Higher in Nivo+Ipi

eFigure 8. Grade 3 to 4 Dermatitis

	Nivo-lpi		Nivo		Odds Ratio			Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Rand	om, 95% CI
Antonia et al 2016	0	54	0	98		Not estimable	2016		
Omuro et al 2017	0	20	0	10		Not estimable	2017		
Janjigian et al 2018	0	52	0	59		Not estimable	2018		
D'Angelo et al 2018	0	41	0	42		Not estimable	2018		
Hellmann et al 2019	24	396	4	396	40.0%	6.32 [2.17, 18.40]	2019		
Scherpereel et al 2019	1	62	0	63	12.7%	3.10 [0.12, 77.51]	2019		· · · · · · · · · · · · · · · · · · ·
Sharma et al 2019	2	104	3	78	26.7%	0.49 [0.08, 3.01]	2019		
Gettinger et al 2021	3	125	1	127	20.6%	3.10 [0.32, 30.20]	2021		-
Total (95% CI)		854		873	100.0%	2.52 [0.68, 9.36]		-	
Total events	30		8						
Heterogeneity: Tau ² = 0.83; Chi ² = 5.70, df = 3 (P = 0.13); I ² = 47%								0.05 0.2	1 5 20
Test for overall effect: Z = 1.38 (P = 0.17)								0.05 0.2	
								Higher in Nivo	Higher in Nivo+Ipi