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A. Proof of Theorem 1

PROOF. To show that optimizing Equation 5 is equivalent
to optimizing the CVAE loss in Equation 6, we consider the
two terms in Equation 5 separately. Using the definition of
mutual information, it is easy to show that
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In the above derivation, we assume the conditional indepen-
dence that p(x, É�, ✓x®) = p(x, É�x®)p(✓x®). This conditional
independence holds because the only common information
between x and x® is contrast, and therefore given x®, observ-
ing ✓ provides no extra information about x or É�, and vice
versa.

Combining the two terms, Equation 5 becomes
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where the outside expectations are approximated by the em-
pirical mean, and N is the number of training instances.

B. Qualitative harmonization results of T1-w
images from a sagittal view

Figure 13 shows the sagittal orientation for a 10-site har-
monization experiment.

C. Qualitative harmonization results of T2-w
images

Figure 14 shows the harmonization results of T2 images.

D. An ablation study on the perceptual loss

We conducted an ablation study to show the e�ects of
the perceptual loss. In the experiment, we kept all the hy-
perparameters the same, the only di�erence is the presence
of the perceptual loss. According to our study, we found no
significant di�erence in SSIM and PSNR of the harmonized
images (see Table 3), but adding a perceptual loss helps the
network converge faster, as shown in Fig. 15.
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Figure 13: Shown are the original sagittal orientation of T1-w MR images from 10 sites and their corresponding harmonized
images for Sites A, E, and J .
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Figure 14: Shown are the original T2-w MR images from 10 sites and their corresponding harmonized images for Sites A.

Figure 15: The l1 reconstruction error with respect to the number of training iterations.
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