
 

 

Supplementary Material  

Supplementary Tables  

Number of participants with and without ICD and/or depression 

Mean accuracy per valence, for each ICD group 

Supplementary Table 2 - Mean accuracy and standard deviation per valence, for each ICD group 

 
GAIN LOSS 

ALL PD ON 0.65 (0.23) 0.63 (0.17) 
ALL PD OFF 0.67 (0.23) 0.6 (0.16) 
ALL HC 0.7 (0.22) 0.66 (0.13) 
ICD PD ON 0.67 (0.2) 0.59 (0.18) 
ICD PD OFF 0.53 (0.26) 0.61 (0.2) 
ICD HC 0.71 (0.23) 0.66 (0.13) 
NO ICD PD ON 0.64 (0.24) 0.64 (0.17) 

NO ICD PD OFF 0.7 (0.21) 0.61 (0.15) 
NO ICD HC 0.65 (0.18) 0.67 (0.13) 

  

  HC ON OFF PD ALL 

NUMBER OF 
PARTICIPANTS 

60 (100%) 138 (100%) 61 (100%) 199 (100%) 259 (100%) 

ICD / 36 (26%) 12 (20%) 48 (24%) 96 (37%) 
ICD WITHOUT DEP / 22 (16%) 8 (13%) 30 (15%) 78 (30%) 
DEP 0 (0%) 34 (25%) 10 (16%) 44 (22%) 44 (17%) 
DEP WITHOUT ICD 0 (0%) 20 (14%) 6 (10%) 26 (13%) 26 (10%) 
WITHOUT ICD OR DEP / 82 (59%) 43 (70%) 125 (63%) 137 (53%) 
WITH ICD AND DEP / 14 (10%) 4 (7%) 18 (9%) 18 (7%) 

Supplementary Table 1 - Number of participants with and without ICD and/or depression 

 



 

 

Model Space 

Supplementary table 3 & 4 present respectively the model space & model parameters used in 

the current paper. We used a principled approach to set up the model space. For each 

behavioral parameter (i.e. accuracy, wsls-behavior & reaction time) we began by assessing 

the MEDICATION x VALENCE effect. Second, we assessed the interaction with ICD and 

depression. To do so, we added the interaction with the binary ICD or depression regressor 

(based on clinical cut-off values for the QUIP-rs & BDI). In further, supplementary analyses, 

we assessed whether any effect of a binary regressor was accompanied also by a continuous 

effect, by using the continuous QUIP-rs & BDI scores directly. Third, we assessed whether 

the effect of interest (i.e. MEDICATION x VALENENCE x CLASS-ICD) survived 

correction for possible confounding regressors, such as psychomotor speed (symbols & digits 

modality test). Valence, and for WSLS-analysis outcome on the previous trial, were added as 

random slopes. 

Supplementary Table 3 - Model Space – We investigated reaction time, accuracy and WSLS behavior based on BRMS mixed 
effect models presented in this table. For an explanation of model parameters, see supplementary table 4; model 
parameters.  

 

  



 

 

D
ep

en
d

en
t 

V
a
ri

a
b

le
 

C
o
n

fo
u

n
d

in
g
 

fa
ct

o
r 

M
o
d

el
 

E
ff

ec
t 

o
f 

in
te

re
st

 

L
o
w

er
 b

o
u

n
d

 

9
5
%

 C
I 

U
p

p
er

 b
o
u

n
d

 

9
5
%

 C
I 

S
ig

n
if

ic
a
n

t 

Reaction 

Time 

N.A. response_time ~ valence * group + (1 + valence | SubjectNumber) valence * group -0.014 0.011 FALSE 

Reaction 

Time 

N.A. response_time ~ valence * group * class_quiprs + (1 + valence | SubjectNumber) valence * group * 

class_quiprs 

-0.033 -0.002 TRUE 

Reaction 

Time 

N.A. response_time ~ valence * group * z_QUIPRS_TOT + (1 + valence | 

SubjectNumber) 

valence * group * 

z_QUIPRS_TOT 

-0.024 0.006 FALSE 

Reaction 

Time 

N.A. response_time ~ valence * group *  class_bdi_simplified + (1 + valence | 

SubjectNumber) 

valence * group * 

class_bdi_simplified 

-0.014 0.020 FALSE 

Reaction 

Time 

N.A. response_time ~ valence * group *  z_BDI + (1 + valence | SubjectNumber) valence * group * z_BDI -0.015 0.013 FALSE 

Reaction 

Time 

Depression 

Diagnosis 

response_time ~ valence * group * class_quiprs + class_bdi_simplified + (1 + 

valence | SubjectNumber) 

valence * group * 

class_quiprs 

-0.033 -0.002 TRUE 

Reaction 

Time 

Depression 

Score 

response_time ~ valence * group * class_quiprs +  z_BDI + (1 + valence | 

SubjectNumber) 

valence * group * 

class_quiprs 

-0.033 -0.002 TRUE 

Reaction 

Time 

Anxiety Score response_time ~ valence * group * class_quiprs + z_STAI + (1 + valence | 

SubjectNumber) 

valence * group * 

class_quiprs 

-0.034 -0.002 TRUE 

Reaction 

Time 

LEDD response_time ~ valence * group * class_quiprs + z_LEDD + (1 + valence | 

SubjectNumber) 

valence * group * 

class_quiprs 

-0.034 -0.002 TRUE 

Reaction 

Time 

Dopamine 

Agonist Use 

response_time ~ valence * group * class_quiprs + useAgo + (1 + valence | 

SubjectNumber) 

valence * group * 

class_quiprs 

-0.031 0.001 FALSE 

Reaction 

Time 

Symbol & Digit 

task score 

response_time ~ valence * group * class_quiprs + SymbolDigit + (1 + valence | 

SubjectNumber) 

valence * group * 

class_quiprs 

-0.033 -0.002 TRUE 

Reaction 

Time 

Months Since 

Diagnosis  

response_time ~ valence * group * class_quiprs + MonthsSinceDiag + (1 + valence 

| SubjectNumber) 

valence * group * 

class_quiprs 

-0.033 -0.002 TRUE 

       

Win-Stay-

Lose-Shift 

N.A. StayShift_num ~ valence * group * OutcomeM1 + (1 + valence * OutcomeM1 | 

SubjectNumber) 

valence * group * 

OutcomeM1 

-0.032 0.072 FALSE 

Win-Stay-

Lose-Shift 

N.A. StayShift_num ~ valence * group * OutcomeM1 * class_quiprs + (1 + valence * 

OutcomeM1 | SubjectNumber) 

valence * group * 

OutcomeM1 * 

class_quiprs 

0.026 0.151 TRUE 

Win-Stay-

Lose-Shift 

N.A. StayShift_num ~ valence * group * OutcomeM1 * z_QUIPRS_TOT + (1 + valence 

* OutcomeM1 | SubjectNumber) 

valence * group * 

OutcomeM1 * 

z_QUIPRS_TOT 

-0.004 0.117 FALSE 

Win-Stay-

Lose-Shift 

N.A. StayShift_num ~ valence * group * OutcomeM1 *  class_bdi_simplified + (1 + 

valence * OutcomeM1 | SubjectNumber) 

valence * group * 

OutcomeM1 * 

class_bdi_simplified 

-0.110 0.023 FALSE 

Win-Stay-

Lose-Shift 

N.A. StayShift_num ~ valence * group * OutcomeM1 *  z_BDI + (1 + valence * 

OutcomeM1 | SubjectNumber) 

valence * group * 

OutcomeM1 * z_BDI 

-0.005 0.107 FALSE 

Win-Stay-

Lose-Shift 

Depression 

Diagnosis 

StayShift_num ~ valence * group * OutcomeM1 * class_quiprs + 

class_bdi_simplified + (1 + valence * OutcomeM1 | SubjectNumber) 

valence * group * 

OutcomeM1 * 

class_quiprs 

0.024 0.150 TRUE 

Win-Stay-

Lose-Shift 

Depression 

Score 

StayShift_num ~ valence * group * OutcomeM1 * class_quiprs +  z_BDI + (1 + 

valence * OutcomeM1 | SubjectNumber) 

valence * group * 

OutcomeM1 * 

class_quiprs 

0.026 0.151 TRUE 

Win-Stay-

Lose-Shift 

Anxiety Score StayShift_num ~ valence * group * OutcomeM1 * class_quiprs + z_STAI + (1 + 

valence * OutcomeM1 | SubjectNumber) 

valence * group * 

OutcomeM1 * 

class_quiprs 

0.026 0.150 TRUE 

Win-Stay-

Lose-Shift 

LEDD StayShift_num ~ valence * group * OutcomeM1 * class_quiprs + z_LEDD + (1 + 

valence * OutcomeM1 | SubjectNumber) 

valence * group * 

OutcomeM1 * 

class_quiprs 

0.024 0.150 TRUE 

Win-Stay-

Lose-Shift 

Dopamine 

Agonist Use 

StayShift_num ~ valence * group * OutcomeM1 * class_quiprs + useAgo + (1 + 

valence * OutcomeM1 | SubjectNumber) 

valence * group * 

OutcomeM1 * 

class_quiprs 

0.018 0.148 TRUE 

Win-Stay-

Lose-Shift 

Symbol & Digit 

task score 

StayShift_num ~ valence * group * OutcomeM1 * class_quiprs + SymbolDigit + (1 

+ valence * OutcomeM1 | SubjectNumber) 

valence * group * 

OutcomeM1 * 

class_quiprs 

0.025 0.151 TRUE 

Win-Stay-

Lose-Shift 

Months Since 

Diagnosis  

StayShift_num ~ valence * group * OutcomeM1 * class_quiprs + 

MonthsSinceDiag + (1 + valence * OutcomeM1 | SubjectNumber) 

valence * group * 

OutcomeM1 * 

class_quiprs 

0.028 0.155 TRUE 

       

Accuracy N.A. correct_response_num ~ valence * group + (1 + valence | SubjectNumber) valence * group -0.171 0.049 FALSE 

Accuracy N.A. correct_response_num ~ valence * group * class_quiprs + (1 + valence | 

SubjectNumber) 

valence * group * 

class_quiprs 

0.028 0.297 TRUE 

Accuracy N.A. correct_response_num ~ valence * group * z_QUIPRS_TOT + (1 + valence | 

SubjectNumber) 

valence * group * 

z_QUIPRS_TOT 

0.008 0.269 TRUE 

Accuracy N.A. correct_response_num ~ valence * group * class_bdi_simplified + (1 + valence | 

SubjectNumber) 

valence * group * 

class_bdi_simplified 

-0.242 0.051 FALSE 

Accuracy N.A. correct_response_num ~ valence * group *  z_BDI + (1 + valence | 

SubjectNumber) 

valence * group * z_BDI -0.023 0.224 FALSE 

Accuracy Depression 

Diagnosis 

correct_response_num ~ valence * group * class_quiprs + class_bdi_simplified + (1 

+ valence | SubjectNumber) 

valence * group * 

class_quiprs 

0.028 0.300 TRUE 

Accuracy Depression 

Score 

correct_response_num ~ valence * group * class_quiprs + z_BDI + (1 + valence | 

SubjectNumber) 

valence * group * 

class_quiprs 

0.028 0.297 TRUE 

Accuracy Anxiety Score correct_response_num ~ valence * group * class_quiprs + z_STAI + (1 + valence | 

SubjectNumber) 

valence * group * 

class_quiprs 

0.027 0.298 TRUE 

Accuracy LEDD correct_response_num ~ valence * group * class_quiprs + z_LEDD + (1 + valence | 

SubjectNumber) 

valence * group * 

class_quiprs 

0.023 0.294 TRUE 

Accuracy Dopamine 

Agonist Use 

correct_response_num ~ valence * group * class_quiprs +  useAgo + (1 + valence | 

SubjectNumber) 

valence * group * 

class_quiprs 

0.015 0.281 TRUE 

Accuracy Symbol & Digit 

task score 

correct_response_num ~ valence * group * class_quiprs +  SymbolDigit + (1 + 

valence | SubjectNumber) 

valence * group * 

class_quiprs 

0.025 0.295 TRUE 

Accuracy Months Since 

Diagnosis  

correct_response_num ~ valence * group * class_quiprs +  MonthsSinceDiag + (1 + 

valence | SubjectNumber) 

valence * group * 

class_quiprs 

0.015 0.290 TRUE 

  



 

 

Model parameters  

Supplementary Table 4 – Model parameters – An overview of all model parameters used for analysis. Parameter starting 
with a Z are z-scored.  

REGRESSOR NAME REGRESSOR 
TYPE  

REGRESSOR DESCRIPTION REGRESSOR 
OPTIONS 

VALENCE Binary Trial type of the current variable GAIN (1) or LOSS 
(0) 

GROUP  
(I.E. MEDICATION) 

Binary Group to which the subject 
belonged. For each option, a 
separate model was run.  

ON (1) vs OFF (0) 
ON (1) vs HC (0)  
OFF (1) vs HC) (0)  

OUTCOMEM1 Binary Indicating whether the previous 
trial was either rewarded (+€10 
for GAIN trials or €0 for LOSS 
trials) or punished (€0 for GAIN 
trials or €-10 for LOSS trials). 

Rewarded (1) or 
punished (0)  

Z_BDI Continuous Summary score of the BDI 
questionnaire, indicating the 
degree of depression 

 

Z_QUIPRS_TOT Continuous Summary score of the QUIP-rs 
questionnaire, indicating the 
degree of impulsivity 

 

Z_STAI Continuous Summary score of the STAI 
questionnaire, indicating the 
degree of anxiety in the current 
state (opposed to trait)  

 

CLASS_QUIPRS Binary Classification of clinical ICD based 
on (CITE)  

ICD (1) and non-
ICD (0)  

CLASS_BDI_SIMPLIFIED Binary Classification of clinical 
depression  

Depressed (1) and 
non-depressed 
(0) 

CORRECT_RESPONSE_NUM Binary Shows whether the correct cue 
was chosen on a given trial 

Correct (1) or 
incorrect (0)  

STAYSHIFT_NUM Binary Shows whether the same cue as 
the previous trial of that trial type 
was chosen for a given trial 

Same (1) or other 
(0)  

RESPONSE_TIME Continuous Reaction time between cue 
presentation and response in 
milliseconds  

 

Z_LEDD  Continuous Levodopa Equivalent Daily Dose   
USEAGO Binary Whether or not this participant 

actively uses dopamine agonists 
Yes (1) or No (0)  

SYMBOLDIGIT Continuous Composed score of the Symbol 
and Digits task, indicating general 
cognitive capability 

 

MONTHSSINCEDIAG Continuous Number of months between the 
measurement and diagnosis  

 

  



 

 

Patient characteristics (depression) 

Supplementary Table 5 - Patient characteristics (depression) - We subdivided the PD population based on depression, by 
using a clinical cut-off score for the BDI-II. To compare groups, we used a 2x2 ANOVA (med * DEP-group). For gender and 
dopamine agonist use, we performed a chi-square test for both ICD vs non-ICD and ON vs OFF medication. *p < 0.05, **p 
<0.01, ***p <0.001 & n.s. = not significant. 

 

  

 
ON 

 
OFF 

     

NAME PD-
DEP+ 

PD-
DEP- 

PD-
DEP+ 

PD-DEP- HC Effect 
MED 

Effec
t DEP 

Effect 
MED 
* DEP 

NUMBER OF 
PARTICIPANTS 

34 98 10 48 60 n.s. n.s. n.s. 

AGE 59.18 
(8.41) 

60.33 
(9.9) 

61.3 
(9.27) 

60.98 
(9.3) 

60 
(9.61) 

n.s. n.s. n.s. 

GENDER (F/M) 17/17 52/45 06/Apr 19/29 27/33 n.s. n.s. n.s. 

DEPRESSION (BDI) 19.5 
(5.46) 

6.44 
(3.64) 

18.4 
(3.81) 

6.48 
(3.27) 

4.6 
(3.51) 

n.s. *** n.s. 

ICD (QUIPRS) 17.03 
(14.9) 

7.24 
(9.43) 

15.6 
(14.74) 

7.85 
(8.23) 

21.98 
(10.13) 

n.s. *** n.s. 

ANXIETY 
(STAI:TRAIT) 

48.38 
(8.73) 

32.68 
(7.18) 

50.3 
(6.33) 

31.71 
(6.21) 

33.76 
(6.77) 

n.s. *** n.s. 

DISEASE SEVERITY 
(UPDRS:ON) 

32.68 
(10.79) 

24.36 
(10.81) 

30 
(10.39) 

27.48 
(14.31) 

 
n.s. * n.s. 

DISEASE SEVERITY 
(UPDRS:OFF) 

39.38 
(11.81) 

28.94 
(10.86) 

37.5 
(11.85) 

33.48 
(13.85) 

 
n.s. ** n.s. 

LEDD 702.53 
(426.76) 

505.32 
(281.0
4) 

496.59 
(294.02) 

413.86 
(260.37) 

 
* * n.s. 

DOPAMINE 
AGONIST USE 
(Y/N) 

17/17 31/67 02/08 19/22 
 

n.s. n.s. n.s. 

BRIXTON 14.12 
(6.61) 

13.53 
(6.48) 

20.1 
(6.81) 

13.92 
(5.3) 

 
* ** * 

SEMENTIC 
FLUENCY 

24.09 
(5.9) 

25.88 
(5.3) 

25.5 
(5.32) 

25.6 
(6.81) 

 
n.s. n.s. n.s. 

SYMBOLS & DIGITS 32.94 
(7.27) 

38.42 
(8.3) 

36.9 
(4.65) 

38.15 
(5.88) 

 
n.s. * n.s. 

MONTHS SINCE 
DIAGNOSIS 

28.53 
(16.81) 

24.09 
(16.01) 

32.1 
(16.56) 

33.02 
(16.14) 

 
n.s. n.s. n.s. 

RESTING TREMOR 1.65 
(2.14) 

1.01 
(1.31) 

1.5 
(2.01) 

1.33 
(2.06) 

 
n.s. n.s. n.s. 



 

 

Supplementary Figures  

Region of interest masks 

 

Supplementary Figure 1 - Masks used for region of interest analysis - GREEN: reward prediction error response, consisting 
of the of the striatum, left insula, thalamus, V3 and V4. BLUE: expected value response, consisting of a part of the 
ventromedial prefrontal and orbitofrontal cortex. Masks are based on Chase et al..1 RED: a secondary smaller RPE ROI 
(better matched to the size of the EV ROI), based on a mask of the ventral striatum, defined by Piray et al.,2 based on a 
separate functional connectivity dataset, see supplementary figure 3.  

 

ROI analysis class-ICD vmPFC 

 

Supplementary Figure 2 - BOLD response for expected value per ICD group in the ventral medial PFC ROI – (A) Medication 
induced a shift towards greater EV-related signal on GAIN vs LOSS trials in ICD patients vs non-ICD patients. Here the ROI 
(vmPFC) analysis is depicted. (B) Beta-values from the ROI in (A). (C) Brain behavior correlation; increased activity in the ROI 
vmPFC cluster correlated with increased accuracy during GAIN trials compared with LOSS trials across groups.  



 

 

ROI analysis class-ICD Ventral Striatum 

 

Supplementary Figure 3 – ROI BOLD response for reward prediction error per ICD group in the smaller RPE ROI of the 
ventral striatum as define by Piray et al. – (A) The ROI comprised of both ventral striatal areas is depicted here. (B) Reward 
prediction error-related beta-values from the ROI (A). (C) Brain behavior correlation; increased activity in the VS ROI did not 
correlate with accuracy. 

  



 

 

 Accuracy and WSLS behavior split by valence for ICD and Depression 

Supplementary Figure 4 - Accuracy and WSLS behavior split by valence for ICD – – Here we split accuracy and WSLS 
performance for either (A,C) GAIN and (B,D) LOSS trials separately. Additionally (A,B) Show accuracy, while (C,D) show 
WSLS behavior. Only WSLS behavior during GAIN trials in ICD patients was a function of medication and ICD (p(stay) ~ 
Outcome * Group * ICD-class; GAIN trials only; brms 95% CI = [-0.27 -0.03]) 

Supplementary Figure 6 - Accuracy and WSLS behavior split by valence for depression – Here we split accuracy and WSLS 
performance for either (A,C) GAIN and (B,D) LOSS trials separately. Additionally (A,B) Show accuracy, while (C,D) show 
WSLS behavior.  



 

 

Subthreshold depiction of the effect of medication on EV-related signaling 

for GAIN vs LOSS in PD ICD patients  

 

Supplementary Figure 5 - Subthreshold analysis of expected value related signaling in ICD patients (GAIN EV > LOSS EV) - 
Red indicates increased EV signaling in GAIN trials compared to LOSS for ICD patients compared to non-ICD patients (i.e. ICD 
(ON > OFF) > non-ICD (ON > OFF)).  The dual coded maps allow us to inspect sub-threshold activity, by simultaneously 
showing the contrast estimate β (color – contrast map) & significance, i.e. t-value (opacity - t-map). Thus, the color 
indicates the strength of the correlation, while the opacity indicates the significance. Clusters that survive multiple 
comparison correction (TFCE, FWE p<0.05) are encircled in black. The cluster in the medial prefrontal cluster showed 
increased activity in participants who also performed better in GAIN trials (compared to OFF trials), furthermore, beta 
values from this cluster correlated with accuracy (see main paper Fig. 6). Coordinates are in standard MNI space. Dual maps 
were implemented by Zandbelt3 and introduced by Allen et al.,4 



 

 

Supplementary Methods  

Participants  

All PD patients were part of the Personalized Parkinson Project, which is a single-center, 

longitudinal observational study in 520 PD patients.57 Patients are followed for a period of 

two years and are all tested at Radboud University Medical Center Nijmegen (Radboudumc). 

This study started in October 2017 and ran for five years until 2022. All patients were 

recruited through the Dutch national ParkinsonNet, the Dutch Parkinson Patient Association, 

Radboudumc, and social media.57 Inclusion criteria were a diagnosis of idiopathic PD, a 

disease duration of <5 years, 18+ years of age and absence of contraindications for MRI. 

Furthermore patients had to be able (and willing) to give written informed consent.57 

Additionally we recruited 60 healthy controls, who were foremost spouses and caretakers of 

the PD patients.  

Six patients were excluded, because they were unable to finish the RL task. Additionally, 

neuropsychiatric scores were incomplete for nine patients, who were excluded from the 

analyses in which those were required. Lastly, one patient was excluded specifically from the 

(f)MRI analyses due to low quality MRI data.  

Clinical and neuropsychiatric questionnaire battery details  

On day the second measurement day, on-site measurements started with an OFF-medication 

measurement on the MDS-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), 

including Hoehn & Yahr scale. Next, patients took their standard medication dose, and were 

assessed ON medication with our clinical and neuropsychological test battery. This included 

the MDS-UPDRS, Hoehn & Yahr scale, 15 words test, Benton Judgement of Line 

Orientation, Brixton Executive Functioning test, Numbers and Letters pronunciation test, 



 

 

Montreal Cognitive Assessment (MOCA), Semantic fluency & the Symbol Digit modalities 

test (SDMT), in addition to demographic and medical information (see Bloem et al.,5 for a 

detailed description of these background neuropsychological tests). Furthermore, participants 

were asked to complete a set of neuropsychiatric questionnaires at home including the Beck 

Depression Inventory II (BDI), the Questionnaire for Impulsive-Compulsive Disorders in 

Parkinson’s Disease-Rating Scale (QUIP-rs) and the State Trait Anxiety Inventory for Adults 

(STAI). 

Neuropsychiatric subgroups 

Analyses were stratified by the presence of clinical depression and ICDs. Depressive 

symptoms were quantified with the Beck Depression Inventory II (BDI). Patients with a BDI 

score >= 14 were marked as the PD-DEP+ subtype, according to Beck et al..6 Impulse control 

disorder was assessed with the Questionnaire for Impulsive-Compulsive Disorders in 

Parkinson’s disease Rating Scale (QUIP-rs). Following Evans et al.7 we classified a patient as 

PD-ICD+ if any of the individual QUIP-rs sub scores reached the cutoff value: for 

pathological gambling >= 6, compulsive buying >= 8, hypersexuality >= 8, binge eating >=7, 

combined ICDs (without hobbyism and punding) >= 10 or hobbyism and punding >= 7. For 

an overview for the number of patients with each disorder, see Supplementary Table 1. 

MRI analysis  

Image acquisition  

All scanning was performed at the Donders Centre for Cognitive Neuroimaging, which is part 

of the Donders Institute for Brain, Cognition and Behaviour (Nijmegen, the Netherlands). All 

images were acquired with a 3T MAGNETOM Prisma MR scanner (Siemens AG, Healthcare 

Sector, Erlangen, Germany) in combination with a 32-channel head coil. T1 weighted 



 

 

anatomical images were acquired with the MPRAGE sequence (Magnetization-prepared 

rapid gradient-echo). The scanner settings were set to; TR=2300ms, TE=3ms, TI=1100ms, 

flip-angle=0.8°, voxel-size= 1.0x1.0x1.0mm, number of slices = 192, FOV = 256mm, 

scanning-time = 321s. BOLD images were acquired with a multi-echo sequence. The scanner 

settings were set to; TR=2240ms, TE1=10.00ms, TE2=19.9ms, TE3=29.8ms, TE4=39.7ms, 

TE5=49.6ms, flip-angle=90°, voxel-size= 3.5x3.5x3.0mm, number of slices = 32, distance-

factor=17%, FOV = 224mm.  

Image preprocessing 

First we used the PAID algorithm (implemented by the BIDSCOINER toolbox61) to manually 

combine the individual fMRI echoes into one image. Preprocessing on this scan was 

performed with fMRIPrep 20.2.1.62 In short, the anatomical images were adjusted for non-

uniformity, skill stripped and segmented into white matter, grey matter and cerebral spinal 

fluid. Volume based spatial normalization was applied to transform the images into MNI 

space. The BOLD images were skull-stripped, co-registered to the T1 reference image with 

six degrees of freedom and corrected for slice-timing in one transformation. This pre-

processed BOLD image was transformed from native to MNI space and smoothed with an 

8mm kernel. For a detailed description of the processing pipeline & sequence details see 

supplementary methods. 

Regions of interest analysis 

To investigate group differences in relevant BOLD responses, we focused our analyses on 

those regions known to encode RPE and EV respectively. Specifically, we selected two 

regions (or networks) of interests (ROI) based on an existing meta-analysis of prior fMRI 

studies of RL.1 We downloaded the ROI files from the ANIMA database that stores the 

relevant meta-analysis.8 The RPE ROI comprised the striatum, left insula, thalamus, V3 and 



 

 

V4. The EV ROI consisted of one cluster compromising a part of the ventromedial prefrontal 

and orbitofrontal cortex. In supplementary analyses, we controlled for the differences in size 

between these RPE and EV ROIs by focusing the RPE analyses on a smaller functionally 

defined ROI, comprising only the ventral striatum, as identified based on an independent 

functional connectivity analyses by Piray et al.2 All masks were applied during the TFCE 

analysis. All ROIs were chosen a priori, for a visual representation of the ROIs see 

supplementary Fig. 1.  

Fmriprep preprocessing  

Results included in this manuscript come from preprocessing performed using fMRIPrep 

20.2.19,10 (RRID:SCR_016216), which is based on Nipype 1.5.111,12 (RRID:SCR_002502). 

Anatomical data preprocessing 

A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset.The T1-

weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection13, distributed with ANTs 2.3.314 (RRID:SCR_004757), and used as 

T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with a 

Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 

white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using 

fast (FSL 5.0.915, RRID:SCR_002823). Brain surfaces were reconstructed using recon-all 

(FreeSurfer 6.0.116, RRID:SCR_001847), and the brain mask estimated previously was 

refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-

derived segmentations of the cortical gray-matter of Mindboggle17 (RRID:SCR_002438). 

Volume-based spatial normalization to two standard spaces (MNI152NLin6Asym, 

MNI152NLin2009cAsym) was performed through nonlinear registration with 



 

 

antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the 

T1w template. The following templates were selected for spatial normalization: FSL’s MNI 

ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration 

Model18 [RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym], ICBM 152 

Nonlinear Asymmetrical template version 2009c19 [RRID:SCR_008796; TemplateFlow ID: 

MNI152NLin2009cAsym], 

Functional data preprocessing 

For each of the 2 BOLD runs found per subject (across all tasks and sessions), the following 

preprocessing was performed. First, a reference volume and its skull-stripped version were 

generated by aligning and averaging 1 single-band references (SBRefs). Susceptibility 

distortion correction (SDC) was omitted. The BOLD reference was then co-registered to the 

T1w reference using bbregister (FreeSurfer) which implements boundary-based 

registration.20 Co-registration was configured with six degrees of freedom. Head-motion 

parameters with respect to the BOLD reference (transformation matrices, and six 

corresponding rotation and translation parameters) are estimated before any spatiotemporal 

filtering using mcflirt (FSL 5.0.921). BOLD runs were slice-time corrected using 3dTshift 

from AFNI 2016020722 (RRID:SCR_005927). First, a reference volume and its skull-stripped 

version were generated using a custom methodology of fMRIPrep. The BOLD time-series 

(including slice-timing correction when applied) were resampled onto their original, native 

space by applying the transforms to correct for head-motion. These resampled BOLD time-

series will be referred to as preprocessed BOLD in original space, or just preprocessed 

BOLD. The BOLD time-series were resampled into standard space, generating a 

preprocessed BOLD run in MNI152NLin6Asym space. First, a reference volume and its 

skull-stripped version were generated using a custom methodology of fMRIPrep. Automatic 

removal of motion artifacts using independent component analysis (ICA-AROMA23) was 



 

 

performed on the preprocessed BOLD on MNI space time-series after removal of non-steady 

state volumes and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-

width half-maximum). Corresponding “non-aggresively” denoised runs were produced after 

such smoothing. Additionally, the “aggressive” noise-regressors were collected and placed in 

the corresponding confounds file. Several confounding time-series were calculated based on 

the preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise 

global signals. FD was computed using two formulations following Power24 (absolute sum of 

relative motions) and Jenkinson21 (relative root mean square displacement between affines). 

FD and DVARS are calculated for each functional run, both using their implementations in 

Nipype (following the definitions by Power et al.24). The three global signals are extracted 

within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological 

regressors were extracted to allow for component-based noise correction (CompCor25). 

Principal components are estimated after high-pass filtering the preprocessed BOLD time-

series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants: 

temporal (tCompCor) and anatomical (aCompCor). tCompCor components are then 

calculated from the top 2% variable voxels within the brain mask. For aCompCor, three 

probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical space. 

The implementation differs from that of Behzadi et al.25 in that instead of eroding the masks 

by 2 pixels on BOLD space, the aCompCor masks are subtracted a mask of pixels that likely 

contain a volume fraction of GM. This mask is obtained by dilating a GM mask extracted 

from the FreeSurfer’s aseg segmentation, and it ensures components are not extracted from 

voxels containing a minimal fraction of GM. Finally, these masks are resampled into BOLD 

space and binarized by thresholding at 0.99 (as in the original implementation). Components 

are also calculated separately within the WM and CSF masks. For each CompCor 

decomposition, the k components with the largest singular values are retained, such that the 



 

 

retained components’ time series are sufficient to explain 50 percent of variance across the 

nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped 

from consideration. The head-motion estimates calculated in the correction step were also 

placed within the corresponding confounds file. The confound time series derived from head 

motion estimates and global signals were expanded with the inclusion of temporal derivatives 

and quadratic terms for each26. Frames that exceeded a threshold of 0.5 mm FD or 1.5 

standardised DVARS were annotated as motion outliers. All resamplings can be performed 

with a single interpolation step by composing all the pertinent transformations (i.e. head-

motion transform matrices, susceptibility distortion correction when available, and co-

registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 

minimize the smoothing effects of other kernels27. Non-gridded (surface) resamplings were 

performed using mri_vol2surf (FreeSurfer).  

Many internal operations of fMRIPrep use Nilearn 0.6.228 (RRID:SCR_001362), mostly 

within the functional processing workflow. For more details of the pipeline, see the section 

corresponding to workflows in fMRIPrep’s documentation. 

Instruction for the participant 

Prior to the training block, the following instructions were given to the participant. The 

instructions were adjusted from Schmidt et al., 29 and were translated to Dutch. After the 

training session, participants could ask questions to the assessor.  

------- 

DUTCH (instructions as they were given to the participant) 

“In de scanner zult u een tweede taak uitvoeren, die ook 10 minuten zal duren. U gaat nu een 

korte versie van deze taak uitvoeren. Hier kunt u de instructies lezen. Net als eerder, gebruikt 



 

 

u hier weer de pijltoetsen om verder- of terug te gaan. Vraag het gerust aan de onderzoekers 

als er iets onduidelijk is, en laat het ze weten als u aan het eind van deze instructies bent 

gekomen.” 

“Twee symbolen verschijnen links en rechts van het kruis in het midden van het scherm. Kies 

één van de twee symbolen via het toetsenbord. Het rechter symbool kiest u door 1 in te 

toetsen, voor het linker symbool toetst u 2.” 

“Er verschijnt een pijl onder het symbool dat u gekozen heeft.” 

“Nadat u een symbool gekozen heeft, kunt u: niks krijgen, tien euro winnen of tien euro 

verliezen.” 

“Om de kans te hebben om te winnen, moet u een keuze maken en één van de twee knoppen 

indrukken. Als u niets doet of te langzaam reageert, zult u het volgende zien.” 

“De twee symbolen die op hetzelfde scherm worden weergegeven, zijn niet equivalent in 

termen van uitkomst: bij de ene heb je meer kans om niets te krijgen dan bij de ander. Elk 

symbool heeft zijn eigen betekenis, ongeacht waar (links of rechts van het centrale kruis) of 

wanneer deze wordt weergegeven.” 

“Het doel van het spel is om zo veel mogelijk geld te winnen.” 

“Veel succes! .” 

“Dit is het einde van de instructies. Neem nu nog even contact op met de onderzoeker en geef 

aan of u de taak goed begrijpt, of dat extra uitleg nodig is. De onderzoeker zal nu de toetsen 

die u voor de taak gaat gebruiken aanwijzen. De taak begint pas als u één van de 

antwoordtoetsen indrukt.” 

------- 

ENGLISH (translated from the text above) 



 

 

“In the scanner you will perform a second task, which will also take 10 minutes. You will 

now perform a short version of this task. Here you can read the instructions. Just as before, 

you will use the arrow keys to continue or go back. Please ask the assessor if anything is 

unclear and let them know when you have finished these instructions.  

“Two symbols will appear left and right of the cross in the centre of the screen. Choose one 

of the two symbols with the keyboard. You will choose the right symbol by pressing 1, for 

the left symbol you press 2.” 

“An arrow will appear under the symbol you have chosen.” 

“After you have chosen a symbol, you can either receive nothing, win 10 euros or lose 10 

euros.” 

“To be able to win, make a choice by pressing one of the two buttons. If you do not press in 

time you will see the following.” 

“The two symbols displayed on the screen, are not equivalent in terms of outcome. One will 

give a higher chance on not receiving anything than the other. Every symbol has its own 

meaning, independent of the place (left or right of the cross), or when it is displayed.” 

“The goal of the game is to make as much money as possible” 

“Goodluck!” 

“This is the end of the instructions. Please contact the assessor and tell them whether you 

fully understand the task or whether additional help is needed. The assessor will point you to 

the buttons used in the task. The task will start when you press one of the answer buttons.” 

 

  



 

 

Supplementary Results  

Simple effects analyses and breakdown of higher order interaction effects 

Medication increased WSLS on GAIN more than LOSS trials, in PD ON compared 

with healthy controls (p(stay) ~ medication * valence * previous outcome) 

This three-way interaction was driven by LOSSES (previous outcome * group; brms 95% CI 

= [-0.19 -0.02]), but not GAINS (previous outcome * group; brms 95% CI = [-0.08 0.10]), by 

patients ON medication (valence * previous outcome; brms 95% CI = [0.02 0.14]), but not 

HC (valence * previous outcome; brms 95% CI = [-0.10 0.09]) and by PUNISHMENTS on 

the previous outcome (valence * group; brms 95% CI = [-0.17 -0.002]), but not WINS 

(valence * group; brms 95% CI = [-0.08 0.12]). Further simple effects analyses revealed that 

this effect was due to patients ON medication shifting  less often than HC after  LOSSES (i.e. 

-€10)(main effect of medication; brms 95% CI = [0.05 0.22]). Thus, compared with HC,  PD 

patients ON medication were less sensitive to punishment, although this did not surface in an 

ON vs HC difference in choice accuracy (valence * group; brms 95% CI = [-0.18 0.04], main 

effect of group; brms 95% CI = [-0.26 0.02])(see Fig 1C).  

Medication increased accuracy on GAIN vs LOSS trials in PD with ICD (p(cuecorrect) ~ 

ICD-class * medication * valence) 

 The simple two-way ICD-class * medication effects on accuracy for GAIN and LOSS trials 

separately were not significant, so the effect on accuracy is best described as a change in the 

balance between learning from GAINS versus LOSSES.  



 

 

Medication increased WSLS tendency on GAIN vs LOSS trials in patients with ICD 

(p(stay) ~ ICD-class * medication * valence * previous outcome) 

Breaking down the interaction for the probability of staying into its simple interaction effects 

revealed that the WSLS effect was driven by behavior during REWARDED (i.e. WIN) trials 

(valence * ICD-class * medication; brms 95% CI = [-0.28 -0.04]), but not PUNISHED (i.e. 

LOSS) trials (valence * ICD-class * medication; brms 95% CI = [-0.08 0.12]), by the GAIN 

condition (ICD-class * medication * previous outcome; brms 95% CI = [-0.26 -0.02]) but not 

LOSS condition (ICD-class * medication * previous outcome; brms 95% CI = [-0.08 0.15]), 

by patients ON medication (valence * ICD-class * previous outcome; brms 95% CI = [0.06 

0.18]) but not patients OFF medication, and by patients with ICD (valence * previous 

outcome * medication; brms 95% CI =[-0.27 -0.02]) but not patients without ICD. Thus, 

sensitivity to REWARDS/GAINS is enhanced in patients ON versus OFF medication, but 

only when they have ICD. 

Reaction time analyses  

The effects on accuracy were accompanied by similar effects on reaction times, which also 

varied as a function of valence, medication, and neuropsychiatric vulnerability (valence * 

medication * class-ICD; brms 95% CI = [0.001 0.033]). Thus, there was a medication * 

valence interaction in patients with ICD (valence * medication; brms 95% CI = [0.001 

0.060]), but not in patients without ICDs (valence * medication; brms 95% CI = [-0.01 

0.01]). This means that ICD patients ON medication responded faster during GAIN vs LOSS 

trials than patients OFF medication (Fig. 3G). This shows that ICD patients ON medication 

are not only more accurate, but also faster during GAIN trials. Across all participants, 

subjects were slower for LOSS trials compared with GAIN trials (main effect of valence; 

brms 95% CI = [-0.13 -0.10]), but there was no interaction with medication (valence * 



 

 

medication; brms 95% CI = [-0.01 0.01]), and no main effect of medication (brms 95% CI = 

[-0.05 0.01]). However, the effect of reaction time was no longer significant after including 

the use of dopamine agonists (valence * group * ICD-class; agonist use as confound; brms 

95% CI = [-0.031 0.001]). 

The finding that medication-related increases in accuracy on gain versus loss trials are 

accompanied by medication-related increases in RTs on gain versus loss trials supports the 

hypothesis that medication boosts the efficiency of evidence accumulation for value-based 

choice, a mechanism that has previously been shown to implicate the vmPFC.30 The parallel 

effects on accuracy and RT also indicate that the effect is unlikely to reflect a strategic 

change of a decision threshold, due to biased speed-accuracy trade-off, or of a decision 

starting point, due to changes in prior beliefs about which action is valuable. Future 

computational modeling of both RT distributions and choice sequences simultaneously using 

an RL-drift diffusion model31,32 is required to establish this hypothesis more firmly.  

  



 

 

Supplementary Discussion 

Differences between Voon et al. and this work  

The most striking difference between the Voon et al. study and the current study is the double 

amount of practice trials (180 in the Voon study vs 56 in the current study). Moreover, the 

PD ICD patients in the Voon study had a longer cue evaluation time (cue presented for 4.5s + 

1s RT) compared with those in the current study (cue presentation + RT = 2.5s). In addition, 

PD patients with ICD in the Voon et al study showed increased error rate on a spatial WM 

task compared with the non-ICD patients. Based on these observations, we argue that patients 

in the Voon et al study might have been less likely to rely on a WM strategy, and more likely 

to rely on an RPE-based RL strategy to solve the task.  

Confounding effects  

Patients with ICDs had a higher daily dose of dopaminergic medication and used dopamine 

agonists more often than did patients without ICDs. This raises the question whether the 

medication-related increase in gain versus loss-based choice is due selectively to the presence 

of ICDs or rather reflects the fact that these ICD patients took higher drug doses and/or 

dopamine receptor agonists. However, the interaction between ICD and medication on both 

accuracy and WSLS (albeit not response speed) remained significant, even after correcting 

for dopamine medication dose or agonist use, suggesting that this is not the case. By analogy, 

the observation that PD-ICD patients performed more poorly than PD patients without ICDs 

on the Symbol Digit modalities test, i.e., exhibited lower mental processing speed, an effect 

often associated with general intelligence33, raises the question whether the disproportionate 

medication effect reflects variability in intelligence rather than the presence of comorbid 

ICDs. Again, however, our interactive effects of ICDs and medication on accuracy, reaction 



 

 

time and WSLS behavior survived correction for the digit-symbol score, suggesting this was 

not the case. Furthermore, our interactive effects of ICD and medication also remained 

significant after correcting for gender (more men with PD ICD than women34), for depression 

and anxiety scores (higher in PD ICD than PD non-ICD35). A final confounding factor is the 

time difference between the OFF and ON state MRI session. The OFF state measurement was 

always after the ON state measurement.  

Depression does not affect accuracy, RT or WSLS behavior  

In the current work, there was no evidence for a role for depression (BDI-II > 14) in the 

medication effects on reaction times, accuracy or win-stay-lose-shift behavior. This is 

surprising, because prior work has demonstrated disproportionate vulnerability to medication-

related decreases in sensitivity to losses in PD patients with depression compared with PD 

patients without depression: such disproportionate dopamine-related decreases in loss 

sensitivity in PD with depression versus PD without  depression has been shown in the 

context of both risky choice36 as well as reversal learning37 and, like the effects in PD ICDs,  

were argued to reflect deficient autoregulatory mechanisms in the ventral striatum, including 

decreased striatal DAT38-41 and decreased D2/D3 receptor availability42. The lack of an effect 

of depression in the current study is particularly puzzling given the large literature on RL and 

value-based decision making deficits in patients with major depression without PD43-49 (but 

see Brolsma et al.,50). Indeed, it raises the question whether depressive symptoms in our 

patient group were sufficiently severe to detect any such effect. An alternative possibility is 

that the task was not optimized to detect depression-dependent incremental RL deficits,  since 

the absence of striatal RPE signaling abnormalities might be accounted for by increased 

opportunity for reliance on WM (see discussion). Finally, it remains possible that the sample 



 

 

size of the PD depressed group OFF medication (n=10) was not large enough to detect a 

reliable effect.  

A twelve hour wash out period for dopaminergic drugs, might not be 

sufficient 

The  absence of abnormal striatal RPE signaling might be explained by insufficient 

washout of dopaminergic medication. Patients withdrew from their dopaminergic medication 

overnight for at least 12 hours prior to their assessments. It has been shown that overnight 

withdrawal is less effective in reducing dopamine levels than is the natural OFF state.51 

While we cannot exclude the possibility that striatal RPE deficits would have been revealed 

with more effective medication withdrawal, the presents results do demonstrate that frontal 

EV signals at choice are more sensitive to manipulation of dopamine than are striatal RPE 

signals at outcome.  
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