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Supplemental Methods 26 

Feature engineering and selection for the false positive recognition model 27 

We sought to resolve the false-positive identification issue by leveraging a classifier that relies 28 

on meaningful biological features (Fig. S7). Consider the in silico digestion of reference 29 

genomes and a given WMS dataset. For species-𝑖 in the integrated database of GTDB1 and 30 

Ensembl Fungi2, we denote its total number of 2b tags generated by in silico digestion of its 31 

genome as 𝐻𝑖, representing the number of its theoretically existent 2b tags. Among the 𝐻𝑖 32 

tags, there are 𝐸𝑖 unique 2b tags, which are single-copy within species-𝑖’s genome and are 33 

unique to species-𝑖 w.r.t all other species in the database.  34 

 35 

Given an input WMS dataset with total 𝑅 reads, we in silico extract 2b tags, map them to the 36 

species-specific 2b tags, and denote the number of tags unique to species- 𝑖  as 𝑄𝑖 37 

(sequenced unique 2b tags). Among the 𝑄𝑖  tags unique to species- 𝑖 , there are 𝑈𝑖 38 

nonredundant (or distinct) sequenced unique 2b tags.  39 

 40 

The genome coverage of species-𝑖 can be calculated as 𝐶𝑖 = 𝑈𝑖/𝐸𝑖. Usually, we have 𝐶𝑖 < 1 41 

for WMS data of complex microbial communities. But we can infer the actual number of 42 

sequenced unique 2b tags of species-𝑖, denoted as 𝑄̃𝑖, by its genome coverage correction, 43 

i.e., 𝑄̃𝑖 = 𝑄𝑖/𝐶𝑖 = (𝑄𝑖𝐸𝑖)/𝑈𝑖. 44 

 45 

Now we propose seven features to help us distinguish false positives from true positives. 46 

Those seven features can be classified into three distinct categories: 47 

 (1) Related to the genome coverage: 48 

Feature 1 = 𝐶𝑖 =
𝑈𝑖

𝐸𝑖
, (genome coverage)                          (7) 49 

(2) Related to the taxonomic and sequence abundance: 50 

Feature 2 = 𝑁𝑖 =
𝑄𝑖

𝑈𝑖
, (taxonomic counts)                         (8) 51 

Feature 3 =
𝑄𝑖

𝐻𝑖
,                                                                       (9) 52 

Feature 4 =
𝑄𝑖

𝑅
,                                                                     (10) 53 

Feature 5 = 𝑅𝑖 =
𝑄̃𝑖

𝑅
, (sequence counts)                           (11) 54 

 (3) Related to both genome coverage and abundances: 55 

Feature 6 = √
𝑈𝑖

𝐸𝑖
∗

𝑄̃𝑖

𝑅
,                                                              (12) 56 

Feature 7 = 𝐺𝑖 = √𝑄𝑖 ∗ 𝑈𝑖 , (G − score)                                        (13) 57 

 58 

We then employed min-max scaling and log transformation separately for any combination of 59 

the above seven features before passing to six classifiers in the scikit-learn 1.1.0 (Logistic 60 

Regression, Support-Vector Machines, naive Bayes, K-neighbors, AdaBoost, as well as 61 
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Gradient Boosting Classifier) to select the best feature combination and the best classifier. 62 

Specifically, for each feature combination using each normalization and classifier, we 63 

performed five-fold cross-validation five times using the CAMI2 simulation datasets. As a result, 64 

we found that the Random Forest classifier using log transformed features 1,2,5, and 7 (i.e., 65 

genome coverage 𝐶𝑖, taxonomic count 𝑁𝑖, sequence count 𝑅𝑖, and G-score 𝐺𝑖) has the best 66 

performance (Fig. S8). 67 

 68 

Generating a GTDB version ground truth for CAMI 2 simulation datasets  69 

CAMI 2 simulation datasets were synthetized using novel assembled microbial genomes as 70 

source genomes with only Refseq annotations3. By merging CAMI 2's source genomes with 71 

GTDB and annotating them with GTDB-TK, we were able to generate a GTDB version ground 72 

truth for MAP2B as well as improve the machine learning model's training accuracy (please 73 

see our GitHub repository for ground truth, see 74 

Manuscript/Figures/FigureS9/CAMI_50_abundance_change_in_ground_truth_100W.zip, 75 

“GT_Abd”).  76 

 77 

Validation of the false positive and true positive classifier 78 

As the most important component of MAP2B, the classification of false positives and true 79 

positives largely determines the accuracy of the final profiling result. To best utilize the four 80 

key features (genome coverage, sequence count, taxonomic count, and G-score) for 81 

distinguishing true positives from false positives, we trained a Random Forest model based 82 

on these features using all the simulated metagenomes from CAMI2. Specifically, we randomly 83 

selected 80% of the samples in each of the three CAMI2 datasets (marine, plant-associated, 84 

and strain madness datasets) to train a Random Forest model with default parameters, then 85 

tested its performance using the remaining 20% of samples. We repeated the whole process 86 

of five-fold cross-validation 50 times by randomly assigning samples in either train or test folds. 87 

When evaluating the performance of the model, the low-abundance species in the ground 88 

truth were gradually filtered out according to varying abundance thresholds from 10−6  to 89 

10−4 . This is because the sensitivity for species identification can be limited due to low 90 

sequencing depth (e.g., ~2GB/sample for the strain madness dataset). Some state-of-the-art 91 

metagenomic profilers4, 5 actually set the default abundance threshold as 10−4. Note that the 92 

minimum abundance in the CAMI2 datasets is 2 × 10−6. Therefore, using threshold 10−6 is 93 

equivalent to not setting any threshold. 94 

 We separately evaluated the performance of the Random Forest classification model on 95 

each of the three simulation datasets. For the marine dataset, when using threshold 10−6 (or 96 

equivalently, without setting any threshold), we achieved Accuracy~0.988, AUROC~0.999, 97 

AUPRC~0.999, Precision~0.991, Recall~0.990, and F1 score~0.990, respectively (Fig. S9a-98 

f). We then found that filtering out the species in the ground truth with abundance less than 99 

10−5 will further increase the performance of the model. For example, in the marine dataset, 100 

the average of Accuracy, AUROC, AUPRC, Precision, Recall, and F1 increased to 0.989, 101 

0.999, 0.999, 0.991, 0.990, and 0.991, respectively. Furthermore, filtering out species with 102 



 4 

relative abundance less than 10−4 in the ground truth can maximize the performance of the 103 

model for the marine datasets (Accuracy, AUROC, AUPRC, Precision, Recall, and F1 are 104 

0.992, 1, 1, 0.991, 0.995, and 0.993, respectively). A similar trend was observed for the plant-105 

associated (green lines and dots in Fig. S9) and strain madness datasets (yellow lines and 106 

dots in Fig. S9). The average Accuracy, AUROC, AUPRC, Precision, Recall, and F1 for the 107 

three datasets (when using 10−4 as the threshold) are 0.993, 1, 0.997, 0.958, 0.975, and 108 

0.966, respectively. Finally, the well-trained classifier with the best performance among 50 109 

repeats will be used in MAP2B. 110 

 111 

Usage of metagenomic profilers 112 

For WMS data, we compared MAP2B with five state-of-the-arts metagenomic profilers: 113 

MetaPhlAn46, mOTUs37, Bracken5, Kraken24, and KrakenUniq8. The detailed procedures are 114 

listed below. 115 

(1) MetaPhlAn4 (v4.0.1) is a marker-gene alignment approach that relies on a precomputed 116 

databases containing clade-specific marker genes. Query reads are aligned via bowtie2 117 

to the marker genes for microbial identification and abundance estimation. The database 118 

version used is mpa_vJan21_CHOCOPhlAnSGB_202103. The following MetaPhlAn4 119 

command was used. 120 

“metaphlan input_1.fastq.gz,input_2.fastq.gz --input_type fastq --bowtie2out 121 

output.bz2 --tax_lev s --nproc 32 -o output.txt” 122 

(2) mOTUs3 (v3.0.3, database version v3.0.3) is a marker-based method that compiles a 123 

large variety of phylogenetic marker genes from multiple biomes. Query reads are aligned 124 

using bwa mem and further processed to generate an abundance profile. The following 125 

mOTUs3 command was used. 126 

“motus profile -f input_1.fastq.gz -r input_2.fastq.gz -n sample_name -u -p -k mOTU -127 

o output.txt -t 32”  128 

(3) Kraken2 (v2.1.1) is a k-mers based taxonomic classification method. It searches for 35bp 129 

k-mers from the query sequence in a precomputed database that matches k-mers to the 130 

lowest common ancestor (LCA) taxon of all genomes that contain that taxon. The database 131 

was constructed using complete bacterial, archaeal, human and viral genomes from NCBI 132 

RefSeq (2020 Dec). A filtering abundance threshold of 0.01 (default) was selected. The 133 

following Kraken2 command was used. 134 

“kraken2 --threads 32 --fastq-input --gzip-compressed --paired input_1.fastq.gz 135 

input_2.fastq.gz –output output.reads --report output.report” 136 

(4) Bracken (v2.5) utilizes the read classification output from standard Kraken for a Bayesian 137 

re-estimation of taxonomic abundances, which significantly improves the false-positive 138 

issue of standard Kraken and implicitly normalizes for genome length. The kraken-filter 139 

was used to filter raw classifications at the 0.01 threshold. The below Bracken command 140 

was used.  141 

“est_abundance.py -i output_kraken2.report -k db -o output” 142 

(5) KrakenUniq (v0.5.8) is a metagenomics classifier that combines the fast k-mer-based 143 

classification of Kraken with an efficient algorithm for assessing the coverage of unique k-144 

mers found in each species in a dataset. The database was constructed using complete 145 
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bacterial, archaeal and viral genomes from NCBI RefSeq (2022 Jan). A filtering abundance 146 

threshold of 0.01 (same with kraken2) was selected. The KrakenUniq command below 147 

was used. 148 

“krakenuniq --db db --threads 32 --report-file output.report --gzip-compressed 149 

input_1.fastq.gz input_2.fastq.gz --fastq-input”  150 

(6) As for MAP2B (v1), the default MAP2B command of “perl MAP2B.pl -t 2 -l data.list -d 151 

MAP2B_DB_GTDB -o output” was used.  152 



Supplemental Figures 

 
Figure S1. Distribution of theoretically existent and unique 2b tags for all the 48,475 
species in the combined database of GTDB and Ensemble Fungi. (a) The theoretically 
existent 2b tags ( ) were generated by in silico digestion (using 16 different Type IIB enzymes) 
for 48,475 species’ 258,406 microbial genomes downloaded from GTDB and Ensembl Fungi. 
For species-  , its theoretically existent 2b tags in the integrated database of GTDB and 
Ensembl Fungi is denoted as  . (b) We then selected those 2b tags that are not 
duplicated/overlapped between any two species and named them as unique 2b tags. For 
species-  , its unique 2b tags in the integrated database of GTDB and Ensembl Fungi is 
denoted as . The Type IIB restriction enzymes in X-axis are sorted by the median  (or 

) in descending order. In this paper, we used CjePI as the Type IIB enzyme for in silico 
digestion since it has the highest median  and . Using multiple IIB enzymes has limited 
improvement in the accuracy of species identification and abundance estimation. 
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Figure S2. Sample-specific unique 2b database can largely expand the number of 
unique 2b tags compared to pre-constructed unique 2b database. To demonstrate the 
advantage of using a sample-specific unique 2b tag database for the second-round reads 
alignment, we consider the three CAMI2 simulation datasets of (a) marine, (b) plant-
associated, and (c) strain madness as examples. We compare the number of unique 2b tags 
for all identified species between the preconstructed unique 2b tag database and sample-
specific database and found that the average fold change for all the identified species is 1.42, 
1.66, and 2.69 in the three datasets, respectively. The former contains unique 2b tags 
generated by comparing theoretically existent 2b tags among 48,475 species. By contrast, the 
latter usually contains twice unique 2b tags selected from a few hundreds of species.  
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Figure S3. Comparing MAP2B with other profilers using simulation data generated by 
shared genome sources of different profilers. To minimize the influence of different 
reference databases on the evaluation, we selected the shared microbial genomes between 
different metagenomic profilers (e.g., mOTU2, MetaPhlaAn, and Kraken) as genomes to 
simulate WMS data. From left to right, the profiling results generated by different metagenomic 
profilers were compared with ground truth and illustrated by the Precision, Recall, F1 score, 
L2 similarity, and BC similarity. From top to bottom, the simulated sequencing depth increases 
from 8M to 102M, and the species richness increases from 25 to 400 under each sequencing 
depth. Since selecting the intersection of different metagenomic profilers' reference genomes 
dramatically decreased the number of source genomes for simulation, we slightly adjusted the 
species number and sequencing depth compared to Fig. 3. 



 
Figure S4. Benchmarking MAP2B using simulation data generated by genome sources 
independent of GTDB or with high a mutation rate. To overcome the challenge of 
accurately estimating species abundance in the absence of microbial genomes in the 
reference database, we implemented a systematic partitioning approach for the GTDB 
database. We utilized held-out genomes to simulate whole metagenome sequencing (WMS) 
data and systematically varied the mutation rate in the simulated data. The resulting profiles 
were compared to ground truth using Precision, Recall, F1 score, L2 similarity, and BC 
similarity metrics. We tested different numbers of holdout genomes and mutation rates, and 
the results were illustrated from left to right. In this evaluation, we also increased the simulated 
sequencing depth from 15M to 45M and increased species richness from 10 to 500 for each 
sequencing depth.   
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Figure S5. Assessing MAP2B's microbial profiles in disease discrimination (validation 
cohort) and prediction of metabolomic profiles. (a) PCoA plots for the validation cohort 
(n=65) based on the taxonomic profiles generated by different profilers. The ellipses with 95% 
CI are drawn to illustrate the difference between IBD (red dots) and non-IBD (green dots) in 
PCoA. F values of the PERMANOVA are also marked on the bottom of each plot to quantify 
the difference in disease status. (b) Comparison of prediction results by using different 
taxonomic profiling via mean SCC of the metabolite between its true values and predicted 
values across all individuals in the validation cohort. (c) Comparison of the number of 
metabolites with SCCs larger than 0.5 among different taxonomic profiling results. (d) 
Comparison of the number of taxonomic features used by different metagenomic profilers in 
the prediction for metabolomic profiles. The prediction results in (b) - (c) were generated by 
the mNODE which is in line with MiMeNet (Fig. 5b-c).  
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 215 

Figure S6. Comparison of the algorithm implemented in MAP2B and conventional 216 

metagenomic profiling tools. Using the whole genome as a reference, DNA-to-DNA 217 

methods (such as Bracken, Kraken, CLARK, Centrifuge, and PathSeq) may be confused by 218 

multi-alignments in conserved sequences, leading to a high rate of false positives. Although 219 

DNA-to-Marker methods (such as MetaPhlAn and mOTUs) can naturally avoid this issue, they 220 

may be limited by the availability of universal markers, such as missing markers from 221 

incomplete microbial genomes during database construction, high marker similarity among 222 

conspecific taxa during database construction (and sequencing), and undetectable markers 223 

in low abundant taxa during sequencing. MAP2B is not relying on the whole genome or 224 

universal marker genes as references. Using species-specific 2b tags can also avoid the multi-225 

alignment issue while providing ample small markers for species identification.   226 
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 227 

Figure S7. Definition of the terminology used in the species identification procedures 228 

of MAP2B. For species-𝑖, we denote its total number of 2b tags generated by in silico digestion 229 

of its genome as 𝐻𝑖. Among the 𝐻𝑖 tags, there are 𝐸𝑖 tags that are single-copy within the 230 

genome of species-𝑖, and are unique to species-𝑖 w.r.t all other species in the database of 231 

microbial genomes. Given an input WMS sequencing dataset, we in silico extract 2b tags, map 232 

them to the species-specific 2b tags, and denote the number of tags unique to species-𝑖 as 233 

𝑄𝑖. Among the 𝑄𝑖 tags unique to species-𝑖, there are 𝑈𝑖 distinct or nonredundant ones. 𝑅 is 234 

the total number of reads in the WMS sequencing data, which can vary a lot across different 235 

samples.  236 
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Figure S8. TOP-10 feature combinations for each classifier in discriminating false 
positives from true positives. To select the best feature combination, and the best classifier, 
both min-max scaling and log transformation were used separately for any combination of the 
seven features before passing to seven classifiers: Random Forest (RF), K-neighbors (KNN), 
Gradient Boosting (GB), AdaBoost (ADA), Support-Vector Machines (SVM), Logistic 
Regression (LR), and naive Bayes (Bayes). For each feature combination and each classifier, 
we performed five-fold cross-validation five times using the CAMI2 simulation datasets and 
compared their performance via (a) Accuracy, (b) Precision, (c) Recall, and (d) F1 score. 

  

a

b

Feature 1

Feature 3
Feature 2

Feature 4

Feature 6
Feature 5

Feature 7

MinMaxscaler
Log transform

0.
92

5
0.

95
0

0.
97

5
Ac

cu
ra

cy
0.

80
0.

85
0.

90
0.

95
1.

00
Pr

ec
is

io
n

0.
2

0.
4

0.
6

0.
8

R
ec

al
l

ADA BayesGBKNN LRRF SVM

0.
90

0.
93

0.
96

F1
 s

co
re

c

d



 
Figure S9. Performance evaluations of the machine learning model on false positive 
recognition based on 50 times five-fold cross-validation. When evaluating the 
performance of the model, the low-abundance species in the ground truth were filtered out 
according to different abundance thresholds. We gradually discard the true species with 
relative abundance from 10−6  to 10−4  and illustrate the performance of the model in 
determining false positives using metrics such as (a) the Area Under the Receiver Operating 
Characteristic (AUROC) curve; (b) the Area Under the Precision-Recall Curve (AUPRC); (c) 
Accuracy; (d) Precision; (e) Recall; and (f) F1-score.  
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