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MOTIVATION Immune checkpoint inhibitors (ICIs), now mainstays of cancer treatment, show great poten-
tial but only benefit a subset of patients. Amore complete understanding of the immunological mechanisms
and pharmacodynamics of ICI in patients with cancer may help identify the patients most likely to benefit
and generate knowledge for the development of next-generation ICI regimens. We set out to interrogate
the temporal dynamics of T cell populations in patients treatedwith ICI from flow cytometry data. Advanced
statistical and computational approaches are needed for mining high-parameter flow cytometry data to un-
cover immunological insights with clinical relevance.
SUMMARY
Wepresent TopicFlow, a computational framework for flow cytometry data analysis of patient blood samples
for the identification of functional and dynamic topics in circulating T cell population. This framework applies
a Latent Dirichlet Allocation (LDA) model, adapting the concept of topic modeling in text mining to flow cy-
tometry. To demonstrate the utility of our method, we conducted an analysis of �17 million T cells collected
from 138 peripheral blood samples in 51 patients with melanoma undergoing treatment with immune check-
point inhibitors (ICIs). Our study highlights three latent dynamic topics identified by LDA: a T cell exhaustion
topic that independently recapitulates the previously identified LAG-3+ immunotype associated with ICI
resistance, a naive topic and its association with immune-related toxicity, and a T cell activation topic that
emerges upon ICI treatment. Our approach can be broadly applied to mine high-parameter flow cytometry
data for insights into mechanisms of treatment response and toxicity.
INTRODUCTION

Cancer immunotherapies with immune checkpoint inhibitors

(ICIs) are revolutionizing cancer treatment.1 ICIs, given as mono-

therapy or in combination, have proven efficacious in multiple

types of cancer, and it is estimated that approximately 44%of pa-

tients with cancer in the United States are eligible to receive ICIs.2

However, patient tumor response and toxicity under different

treatment regimens are highly heterogeneous. For example, pa-

tients with melanoma who receive a-CTLA-4 and a-PD-1 combi-

nation blockade have a higher response rate but aremore likely to

experience immune-related adverse events (irAEs) compared

with those who receive a-PD-1 monotherapy.3–5 The identifica-
Cell Rep
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tion of biomarkers that link immune characteristics of individual

patients to clinical outcomes during ICI treatment may help guide

treatment selection for individual patients to improve therapeutic

benefit while minimizing toxicity for patients.6

Flow cytometry analysis has become an important tool to study

the tumor microenvironment as well as patients’ peripheral blood

samples in the context of immunotherapy. Several biomarkers

examining functional cell types have been identified to predict

treatment response or define resistance mechanisms to ICIs.7–9

These analyses commonly focus on a limited number of pre-spec-

ified cell types determined from prior domain knowledge,

potentially overlooking important unmined subpopulations.

Furthermore, recent advances in flow and mass cytometry have
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significantly improved the throughput, allowing 30–50 markers to

be measured simultaneously at single-cell resolution,10 which al-

lows for the exploration of a much larger number of possible cell

subsets. Such high-parameter flow cytometry data, when per-

formed on longitudinally collected samples, are exceedingly com-

plex and pose a great analytical challenge to (1) delineate cell-type

composition frommillions of single cells and (2) map the temporal

evolution of cell types over time. Sophisticated statistical and

computational tools are needed to fully leverage the complexity

and richness of high-parameter single-cell data in order to expe-

dite biomarker discovery in cancer immunotherapy.

In recent years, there have been concerted efforts to advance

the development of cutting-edge computational methods for

flow cytometry including visualization, clustering, and lineage

tracing of cell populations, as reviewed in Aghaeepour et al.11

The current state-of-the-art approach allows refined cell-type

classification and visualization. Although identifying cell types

is an important task, a more difficult challenge lies in modeling

the relationship between them and how they collectively charac-

terize the immune compartment at baseline and any subsequent

shifts pharmacodynamically upon specific ICI regimens. Further-

more, it remains a challenge to quantitatively link complex im-

mune cell composition and the temporal dynamics with clinical

outcomes at the individual sample level.

To fill these gaps, we present an innovative statistical and

computational framework that is inspired by works developed

in monitoring temporal dynamics of bacterial strains.12,13

We adapt the Latent Dirichlet Allocation (LDA) model14 to inves-

tigate the pharmacodynamics of T cell compositions in periph-

eral blood of ICI-treated patients with cancer early after

treatment initiation. LDA is a generative statistical model for

the identification of hidden structures in large data and is widely

applied for topic discovery in text-mining analysis. Here, we

present a unique application of LDA to understand the

temporal evolution of T cells in flow cytometry data to track early

pharmacodynamic changes after exposure to ICIs (Figure 1A). In

an unsupervised fashion, LDA explores the hidden structure and

identifies latent topics with interpretable features relating to bio-

logically relevant function states (Figure 1B), allowing for the dis-

covery of potential biomarkers of clinical relevance.

Contrasting the conventional flow cytometry analysis of individ-

ual cell population one at a time, the LDA framework allows joint

modeling of the relationship between different cell types and the

evaluation of dynamic changes of cell populations in consort.

Our proposed work provides a data-mining tool for flow cytome-

try analysis of tens of millions of single cells across a large collec-

tion of patient samples. It allows the investigator to discover func-

tional themes that connect different cell types that characterize

the immune composition in patient samples, to evaluate pharma-

codynamic changes upon treatment, and to interrogate the asso-

ciation between specific patterns and clinical outcomes.

RESULTS

Method overview
We present TopicFlow, a topic model approach for mining large-

scale high-dimensional flow cytometry data from longitudinally

collected patient samples. Motivated by the similarities between
2 Cell Reports Methods 3, 100546, August 28, 2023
text data mining and flow cytometry analysis, LDA considers

cells as words, cell types as terms, patient samples as docu-

ments, and biological processes as topics (Figure 1C). It as-

sumes that each cell in a patient sample arises from a mixture

of topics, each of which is a probability distribution over cell

types. LDA takes as input a cell-type-by-sample count matrix,

which is similar to the term-by-document matrix in text analysis.

The cell types can be obtained through a graph-based clustering

of single cells from pooled samples (Figure 1B). Then, the cell-

type-by-sample count matrix is decomposed by LDA into three

matrices:

(1) cell-type-by-topic matrix, B, for topic content

(2) topic-by-sample matrix, Q, for topic prevalence

(3) vector of cell counts, N

The cell-type-by-topic matrix represents topics as distinct

discrete distributions across cell types, thus facilitating the link-

age between topics and cell types. Each topic is a weighted

combination of a specific set of cell types that may be function-

ally related. Within each topic, cell types exhibiting similar abun-

dance patterns across patient samples are likely to be involved in

the same biological process. In contrast to the conventional

approach of assessing one cell type at a time, utilization of

LDA offers a comprehensive approach to systematically eval-

uate all cell types simultaneously. This enables researchers to

gain insights into the underlying biological processes by exam-

ining the co-occurring patterns of cell types within topics.

The topic-by-sample matrix displays topic proportions esti-

mated within each individual sample. This matrix enables us

to characterize and quantify topic composition at the sample

level and track the topic evolution over time (Figure 1D). By us-

ing this topic prevalence matrix, we can directly correlate

topics (composed of T cell subtypes with shared functional

states) with clinical outcomes. Patients with similar topic

composition and temporal dynamics may also share similar

clinical outcomes and pharmacodynamic profiles, as we will

describe in detail in the STAR Methods. In the following sec-

tion, we provide an illustration of how LDA deconvolutes the

longitudinal flow cytometry data to characterize topics that

generate biological insights. To demonstrate this, we present

a specific data example.
Data
The large-scale flow cytometry dataset we analyzed contains

�17 million T cells from a cohort of 51 patients with melanoma

(138 samples) treated with a combination of anti-CTLA-4 and

anti-PD-1 ICI as part of a phase II clinical trial (ClinicalTrials.gov:

NCT03122522).15 The clinical outcome data (response, overall

survival [OS], progression-free survival [PFS], toxicity) of the

cohort have been previously reported.15 Nearly half of patients

(45%) experienced severe (R grade 3) irAEs, and 61% of pa-

tients responded (complete response [CR] or partial response

[PR]) to the ICI treatment (Figure 1A). Based on pre-treatment pe-

ripheral blood samples, our prior work on a large cohort has clas-

sified patients into three ‘‘immunotypes’’ (LAG+/LAG�/PRO) that

are correlated to survival and response,16 which we also include

in the analysis. Flow cytometry was performed using an X50



Figure 1. Latent Dirichlet Allocation reveals hidden structures in flow cytometry data

(A) Data overview.

(B) Deconvolution of flow cytometry data with Latent Dirichlet Allocation (LDA) model after pooled clustering analysis.

(C) The analogy between text analysis and flow cytometry analysis.

(D) Fractional membership of topics within each sample and its evolution over time.

(E) Graphic representation of LDA model.

See also Table S4.
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Figure 2. Identification of T cell clusters in the X50 flow cytometry data

(A) UMAP plot of T cell clusters.

(B) UMAP plot of T cells overlaid with the expression of CD4 and CD8.

(C) Heatmap displaying average marker expression (scaled) of markers in each cluster.

(D) UMAP plot of T cells overlaid with the expression of CD45RA, CCR7, Ki67, and FoxP3.

See also Table S4.
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panel that measures 29 markers for each single cell (a complete

list of markers described in STAR Methods), including check-

point blockade biomarkers (e.g., PD-1, CTLA-4, LAG-3) and

T cell lineage markers (e.g., CD45RA, CCR7). Staining was per-

formed on cryo-banked peripheral blood mononuclear cells

(PBMCs) collected at three time points for each patient: weeks

0 (pre-treatment) and 3 and 6 (on treatment).

Identification of T cell types and composition across
patient samples
Before applying the LDA model, we first identified T cell types via

the Louvain algorithm, a popular data-driven graph-based clus-

tering method,17 after pooling viable CD3+ cells from all patient

samples at all time points together to allow the comparison of
4 Cell Reports Methods 3, 100546, August 28, 2023
consistent T cell clusters across multiple samples. The 20 main

T cell clusters with relative abundance >0.1% are displayed in

the uniform manifold approximation and projection (UMAP) (Fig-

ure 2A), where CD4 and CD8 T cells are separated into two main

distinct parts (Figure 2B). The marker expression profile in the

T cell clusters is shown in Figure 2C.Basedon the lineagemarkers

CD45RAandCCR7 (Figure2D),weareable to further identifyTcell

clusters with different differentiation states, including naive T cell

(Tn) clusters (CCR7+CD45RA+), central and effector memory

T cell (Tcm and Tem) clusters (CCR7+CD45RA� and

CCR7�CD45RA�, respectively), and effectormemoryT cell re-ex-

pressing CD45RA (Temra) clusters (CCR7�CD45RA+). Among

identified cell clusters, we note one CD4 Tcm cluster (cluster 8)

and one CD8 Tem cluster (cluster 12) that highly express Ki67, a
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proliferation marker recognized in previous studies9 (Figure 2D).

We also identified T cell subsets with less well-recognized roles

in tumor immunity, including a cytotoxic CD4 Tem cluster (cluster

14) and a double-positive (CD4+CD8+) T cell cluster (cluster 19).

These cell types are currently attracting attention to understand

their role in tumor immunity.18,19

LDA reveals hidden structures in flow cytometry data
The T cell clusters we identified are inter-correlated as governed

by the underlying functional and differentiation states. To

discover the connections, we applied LDA and uncovered K =

3 latent topics, which capture the major patterns embedded in

the data. The determination of the number of topics K is

described in the STAR Methods.

To evaluate each topic, we visualize the topic weights bk for

every single topic, where a topic is represented as a distinct

probability distribution over the T cell clusters (Figure 3A). We

note that a large cell type may have high positive weights in

multiple topics simply because of its high abundance (e.g., clus-

ter 1). Therefore, we introduced the lift20 metric, the log ratio of

the topic weight of a T cell cluster v in topic k bkv over its empirical

frequency, to rank the importance of individual T cell clusters in

each topic (Figures 3B and S1). The top-ranked clusters, charac-

terized by their high lift value, were selected as representatives of

the corresponding topic. This approach avoids selecting high-

abundance clusters with little variation that could also have

high topic weight. We define the three topics as activation topic,

naive topic, and exhaustion topic based upon the most repre-

sentative cell clusters ranked by lift (Figure 3B). The activation

topic is highly represented by memory T cell clusters (Tcm/

Tem), and later, we will show that these clusters capture the ma-

jor pattern of T cell expansion after ICI. The naive topic has high

probability weights over the Tn clusters, while the exhaustion

topic consists of exclusively terminally differentiated T cell clus-

ters (Temra). The biological significance of each topic will be dis-

cussed in the next section.

Each sample can be represented as a mixture of the three

topics. The topic-by-sample matrix provides the estimated topic

proportions within each sample. Figure 3C shows that at week 0

(pre-treatment), most patient samples are characterized by a

strong presence of the naive topic (green). Upon treatment expo-

sure, the activation topic (orange) clearly emerges as seen by the

striking increase of this topic proportion at weeks 3 and also after

a second dose at week 6 (though this was weaker in some sam-

ples). The naive topic proportion correspondingly decreases

upon ICI treatment as cells transition into more ‘‘activated’’

states. This topic diagram is useful in mapping the immune cell

composition and the pharmacodynamic changes upon ICI expo-

sure at the patient level.

In order to classify patients based on the identified immune

topics, we performed a hierarchical clustering of the topic-by-

samplematrix, which led to four subgroups as shown in Figure 4.

Figure 4A (and Figure S2A) highlights the pattern of topic fraction

changes pre- and on treatment arranged by each topic individu-

ally. As described earlier, the activation topicmainly captures the

expansion of Tcm/Tem upon treatment. For most patients, the

proportion of the activation topic is near zero (dark blue) in pre-

treatment samples (week 0). This topic emerges on treatment
as seen by the increase of topic proportions inweek 3 and 6 sam-

ples. At baseline (week 0), most of the patient samples are char-

acterized by a high presence of the naive topic, which subse-

quently decreases after ICI treatment as cells transition into

more ‘‘activated’’ states. In contrast, a small subgroup of patient

samples has a lowproportion of the naive topic but a high fraction

of the exhaustion topic presented at week 0. There is no visible

reduction in the exhausted T cell population after ICI treatment.

We identified four patient subgroups by hierarchical clustering

on patient topic proportions, while each subgroup exhibits

distinct dynamic patterns within the three interpretable topics

(Figure 4B). Patients in groups 1 and 2 both have inferior in-

creases in activation topic. Group 1 has the highest proportion

of the exhaustion topic and group 2 has the highest naive topic

across time. Patients in group 3 have the highest increase in

the activation topic compared with other groups and are accom-

panied by the highest decrease in the naive topic fraction. Group

4 has a high proportion of the naive topic at week 0 and a mod-

erate increase in the activation topic. Patients in group 4 are

more likely to experience severe ICI-related toxicity compared

with the other groups: 73.1% (19/26) vs. 37.5% (9/24) (p =

0.025, chi-squared test). There is a trend that patients in group

4 have higher response rates, 69.2% (18/26) vs. 54.2% (13/24),

and better survival outcomes (Figure S2B), although these do

not reach statistical significance.

Activation topic reveals T cell expansion after ICI
treatment
The activation topic captures the pattern of T cell expansion in

peripheral blood after ICI treatment, as seen by the increase of

cells in the representative clusters highlighted in Figure 5A.

The five representative cell clusters we identified include two

CD4 T cell clusters (clusters 8 and 4), oneCD8 T cell cluster (clus-

ter 12), one regulatory T cell (Treg) cluster (cluster 9), and one

CD4�CD8� T cell cluster (cluster 16) (Figure 5B). Upon treat-

ment at week 3, the five representative clusters dramatically

increased for the entire patient cohort (Figure 5C), which was

captured by the increase in topic proportions (p = 1.3e�33) (Fig-

ure 5D). It might be of clinical interest that most immunological

changes happen just after the first dose (from baseline to week

3). The comprehensive pharmacodynamics of all 20 clusters

are provided in Figures S3–S5.

Cell clusters 8 (CD4+), 12 (CD8+), and 16 (CD4�CD8�) highly
express Ki67+, which has been established as a T cell prolifera-

tion marker.9,21,22 These cell clusters also express CD38 and

HLA-DR, which are markers of activation (Figure 5B). In partic-

ular, the Ki67+ (CD38+HLA-DR+) CD8+ population (cluster 12) is

Eomes high, Tbet high, and CD27 low (Figure 5B), consistent

with an effector phenotype. It also shows expression of PD-1,

TIM-3, and LAG-3, consistent with previous findings that the in-

crease in Ki67 expression was most prominent in the PD-1+CD8

T cells.9 Cluster 12 showed an average 8-fold increase at week 3

post-treatment from the level in pre-treatment samples (Fig-

ure 5C). In addition to cluster 12, three other clusters with high

Ki67 expression, cluster 8 (CD4+), cluster 16 (CD4�CD8�), clus-
ter 9 (Treg), and a Tem/Tcm CD4 (cluster 4), co-expanded upon

combination of anti-PD-1 and anti-CTLA-4 treatment, with an

observed 3.1-, 2.6-, 1.7-, and 1.8-fold increase in cell cluster
Cell Reports Methods 3, 100546, August 28, 2023 5



Figure 3. LDA identifies three topics in flow cytometry data

(A) Estimated weights (compositions) of clusters bk in single topics.

(B) Clusters with the top 10 highest lift for each topic. Clusters with top lift are identified as representative clusters for each topic.

(C) Sample topic proportions (qdk ) within each patient sample collected at weeks 0, 3, and 6.
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size at week 3, respectively. The activation topic presents a

unique combination of all these T cell subsets, which can be

used as a complex pharmacodynamic index to monitor patients’

immune responses during treatment.
6 Cell Reports Methods 3, 100546, August 28, 2023
Naive topic is associated with ICI-related toxicity
The second topic we labeled the naive topic, with CD4+ and

CD8+ naive T cell clusters identified as the most representative

clusters highlighted in Figure 6A. The four representative clusters



Figure 4. LDA reveals patient subgroups with distinct pharmacodynamics

(A) Heatmap showing the sample topic proportions (qdk ) for each single topic (patients, n = 50). Patient 17-162-08 has only one sample at week 0, and thus it is not

included. Missing samples are colored gray in the heatmap.

(B) Dynamics of sample topic proportions (qdk ) of the three topics in the four patient subgroups across time.
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include two naive CD4 clusters (clusters 0 and 2), one naive CD8

cluster (cluster 6), and one Treg cluster (cluster 11) (Figure 6B).

The abundances of the four representative clusters, as well as

the proportions of the naive topic, decrease slightly after treat-

ment (p = 5.1e�17 for the difference in proportions across

time) (Figures 6C and 6D), indicating the differentiation of naive

T cells during the immune response. The four representative

clusters shared a high level of marker expression in CCR7,

CD45RA, and CD127, which are key markers of naive T cell line-

age (Figure 6B). Interestingly, individuals that experience severe

ICI-related toxicity (grade 3–4) have a higher proportion of the

naive topic at baseline week 0 (p = 0.029) (Figure 6E), while there

is no significant difference in changes over time between pa-

tients with/without severe toxicity (p = 0.095 for the interaction

effect). In contrast, we failed to identify the association between

each individual naive cell cluster and toxicity (Table S1), likely

due to lack of power by univariate analysis of each individual

cell cluster in isolation. There is no association found between

toxicity and the other two topics in this cohort and no association

observed between the three topics and response (Figure S6).

Exhaustion topic is related to LAG+ immunotype
The exhaustion topic includes four representative clusters (Fig-

ure 7A): two CD8 Temra clusters (clusters 3 and 5), one CD4
Tem cluster (cluster 14), and one CD4�CD8� cluster (cluster

13). The representative clusters in this topic highly express

LAG-3, a T cell exhaustion marker. Besides LAG-3, the four

representative clusters also highly express Tbet, GZM-B, and

Eomes, markers for functional cytotoxic T cells (Figure 7B). Clus-

ter 14 is a cytotoxic CD4 T cell cluster previously reported to be

correlated with clinical outcomes in bladder cancer.18,23

Compared with the other two topics, the topic proportions of

the exhaustion topic, as well as the abundances of its four repre-

sentative clusters, are not significantly changing over time (p =

0.14 for the difference in proportions across time) (Figures 7C

and 7D), but there is a subgroup of patients with strikingly high

exhaustion topic proportions, contrasting the rest of the patients

(Figures 3C and 4A). For better illustration, we compared pre-

treatment samples from two patients (LAG+ vs. LAG� immuno-

types) with four representative clusters highlighted (Figure 7A).

The LAG+ patient sample is dominated by the exhaustion topic

(qdk = 0:54), while the LAG� patient sample is not (qdk =

0:01). We observed substantial differences in abundances of

clusters 3, 5, and 14 when comparing the two patients.

The exhaustion topic is highly related to the LAG+ immuno-

type, which has been associated with worse clinical outcomes

in the previous study.16 In that study, three immunotypes

(LAG�, LAG+, and PRO) were identified in peripheral blood
Cell Reports Methods 3, 100546, August 28, 2023 7



Figure 5. The activation topic

(A) UMAP plots of T cells at three time points of patient 17-162-05 (PR, severe irAE), with five representative clusters of the activation topic highlighted. Each

UMAP plot contains 20,000 random-sampled cells from each sample.

(B) Heatmap showing average marker expression (scaled) of the five representative clusters.

(C) Relative abundances (percentages of cells in each cluster out of total T cells) of the five representative clusters of the activation topic change over time. The

clusters are ordered by lift. p values were provided to test the time effect. One outlier (30.2% at week 3) for cluster 12 was removed for better visualization.

(D) Activation topic proportions of each individual patient, paired with gray lines.

(E) Ridge plots of Ki67 marker expression over the five representative clusters.
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samples using a four-marker classifier (%LAG-3+CD8+, %

Ki67+CD8+, %TIM-3+CD8+, %ICOS+CD8+). Shen et al. reported

that LAG+ patients with high levels of LAG-3+CD8+ cells prior to

treatment are more likely to have a poor response, particularly

when treated with anti-PD-1 regimens.16 The exhaustion topic

provides advanced insights into the underlying T cell composi-

tion of LAG+/LAG� immunotypes. Moreover, we show the ratio

of CD8 Temra/Tn (abundance of clusters 3 and 5/abundance

of cluster 6) may be a superior biomarker (stable across time

and not limited to pre-treatment samples) for distinguishing be-

tween LAG� and LAG+ immunotypes (Figure 7E), with p =

0.006 for the immunotype main effect and p = 2e�5 for the inter-

action effect between time and immunotype. This can be attrib-

uted to the fact that the majority of LAG-3+CD8+ cells in the pre-

treatment samples belong to the Temra cell subset (in clusters 3

and 5).

DISCUSSION

Immune cells are highly heterogeneous, containing a mixture of

signals from all unknown ongoing biological processes. Here, we
8 Cell Reports Methods 3, 100546, August 28, 2023
addressed the problem of deciphering hidden structures from

longitudinal flow cytometry data in patients treated with ICI.

We adopted the LDA model from text analysis and presented a

unique computational framework for investigating potentially

clinically relevant pharmacodynamical characteristics underly-

ing the data. We demonstrated that LDA is effective in deconvo-

luting noisy flow cytometry data and can characterize topics that

provide biological insights. With LDA, T cell subsets can be

distilled into topics, which reveal patient subgroups with distinct

dynamics.

Our method was inspired by the application of LDA in longitu-

dinal microbiome analysis,12,13 where it was able to decipher the

temporal changes inmicrobe composition. Alternative models to

monitor dynamics of T cell compositions include the fitness

model24 from population genetics and the Lotka-Volterra model

(known as the predator-prey model).25 However, these models

require more time points for model fitting and/or assume no dif-

ferentiation between cell types. The LDA model, on the other

hand, allows analysis of data from patients with limited time

points and was demonstrated to work well on the longitudinal

flow cytometry data.



Figure 6. The naive topic

(A) UMAP plots of T cells at three time points of patient 17-162-EXT09 (PR, severe irAE), with four representative clusters of the naive topic highlighted. Each

UMAP plot contains 5,000 random-sampled cells from each sample.

(B) The heatmap shows the average marker expression (scaled) of the four representative clusters.

(C) Relative abundances (percentages of cells in each cluster out of total T cells) of the four representative clusters of the naive topic change over time. The

clusters are ordered by lift. p values were provided to test the time effect.

(D) Naive topic proportions of each individual patient, paired with gray lines.

(E) Sample proportions of the naive topic between patients experiencing severe/no severe irAE (Y/N). p values were provided byWilcoxon rank-sum test for each

time point.
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LDA performs an unsupervised decomposition of T cell com-

positions to identify ‘‘topics’’ made up of T cell subtypes with

shared functional and differentiation states. This allows us to

mine tens of millions of single cells from a large collection of pa-

tient samples to discover the underlying functional themes that

characterize the immune composition and pharmacodynamics

changes in patients with cancer. Unlike the conventional flow cy-

tometry analysis looking at one cell type at a time, our proposed

LDA approach allows a joint modeling of the relationship be-

tween different cell types and for the evaluation of dynamic

changes of cell populations in consort. The approach is data

driven and does not require any domain knowledge, thus avoid-

ing the possible ‘‘user’’ bias in the analysis step introduced by

the preferential selection of specific markers.

In the case of our application of LDA to flow cytometry, topics

are identified as combinations of distinct cell types collectively

defined by markers relating to cell lineage and function, and

the relationship between these cell types offers some insight
into potential connections among them and unique pharmaco-

dynamic patterns in pre- and on-treatment samples from pa-

tients treated with specific immunotherapy regimens. The key

to this approach lies in the data-driven discovery of the combina-

tion of cell clusters that define a topic. The topics defined by un-

biased interrogation of all data offer at least two strong advan-

tages and opportunities for new biological discovery.

In the naive topic example, we demonstrate that the LDA

method increases the power for discover in a large, complex da-

taset. The topic identified by LDA that we labeled naive includes

both CD4 and CD8 T cell clusters with high expression of CCR7,

CD45RA, and CD127, key markers known to be expressed on

naive T cells, confirming a biologic coherence identified by the

model and, hence, the eponymous topic. Through a data-driven

aggregation of these naive cell types, we found a statistically sig-

nificant association between the naive topic and treatment-

related toxicity. This association was not found when we

analyzed the individual naive cell clusters in isolation (see
Cell Reports Methods 3, 100546, August 28, 2023 9



Figure 7. The exhaustion topic

(A) UMAP plots of T cells of patients 17-162-05 (PR, severe irAE, LAG+ immunotype) and 17-162-27 (stable disease [SD], severe irAE, LAG� immunotype) at time

point A, each with 20,000 random-sampled cells. The four representative clusters are highlighted.

(B) Heatmap of the average marker expression (scaled) of the four representative clusters of the exhaustion topic.

(C) Relative abundances (percentages of cells in each cluster out of total T cells) of the four representative clusters of the naive topic change over time. The

clusters are ordered by lift. p values were provided to test the time effect.

(D) Exhaustion topic proportions of each individual patient, paired with gray lines.

(E) The abundance ratio of CD8 Temra (clusters 3 and 5) to CD8 Tn (cluster 6) across different immunotypes (p = 0.006 for immunotype main effect and p < 0.001

for the interaction effect between time and immunotype). The sample ratios of patient 17-162-EXT05 are extremely high (around ten times the second highest) and

thus are not shown in the boxplot.
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Table S1 for results for each individual cluster). It is only in the

context of using the LDA model that this clinical association

emerges.

A second opportunity for discovery that the LDA method

presents is the potential to find connections or relationships

that were previously unrecognized. For example, the co-

expansion of CD38+ HLA-DR+ CD8+ and CD4+ T cells (clus-

ters 12 and 8) and the Treg population (FoxP3+CD4+) in

PBMCs captured by the activation topic upon the combina-

tion of anti-PD-1 and anti-CTLA-4 treatment is uniquely

identified through the LDA framework. Furthermore, the co-

existence of circulating exhaustion-like CD8 cells (clusters 3

and 5) and a cytotoxic CD4 cell type (cluster 14) in the exhaus-

tion topic is new. Cytotoxic CD4 cells and their role in tumor

immunity have currently been receiving much attention,18

but their potential relationship to an exhausted T cell popula-
10 Cell Reports Methods 3, 100546, August 28, 2023
tion identified in our data has not been well explored. We note

that this study is a proof of principle for the methodology, and

validation of these findings requires additional analysis of

independent cohorts of data, which is outside the scope of

this paper.

LDA allows samples to have fractional membership across

topics and is sometimes referred to as a soft clustering algo-

rithm. Unlike clustering, which simply forces cell types into one

of the cellular modules (clusters), LDA provides a biologically

meaningful decomposition, quantifying not only the contribution

of each cell type to an immune topic but also the fraction of

topics within each sample. To better illustrate this, we performed

a hierarchical clustering based on Pearson correlation of T cell

subtypes (Figure S7A). The clustering approach may identify

similar cellular modules (clusters of high-correlated cell types)

but does not provide a clear way to correlate the cellular modules
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back to patient-level metadata (such as clinical outcomes) to

make inferences. Figure S7B shows a traditional clustering anal-

ysis that fails to capture any underlying functional or pharmaco-

dynamic themes that are immunologically meaningful or clini-

cally relevant.

LDA can be further extended and embedded in more complex

models for inference. Firstly, incorporating covariates in the topic

model could further extend themodel application on flow cytom-

etry data, especially under complex experimental design. The

structural topic model (STM), for example, allows us to incorpo-

rate patient/sample metadata into the model. The metadata can

be added as covariates associated with topic prevalence

(parameter Q) or topic content (parameter B) with a log link,26

and a variational expectation maximization algorithm can be im-

plemented for model inference.27 Secondly, in a setting where

long-term monitoring of treatment effects is of interest with a

large number of samples collected over time, a dynamic topic

model28 can be more powerful with a more complex modeling

of the temporal relationship across samples. Finally, incorpo-

rating additional constraints, e.g., sparsity constraint on cell-

type-by-topic matrix B, may further improve the efficiency of

the model.29

The application of LDA is not limited to flow cytometry

analysis, and it can be applied to any single-cell data

(another example of the application of LDA on a single-cell

RNA sequencing [scRNA-seq] dataset30 is provided in the

tutorial). For future work, we can further extend LDA to

explore the tumor microenvironment in multiplexed imaging

data.31 Spatial information can be incorporated into the model

to investigate the tumor and immune cell interactions.

Moreover, LDA can also be applied for multi-omics data

analysis,32,33 integrating data from multiple assays to better

understand cancer heterogeneity and predict patient clinical

outcomes.

Limitations of the study
As higher-parameter flow cytometry analysis is being adopted at

a fast pace, allowing 40+ markers to be simultaneously

measured with modern technologies including CyTOF and spec-

tral flow, our study is a timely contribution to the field and pro-

vides a powerful method along with software tools for translating

flow cytometry data into meaningful biological and clinical in-

sights. A limitation of the current study is that the application of

the TopicFlow method is illustrated using a flow cytometry data-

set generated from a single center. Although the method we

developed and presented in this paper is broadly applicable to

high-parameter flow cytometry data, its utility remains to be

seen with additional data applications. To facilitate future appli-

cations, we have developed an extensive tutorial on using the

TopicFlow method for flow cytometry data analysis. It is a

step-by-step demonstration of the workflow including pre-

gating FCS files to the T cell population, quality control steps,

cell-type classification using graph-based clustering, and finally,

the key piece of topic modeling of cell types with an LDA model.

The cell-type data matrix along with the code scripts that

reproduce the main figures in the article are also nowmade pub-

licly available. The tutorial page can be found here: https://

xiyupeng.github.io/LDA_examples/melanoma.html.
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d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The study includes melanoma patients (n = 51) in a cohort receiving combined immune checkpoint blockade (Anti PD-1/CTLA-4)

therapy from 2017 to 2019 at the Memorial Sloan Kettering Cancer Center in a phase II clinical trial study (NCT03122522).15 For

each patient, blood samples were collected at three different time points at week 0 (pre-treatment), and at weeks 3 and 6 (on-treat-

ment) after the first dose. Best Overall Response (BOR) [partial response (PR), complete response (CR), stable disease (SD), and pro-

gression of disease (PD)], survival, PFS, and toxicity grade [grade 1–2 (N), grade 3–4 (Y)] were determined and reported for each
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patient. The clinical data for this cohort, including 20 females (19–80 years old) and 31 males (35–84 years old), has been previously

reported15 and are shown in Table S4. We also included patient immunotype defined based on the 11-color panel flow cytometry

data of pre-treatment samples in our previous study.16

METHOD DETAILS

Flow cytometry data
The goal of the study is to identify the characteristics of peripheral blood T cells that are related to clinical outcomes (response,

toxicity). Flow cytometry with an X50 panel was performed on the collected peripheral blood mononuclear cells (PBMCs) as previ-

ously described.39,40 Our own X50 panel uses a cocktail of antibodies for the following markers: CD45RA-BUV395, CD4-BUV496,

ICOS-BUV563, CD25-BUV615, TIM3-BUV661, CD27-BUV737, CD8-BUV805, CD57-BV421, CXCR5-BV480, Live/Dead-FVS510,

CD14-BV570, CD19-BV570, CCR4-BV605, CCR7-BV650, HLA-DR-BV711, CD3-BV750, CD28-BV786, PD1-BB515, LAG3-

BB660, CD127-BB700, CD38-BB790, TIGIT-PE, EOMES-PE-CF594, CTLA4-PE-Cy5, FOXP3-PE-Cy5.5, GITR-PE-Cy7, TBET-

APC, KI67-AF700, GZMB-APC-Fire750. A list of the markers in the designed panel is provided in Table S2. Samples with very

poor quality were pre-identified by the flow specialist (M.A.) and were not included in the analysis.

Pre-gating analysis and quality control
Each Flow Cytometry Standard (FCS) file acquired from the flow cytometry experiments was independently preprocessed using our

in-house automated gating pipeline (built with R 4.1.3). The main preprocessing steps include (Figure S8): (1) compensation with

matrices exported from FlowJo v10.8.0 software (BD Biosciences), (2) biexponential transformation on all marker channels with pa-

rameters extra negative decades = 0.5, width basis = �30, positive decades = 4.5, (3) quality control via the R package flowAI

(v1.22.0),34 and (4) pre-gating up to CD3+ T cells via the R package openCyto (v2.4.0).35 The pre-gating strategy is detailed in

Table S3: a modified version of the T cell gating template originally provided in the openCyto R package.

For each marker, we carefully checked the consistency of transformed intensity values across all patient samples, for evaluating

the possible batch effects. We downsampled 10k cells from each sample and performed UMAP visualization and clustering analysis

on the downsampled data, the same procedure as described in the following clustering analysis section. We visually assessed the

UMAP plots and observed no significant batch effect in this cohort. Three samples were excluded in the following analysis due to a

lack of cells (<10k cells) for accurate clustering and frequency calculations.

Clustering analysis
UMAP visualization (min.dist = 0.1) and clustering analysis were performed via Seurat R package (v4.0)36 on pre-gated T cells

(CD14�CD19�, CD3+) pooled from all samples. Note that the Seurat R package is specifically designed for analyzing scRNA-seq

data. However, we utilized its embedded functions, including PCA, UMAP, and the Louvainmethod, for our data analysis. The unique

preprocessing steps for flow cytometry data have been described in the previous section prior to visualization and clustering anal-

ysis. The expression of each marker was further scaled to mean 0 and variance 1. Both UMAP and clustering analysis were conduct-

ed based on the 26 principal components (PCs), using the scaled and transformed intensity values of all 27markers as input. The first

26 PCs contribute 99.43% variation of the data. We used the Louvain algorithm, a graph-based clustering method that identifies cell

clusters or modules from a Shared-Nearest Neighbor (SNN) graph, a variant of the K-Nearest Neighbor (KNN) graph. We set K = 5 for

constructing the SNN graph since it is computationally feasible for over 10 million cells. Clustering on a KNN graph with a larger K is

computationally intensive and results in many tiny clusters. We ran the clustering algorithms with different resolutions (resolution =

0.5, 0.8, 1.0, 1.2, 1.5, 2, 2.5, 3) and obtained the best clustering result from 10 random starts under each resolution. The range of

clustering resolution was set from 0.5 to 3, slightly higher than the typical range (0.4–1.4) recommended by the Seurat package, since

the optimum resolution usually increases for larger datasets.36

We chose the clustering solution under resolution 1.5 with the highest average Silhouette scores.41 Heatmapwas used to show the

average (scaled) marker expression of each individual cluster. Clusters of less than 0.1% abundance were not displayed in both

UMAP and heatmap to increase the clarity of the figures. We did not include clusters with very low abundance since there is not

enough evidence to support that they are real and not generated by technical noises. Moreover, there is no evidence that the

low-frequency T cell subpopulations show clinical or biological interests in our analysis. We manually annotated the 20 major

T cell clusters (abundance >0.1%) out of 35 clusters in total. We use the main cell lineage markers, CD4, CD8, FoxP3, CCR7, and

CD45RA to annotate main T cell clusters: T regulatory (CD4+FoxP3+), CD4/CD8 T naive (CCR7+CD45RA+), CD4/CD8 T effector

memory (CCR7-CD45RA-), CD4/CD8 T central memory (CCR7+CD45RA-), and CD4/CD8 effector memory T cells re-expressing

CD45RA (CCR7-CD45RA+) clusters. These markers are commonly used to manually gate functional T cell subsets in flow cytometry

analysis. For better visualization, UMAP was rerun for each individual patient with different parameter settings (min.dist = 0.3).

Latent Dirichlet Allocation
LDA is a generative model that helps to identify hidden structures that explain why some parts of the data are similar. We briefly

describe the model and its application to the flow cytometry data below and refer readers to the original paper for more details.14
Cell Reports Methods 3, 100546, August 28, 2023 e2



Article
ll

OPEN ACCESS
The LDA models the clustered flow cytometry data by considering cells as words, flow samples as documents, and topics as bio-

logical profiles or processes. Suppose there are V T cell types (clusters) identified across M samples from S patients. Let cdn =

v for d = 1;2;.;M; n = 1;2;.;Nd represent the nth cell in the dth sample classified to the vth cell types (clusters). The LDA model

assumes each sample has fractional membership across K underlying topics and word cdn in samples is generated from zdn th topic,

where zdn ˛ f1; 2;.Kg are latent variables. In LDA, each sample can be explained by the following generative process (Figure 1E).

For each sample d,

a) Choose sample proportion aqd � DirichletðaÞ.
b) For each cell cdn in sample d:
e3 C
i) Choose a topic dzdn � MultinomialðqdÞ,
ii) Choose a cell cdn conditional on the topic zdn, cdn

��zdn � Multinomialðbzdn Þ
qd are mixing proportions of sample d over K underlying topics and each topic is characterized as a distribution over V T cell types

(clusters), where bk denote the weights in the kth topic over V T cell types (clusters).

In practice, we use the formulation thatmarginalizes over the zdn. Setting xdv =
PNd

n = 11fcdn = vg, the cell count of the vth cell type
in the dth sample, the marginal distribution for each sample d is

ðxd1; xd2;.; xdVÞT � MultinomialðNd;BqdÞ;
where B = ðb1;b2;.; bKÞ denote weights of all topics.

Model fitting
Gibbs sampling implemented in R package topicmodels (v0.2-12)38 was used for inferring the two sets of parameters for the LDA

model:Q = ðq1;q2;.;qMÞ, a K3Mmatrix, and B = ðb1;b2;.;bKÞ, a V3K matrix. We used the following setting for Gibbs sampling:

iter = 1000, burnin = 1000, thin = 100 (1000 Gibbs sampling draws are made with the first 1000 iterations discarded and then every

100th iteration kept). To evaluate the model reproducibility, we repeated the algorithm ten times and the results of multiple runs are

consistent (Figure S9).

The number of topics K needs to be selected before running the algorithm and it is a model selection problem. There is no ‘‘right’’

answer to the number of topics that are the most appropriate for data.42 We failed to select the number of topics with a 10-fold cross-

validation, likely a reflection of the size of the dataset (only 138 samples). Thus, we guided the choice of the number of topics based on

what is most useful for scientific interpretation. Moreover, during the cross-validation, we observed the biggest drop in perplexity38

(a measure of how successfully a trained topic model predicts new data) is between K = 2 and K = 3. Thus we set K = 3 in this study.

Lift statistic
Weare interested in representatives, clusters that are primarily associatedwith a single topic.We usemetric lift,20 a popularmetric for

ranking words within single topics in text analysis, to select representative clusters with the following formula

lift = log
bbkv

wv

;

wherewv =
PM

d = 1adv=
PM

d = 1Nd is the empirical frequency of the vth T cell type in data, with adv being the size of the vth T cell type in

the dth sample. The lift metric gives higher weights to cell types that appear less frequently in other topics.

Survival and response analysis
For each cluster, we also tested its association to time, clinical outcomes (response, toxicity), and immunotypes via the nonpara-

metric test in nparLD R package (v2.1),37 which is designed for longitudinal data in factorial experiments. The same method was

used to test the association of the ratio (CD8 Temra/Tn), topic proportions to patient clinical outcomes or immunotypes. Only patients

with all three time points (n= 37) were included since the package does not support missing data.We included p-values fromANOVA-

type tests provided by the nparLD R package. For main effects (e.g. immunotypes, response, toxicity) involving only the whole-plot

factors, p-values were providedwithmodified ANOVA-type tests with an adjusted degree of freedom. The Kaplan-Meier methodwas

used for survival estimation and the log-rank test was used for comparisonswith the help of survminerRpackage (v0.4.9).43Wilcoxon

rank-sum test was performed when comparing topic proportions or cluster abundances at single time point. All p-values from

multiple comparisons were adjusted by the Benjamini-Hochberg method with a false discovery rate controlled at 5%.

Identification of patient subgroups
Patients were grouped by hierarchical clustering (hclust () function with default parameters in R) on their estimated sample topic pro-

portions Q. Heatmap was drawn to display the sample topic proportions for each patient, as well as clinical outcomes (response,

toxicity) and immunotypes, using the ComplexHeatmap R package (v2.10.0).44 Boxplot was used to show the dynamics of sample
ell Reports Methods 3, 100546, August 28, 2023
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proportions of the three topics within each patient group. One patient (17-162-08) with only one sample at time point A was excluded

from the heatmap and the boxplot. Chi-squared tests were performed to test the association between patient subgroups and clinical

outcomes (response, toxicity).

ADDITIONAL RESOURCES

The samples were obtained from a clinical trial study registered under the number NCT03122522, with results published in Postow

et al.15
Cell Reports Methods 3, 100546, August 28, 2023 e4
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Figure S1: Selection of representative clusters for each topic, related to Figure 3. Lift of clusters for 

each topic, plotted on a signed square root scale. The metric lift gives high weights to clusters that appear 

less frequently in other topics. Those clusters that have high lift statistics are identified as representatives 

of single topics.  
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Figure S2: Identification of patient subgroups with LDA, related to Figure 4. a) Patient subgroups 

revealed by hierarchical clustering on sample topic proportions. b) Kaplan-Meier analysis of OS and PFS 

stratified by patient subgroup.  
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Figure S3: Pharmacodynamics of single clusters across different immunotypes, related to Figure 

4. 
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Figure S4: Pharmacodynamics of single clusters across different responses, related to Figure 4. 
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Figure S5: Pharmacodynamics of single clusters across different levels of toxicity, related to 

Figure 4. 
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Figure S6: Pharmacodynamics of topic proportions across different responses and levels of 

toxicity, related to Figure 4. 
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Figure S7:  Hierarchical clustering based on a) Pearson correlation of clusters and b) cluster 

abundances, related to Figure 4. 
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Figure S8:  Pre-gating analysis on flow cytometry data, related to STAR Methods. 
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Figure S9:  Estimation of the cell-type-by-topic matrix B by Gibbs Sampling under ten random 

starts, related to STAR Methods. 
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Table S1. Statistical analysis of single clusters associated with patient clinical outcomes and 

immunotypes, related to Figure 2. 

Cluster Immunotype Response Toxicity 

 Immunotyp
e 

 Interaction 
with time 

Response   Interaction 
with time 

Toxicity   Interaction 
with time 

0 ns ns ns ns ns ns 

1 ns * ns ns ns ns 

2 ns ns ns ns ns ns 

3 ns ns ns ns ns ns 

4 ns *** ns ns ns ns 

5 ns ns ns ns ns ns 

6 * * ns ns ns ns 

7 ns ns ns ns ns ns 

8 ns *** ns ns ns ns 

9 ns ns ns ns ns ns 

10 ns ns ns ns ns ns 

11 ns * ns ns ns ns 

12 ns *** ns ns ns ns 

13 ns ns ns ns ns ns 

14 * ns ns ns ns ns 

15 ns ns ns ns ns ns 

16 ns * * ns ns ns 

17 ns ns ns ns ns ns 

18 ns ns ns ns ns ns 

19 ns ns ns ns ns ns 

*** P < 0.001; ** P < 0.01; * P < 0.05; ns, not significant. P-values for the main effect and the interaction 

effect with time were given by nparLD R package, based on patients with all three timepoints (n=37). P-

values was adjusted by Benjamini-Hochberg method with a false discovery rate controlled at 5%.  
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Table S2. Cell markers in the X50 flow panel, related to STAR Methods. 

 

Cell Marker Role 

CD3 Lineage_T-cell 

CD4 Lineage_T-cell 

CD8 Lineage_T-cell 

CD14 Lineage_Monocyte 

CD19 Lineage_B-cell 

FoxP3 Lineage_Treg 

CXCR5 Chemokine-Tfh cells 

CCR4 Chemokine-Th2, Th17, Tregs cells 

CD45RA Differentiation_Memory 

CCR7/ CD197 Differentiation_Memory 

CD27 Differentiation_Costimulatory 

CD28 Differentiation_Costimulatory 

CD127 Differentiation 

CD25 Differentiation 

CD57 Differentiation 

Eomes Transcription Factor- T-cell expansion/proliferation 

Tbet Transcription Factor 

Granzyme B Functional: Cytotoxic T-Lymphocytes 

Ki67 T cell proliferation marker/Activation 

HLA-DR Differentiation_Activation 

CD38 Differentiation_Activation 

ICOS/ CD278 Costimulatory marker 

GITR Costimulatory 

CTLA-4/ CD152 Exhaustion 

PD-1/ CD279 Activation/exhaustion 

TIM-3 Exhaustion 

LAG-3/ CD223 Co-inhibitory/Exhaustion 

TIGIT Activation/Exhaustion 

 



12 

Table S3. T cell Gating template used in openCyto R package, related to STAR Methods. 

alias pop parent dims gating_
method 

gating_
args 

collaps
eDataF
orGatin
g 

groupB
y 

prepro
cessin
g_meth
od 

prepro
cessin
g_args 

nonDeb
ris 

+ root FSC-A gate_mi
ndensit
y 

     

singlets + nonDeb
ris 

FSC-
A,FSC-
H 

singletG
ate 

     

cd14-
cd19- 

- singlets CD14 
19 

gate_mi
ndensit
y 

     

live - cd14-
cd19- 

L_D gate_mi
ndensit
y 

     

cd3 + live CD3 gate_mi
ndensit
y 

 TRUE 4   

In the pre-gating procedure, nonDebris, singlets, CD1419-, live, CD3+ cells were gated in the order 

described in the gating template, which was used as the input of openCyto R package (blank cells are the 

default to be used as the input). See details in the documentation of openCyto R package.  
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