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Supplemental Figures and Tables

Igt:‘l:::ezta Organism Type ConY(;:::te d Geographic Location Source of Data
Datasetvac i Human Vaccination 1997 Parkville, Australia Fonville 2014, Table S5
Datasetyac2 Human Vaccination 1998 Parkville, Australia Fonville 2014, Table S6
Datasetyac 3 Human Vaccination 2009 Parkville, Australia Fonville 2014, Table S13
Datasetvac 4 Human Vaccination 2010 Parkville, Australia Fonville 2014, Table S14
Datasetnfect,1® Human Infection 2007-2012 Ha Nam, Vietnam Fonville 2014, Table S3
Datasetimfect 2® Human Infection 2009-2015 Ha Nam, Vietnam Vinh 2021 Supplement
Datasetremre® Ferret Infection N/A N/A Fonville 2014, Table S1

Table S1. Datasets analyzed in this work, related to STAR Methods. Information about the type of study as well as the

year and geographic location from which the antibody responses were collected.
@ Infected influenza-naive ferrets with a single virus and measured their serum against a panel of viruses.

® Over multiple years, participants reported influenza-like illnesses and got PCR tested. Serum samples were collected from

all participants once each year.
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Figure S1. Transferability between datasets examined in this work, related to STAR Methods. Each plot quantifies the
transferability relation f— of virus behavior between Dataset j and Dataset k; the relation fi—x represents an upper bound
(not a best fit-line), with the majority of points expected to lie within the shaded region. Each point represents a decision
tree trained on 30% of samples in Dataset j, with its cross-validation RMSE orrining computed on logo(titers) against the
remaining 70% of samples [x-axis]. This tree was then applied to Dataset k, with RMSE oacwal [y-axis]. Every possible virus
(measured in both Dataset j and Dataset k) was withheld and predicted, and the plotted points represent the 5 decision trees
with the lowest orraining (01 the top 10 trees if there are fewer than 300 points in the plot to ensure sufficient sampling). The
best-fit perpendicular line f1 was fit to the resulting points, and to account for variability (and to overestimate rather than
underestimate error) we add to this line the constant frmse (the RMSE of the vertical deviations between f1 and each point).
Lastly, because error should increase when extrapolating the predictions to a new dataset (orraining< Gactual), and because some
of the lines are nearly vertical, we enforce that fi_; lies above y=x by defining fj_.+=max(f.+fRMSE, OTraining). The only plots
that are not shown are the diagonal entries (we do not need self-transferability) and Vac 3/4 and Infect 2 (these datasets only
have 1 overlapping virus which is not enough to quantify transferability; hence no predictions were made between these
datasets). The numbers at the bottom-right of each plot show the transferability, 1/(slope of f1+frmsE)-
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Figure S2. Predicting each virus in Datasetvac4 using one other dataset, related to Figure 3. We withhold one virus in
Datasetvacs (x-axis) and predict it using (A) the human vaccination study [Datasetvac;3], (B) the human infection study
[Datasetmfect,1], or (C) the ferret infection study (Datasetrerer). In each case, we show the estimated error (opredict, blue) and
the true error (acwal, green). Viruses appear in the same order in each plot, sorted by year of circulation. Grayed-out viruses
could not be predicted either because they were absent from a dataset (e.g., Datasetmfec,1 did not contain
A/Brisbane/22/1994) or because of insufficient data. The three viruses shown in Figure 3 are boxed in purple. 1-fold error
(bottom of plots) represents a perfect theory-experiment match; dashed line represents the 4-fold error point of reference

used throughout this work.
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Figure S3. Quantifying the effects of sequence similarity and permutation analysis on HAI predictions, related to
Figure 4. (A) Amino acid edit distance (AAA) between each virus’ HA sequence and the vaccine strain HA sequence



plotted against the fold-change in HAI between the virus and vaccine strain. The solid line shows an interpolation of the
mean=standard deviation. Analysis was performed for all sera in Datasetsyac,1-4 Whose vaccine strains were H3N2
A/Nanchang/933/1995, A/Sydney/5/1997, A/Brisbane/10/2007 [substituted by the closest analogue A/Perth/27/2007 since
the vaccine strain was not in the virus panel], and A/Perth/16/2009, respectively. (B) Cross-validation of this approach [blue
points] using 30% of the sera to interpolate the relationship in Panel A and then predict the HAI of the remaining sera,
repeated 10 times to avoid sampling bias. Leave-one-out predictions from Figure 4 are shown for comparison [gold points]
as fold-change relative to the vaccine strain. (C) Quantifying the most similar viruses in leave-one-out analysis. For each
virus-of-interest in dataset X, we take all datasets {Y;, Y>...} containing the virus-of-interest and find the smallest amino acid
distance (min AAA) to the viruses those datasets (excluding the virus-of-interest). Statistics show the mean+standard
deviation over all viruses in each dataset. (D) Permutation testing was performed by randomly permuting the measured titers
in the Fonville datasets and performing leave-one-out analysis as in Figure 4A. Resulting predictions are shown for one
vaccine, infection, and ferret dataset, each of which resulted in a larger oacwa than in the original analysis in Figure 4A
(unpermuted data available in GitHub repository).
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Figure S4. Explaining the chord diagram, related to Figure 4. The chord diagram in Figure 4B represents the
transferability between the influenza datasets when considering all data. (A) The width of each dataset represents the sum of
its transferability from all other datasets. This total width is not directly used (we only use the transferability between each
pair of studies), but the smaller total width of the ferret study indicates that all other datasets poorly infer the ferret
measurements. (B) A wider arc from Study X — Study Y represents greater transferability. More precisely, transferability
equals 1/slope of the linear map in Figure S1, so that studies with near-perfect transferability (slope~1) will have large
width while studies with poor transferability (slope>>1) will have small width. (C) The full diagram from Figure 4B.
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Figure SS. Predictions between two monoclonal antibody datasets measuring HIN1 virus neutralization, related to
STAR Methods. As in the main text, we entirely removed one of the six viruses from (A) Li et al. (Li et al., 2012) and
predicted its neutralization using data from Einav et al. (Einav et al., 2022) and (B) vice versa. Left, the transferability

between datasets; Right, predictions for each withheld virus, with individual error shown on each point and average error
shown by the gray diagonal band. Despite differences in the neutralization assay (ICioo [100% inhibitory concentration] in
Li 2012 versus ICsp in Einav 2022), both datasets yield predictions with accuracy oacua=3.0-3.6-fold. The higher
transferability from Einav 2022—Li 2012 leads to a tighter upper bound Gpredict 0N Gactal. For this analysis, we equated the
nearly homologous strains A/New Jersey/8/1976=A/New Jersey/11/1976 (AAA=0; amino acid edit distance calculated
using consensus HA sequences from GISAID), A/California/4/2009~ A/California/7/2009 (AAA=1), and

A/Brisbane/59/2007~A/New York/08-1326/2008 (AAA=2).
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Figure S6. Individual matrix completions in the Vinh dataset, related to Figure 4. Each of the six Vinh viruses were
withheld and predicted using the Fonville data. Scatterplots show predictions versus measurements. For each virus, the
uncertainty of its predictions will be the same for all 25,000 values, and this uncertainty is visualized using the gray bands
(showing the fold-error opredict); the predicted and true errors are also written at the bottom-right of each plot. For clarity, we
only show every 10" data point of the 25,000 measurements, but all statistics are computed using the full data. Histograms
portray the error distribution for the predictions, with the value in the gray region showing the number of predictions within
1o of the measurement.
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Figure S7. Expanded HALI titers for all datasets considered in this work, related to Figure 6. Using the available
measurements, we predicted all antibody-virus interactions in the (A) Fonville and (B) Vinh datasets. In total, we added
32,000 and 1,600,000 new measurements with <4-fold error in the Fonville and Vinh datasets, respectively; all other
predictions with Gpregici>4 are shown in dark red. The sera in each dataset were clustered based on their Ward similarity
function. Viruses are ordered by their year of circulation in both plots, and the color in the bottom row represents a virus’s
year of circulation. The complete list of measurements and predictions is included in the associated GitHub repository. (C)
Distribution of viruses across datasets. For cross-study comparison, two viruses in Datasetinfec,» were equated with their
closest virus (A/Aichi/2/1968 <> A/Bilthoven/16190/1968 and A/Victoria/210/2009 <» A/Hanoi/EL201/2009, Methods).
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Figure S8. Extrapolating virus behavior in the Fonville datasets using 6 viruses, related to Figure 6. Analogous to
Figure 6, we only use values from the six Vinh viruses (or the subset of these viruses present in each Fonville dataset) to



predict the behavior of all other viruses. We consider predictions in (A) Datasetvac,1, (B) Datasetvac, or (C) Datasetinfect,1,
which are the three datasets that contribute the most of the Vinh predictions [Figure 4B]. Each plot shows the predicted error
[OPredict, blue] and actual error [oacwal, gold], with a connecting arrow. Viruses in gray could not be predicted either because
they were not in the Fonville dataset or there was insufficient data. Viruses from the 1980s and 1990s (which are the furthest
away from the 5-6 measured viruses) have the largest error, and this error is slightly overestimated in Datasetyac» and
underestimated in Datasetir.ct,1. As explained in the Methods, our framework is constructed so that low opredict always
implies a low actal (With Opredict=OActual), Whereas large opredict implies less certainty in oacwal. A good rule of thumb from
these results is to not use values with a predicted error >6-fold, since their true error may be even larger; we note that all
inferred values in Figure 6C have a predicted error <6-fold.

A Extended Fonville Data B Extended Vinh Data

5 c,? .\ Virus Year d.e . Virus Year

Predicted
Error

Predicted
Error

-4 ) ) ;
-5.0 2.5 0.0 2.5

Figure S9. UMAP embeddings of the expanded antibody-virus datasets, related to Figure 6. We applied UMAP upon
the expanded data from (A) Fonville and (B) Vinh, using the logio(HAI titers) with zneighbor=20 and the default tuning
parameters in the R package uwot. Each data point in the plot corresponds to a specific virus (81 in total), with the size of
each point indicating the predicted error of the imputed values, and the shading indicating the year the virus circulated. In
both UMAPs, the viruses show a clear temporal pattern moving along a straight line, even though this temporal information
was never provided to the algorithm.
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Figure S10. Artifacts of nuclear norm minimization (NNM) can lead to poor predictions, related to Figure 5. (A-D)
NNM can fail in a simple, noise-free setting. (A) Toy example where measurements from two viruses are proportional (y=
5x) and the input dataset has a perfect template of this relationship, but Virus 2 is incorrectly predicted as y=x. (B) This
problem holds for any relation y=mx where m>1, although values of m<1 lead to perfect recovery. (C,D) The problem is
exacerbated when there are n copies of the missing measurements, with Virus 2 predicted as y=n"""*x whenever m>n""2. (E-
F) NNM may give poor predictions when there are large swaths of missing values. Predictions for virus ¥ [specified below]
from Datasetsinfect, 1 —Ferret are highly accurate when using the “useful” viruses V-4 that behave similarly in both studies, but
highly inaccurate when adding the additional “useless” viruses Vs-V that don’t behave like 7y in either study. (E) Plot of the
titers of the useful and useless viruses in both datasets, with sera sorted according to the HAI titers of V. Values for Vi-V4
closely match those of ¥, for all sera in Datasetrere: and for all sera where V) is measured in Datasetimec,1 (the first 125 sera).
In contrast, Vs-Vs do not behave like ¥y in Datasetrere; in Datasetisect,1 Viruses Vs-V7 are never measured, and Vg is only
measured against sera where 5 was not measured. Hence, Vs-Vg should ideally not influence the matrix completion of V.
(F) The resulting predictions vs measurements for ¥y only using Vi-V4 [left] or using both V-V4 and Vs-Vs [right], with the
latter leading to significantly larger error. In the Fonville datasets, these viruses represent Vo=VNO18/EL204/2009,
V-V4={HN201/2009, HN206/2009, VNO19/EL442/2010, VN020/EL443/2010}, and

Vs-Vs={A/Singapore/37/2004, A/South Australia/53/2001, A/Sydney/228/2000, A/South Australia/84/2002}.



