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Supplemental Figures and Tables 
 

 

Influenza 
Dataset 

Organism Type 
Year 

Conducted 
Geographic Location Source of Data 

DatasetVac,1 Human Vaccination 1997 Parkville, Australia Fonville 2014, Table S5 

DatasetVac,2 Human Vaccination 1998 Parkville, Australia Fonville 2014, Table S6 

DatasetVac,3 Human Vaccination 2009 Parkville, Australia Fonville 2014, Table S13 

DatasetVac,4 Human Vaccination 2010 Parkville, Australia Fonville 2014, Table S14 

DatasetInfect,1
(b) Human Infection 2007-2012  Ha Nam, Vietnam Fonville 2014, Table S3 

DatasetInfect,2
(b) Human Infection 2009-2015  Ha Nam, Vietnam Vinh 2021 Supplement 

DatasetFerret
(a) Ferret Infection N/A N/A Fonville 2014, Table S1 

 
Table S1. Datasets analyzed in this work, related to STAR Methods. Information about the type of study as well as the 

year and geographic location from which the antibody responses were collected. 
(a) Infected influenza-naive ferrets with a single virus and measured their serum against a panel of viruses. 
(b) Over multiple years, participants reported influenza-like illnesses and got PCR tested. Serum samples were collected from 

all participants once each year. 
 

 

 
 

  



 
 

Figure S1. Transferability between datasets examined in this work, related to STAR Methods. Each plot quantifies the 
transferability relation fj→k of virus behavior between Dataset j and Dataset k; the relation fj→k represents an upper bound 
(not a best fit-line), with the majority of points expected to lie within the shaded region. Each point represents a decision 
tree trained on 30% of samples in Dataset j, with its cross-validation RMSE σTraining computed on log10(titers) against the 
remaining 70% of samples [x-axis]. This tree was then applied to Dataset k, with RMSE σActual [y-axis]. Every possible virus 
(measured in both Dataset j and Dataset k) was withheld and predicted, and the plotted points represent the 5 decision trees 
with the lowest σTraining (or the top 10 trees if there are fewer than 300 points in the plot to ensure sufficient sampling). The 
best-fit perpendicular line f⟂ was fit to the resulting points, and to account for variability (and to overestimate rather than 
underestimate error) we add to this line the constant fRMSE (the RMSE of the vertical deviations between f⟂ and each point). 
Lastly, because error should increase when extrapolating the predictions to a new dataset (σTraining ≤ σActual), and because some 
of the lines are nearly vertical, we enforce that fj→k lies above y=x by defining fj→k=max(f⟂+ fRMSE, σTraining). The only plots 
that are not shown are the diagonal entries (we do not need self-transferability) and Vac 3/4 and Infect 2 (these datasets only 
have 1 overlapping virus which is not enough to quantify transferability; hence no predictions were made between these 
datasets). The numbers at the bottom-right of each plot show the transferability, 1/(slope of f⟂+ fRMSE). 



 

 
 

Figure S2. Predicting each virus in DatasetVac,4 using one other dataset, related to Figure 3. We withhold one virus in 

DatasetVac,4 (x-axis) and predict it using (A) the human vaccination study [DatasetVac,3], (B) the human infection study 

[DatasetInfect,1], or (C) the ferret infection study (DatasetFerret). In each case, we show the estimated error (σPredict, blue) and 

the true error (σActual, green). Viruses appear in the same order in each plot, sorted by year of circulation. Grayed-out viruses 

could not be predicted either because they were absent from a dataset (e.g., DatasetInfect,1 did not contain 

A/Brisbane/22/1994) or because of insufficient data. The three viruses shown in Figure 3 are boxed in purple. 1-fold error 

(bottom of plots) represents a perfect theory-experiment match; dashed line represents the 4-fold error point of reference 

used throughout this work.  

 
 
 

 
 

Figure S3. Quantifying the effects of sequence similarity and permutation analysis on HAI predictions, related to 
Figure 4. (A) Amino acid edit distance (ΔAA) between each virus’ HA sequence and the vaccine strain HA sequence 



plotted against the fold-change in HAI between the virus and vaccine strain. The solid line shows an interpolation of the 
mean ± standard deviation. Analysis was performed for all sera in DatasetsVac,1-4 whose vaccine strains were H3N2 
A/Nanchang/933/1995, A/Sydney/5/1997, A/Brisbane/10/2007 [substituted by the closest analogue A/Perth/27/2007 since 
the vaccine strain was not in the virus panel], and A/Perth/16/2009, respectively. (B) Cross-validation of this approach [blue 
points] using 30% of the sera to interpolate the relationship in Panel A and then predict the HAI of the remaining sera, 
repeated 10 times to avoid sampling bias. Leave-one-out predictions from Figure 4 are shown for comparison [gold points] 
as fold-change relative to the vaccine strain. (C) Quantifying the most similar viruses in leave-one-out analysis. For each 
virus-of-interest in dataset X, we take all datasets {Y1, Y2…} containing the virus-of-interest and find the smallest amino acid 
distance (min ΔAA) to the viruses those datasets (excluding the virus-of-interest). Statistics show the mean ± standard 
deviation over all viruses in each dataset. (D) Permutation testing was performed by randomly permuting the measured titers 
in the Fonville datasets and performing leave-one-out analysis as in Figure 4A. Resulting predictions are shown for one 
vaccine, infection, and ferret dataset, each of which resulted in a larger σActual than in the original analysis in Figure 4A 
(unpermuted data available in GitHub repository). 
 

 
 
 

 
 



Figure S4. Explaining the chord diagram, related to Figure 4. The chord diagram in Figure 4B represents the 

transferability between the influenza datasets when considering all data. (A) The width of each dataset represents the sum of 

its transferability from all other datasets. This total width is not directly used (we only use the transferability between each 

pair of studies), but the smaller total width of the ferret study indicates that all other datasets poorly infer the ferret 

measurements. (B) A wider arc from Study X → Study Y represents greater transferability. More precisely, transferability 

equals 1/slope of the linear map in Figure S1, so that studies with near-perfect transferability (slope ≈ 1) will have large 

width while studies with poor transferability (slope≫1) will have small width. (C) The full diagram from Figure 4B. 

 
 

 
 
 
 

 
 

Figure S5. Predictions between two monoclonal antibody datasets measuring H1N1 virus neutralization, related to 
STAR Methods. As in the main text, we entirely removed one of the six viruses from (A) Li et al. (Li et al., 2012) and 
predicted its neutralization using data from Einav et al. (Einav et al., 2022) and (B) vice versa. Left, the transferability 
between datasets; Right, predictions for each withheld virus, with individual error shown on each point and average error 
shown by the gray diagonal band. Despite differences in the neutralization assay (IC100 [100% inhibitory concentration] in 
Li 2012 versus IC50 in Einav 2022), both datasets yield predictions with accuracy σActual=3.0‒3.6-fold. The higher 
transferability from Einav 2022→Li 2012 leads to a tighter upper bound σPredict on σActual. For this analysis, we equated the 
nearly homologous strains A/New Jersey/8/1976 ≈ A/New Jersey/11/1976 (ΔAA=0; amino acid edit distance calculated 
using consensus HA sequences from GISAID), A/California/4/2009 ≈ A/California/7/2009 (ΔAA=1), and 
A/Brisbane/59/2007 ≈ A/New York/08-1326/2008 (ΔAA=2). 
 

 
 

  



 
 
 
 

 
 

Figure S6. Individual matrix completions in the Vinh dataset, related to Figure 4. Each of the six Vinh viruses were 

withheld and predicted using the Fonville data. Scatterplots show predictions versus measurements. For each virus, the 

uncertainty of its predictions will be the same for all 25,000 values, and this uncertainty is visualized using the gray bands 

(showing the fold-error σPredict); the predicted and true errors are also written at the bottom-right of each plot. For clarity, we 

only show every 10th data point of the 25,000 measurements, but all statistics are computed using the full data. Histograms 

portray the error distribution for the predictions, with the value in the gray region showing the number of predictions within 

1σ of the measurement. 
 

 
  



 



Figure S7. Expanded HAI titers for all datasets considered in this work, related to Figure 6. Using the available 
measurements, we predicted all antibody-virus interactions in the (A) Fonville and (B) Vinh datasets. In total, we added 
32,000 and 1,600,000 new measurements with ≤4-fold error in the Fonville and Vinh datasets, respectively; all other 
predictions with σPredict > 4 are shown in dark red. The sera in each dataset were clustered based on their Ward similarity 
function. Viruses are ordered by their year of circulation in both plots, and the color in the bottom row represents a virus’s 
year of circulation. The complete list of measurements and predictions is included in the associated GitHub repository. (C) 
Distribution of viruses across datasets. For cross-study comparison, two viruses in DatasetInfect,2 were equated with their 
closest virus (A/Aichi/2/1968 ↔ A/Bilthoven/16190/1968 and A/Victoria/210/2009 ↔ A/Hanoi/EL201/2009, Methods). 
  

 
 

Figure S8. Extrapolating virus behavior in the Fonville datasets using 6 viruses, related to Figure 6. Analogous to 

Figure 6, we only use values from the six Vinh viruses (or the subset of these viruses present in each Fonville dataset) to 



predict the behavior of all other viruses. We consider predictions in (A) DatasetVac,1, (B) DatasetVac,2, or (C) DatasetInfect,1, 

which are the three datasets that contribute the most of the Vinh predictions [Figure 4B]. Each plot shows the predicted error 

[σPredict, blue] and actual error [σActual, gold], with a connecting arrow. Viruses in gray could not be predicted either because 

they were not in the Fonville dataset or there was insufficient data. Viruses from the 1980s and 1990s (which are the furthest 

away from the 5-6 measured viruses) have the largest error, and this error is slightly overestimated in DatasetVac,2 and 

underestimated in DatasetInfect,1. As explained in the Methods, our framework is constructed so that low σPredict always 

implies a low σActual (with σPredict ≈ σActual), whereas large σPredict implies less certainty in σActual. A good rule of thumb from 

these results is to not use values with a predicted error ≥6-fold, since their true error may be even larger; we note that all 

inferred values in Figure 6C have a predicted error <6-fold. 
 
 

 

 

 
 

Figure S9. UMAP embeddings of the expanded antibody-virus datasets, related to Figure 6. We applied UMAP upon 

the expanded data from (A) Fonville and (B) Vinh, using the log10(HAI titers) with nneighbor = 20 and the default tuning 

parameters in the R package uwot. Each data point in the plot corresponds to a specific virus (81 in total), with the size of 

each point indicating the predicted error of the imputed values, and the shading indicating the year the virus circulated. In 

both UMAPs, the viruses show a clear temporal pattern moving along a straight line, even though this temporal information 

was never provided to the algorithm. 
 
 



 



 

Figure S10. Artifacts of nuclear norm minimization (NNM) can lead to poor predictions, related to Figure 5. (A-D) 

NNM can fail in a simple, noise-free setting. (A) Toy example where measurements from two viruses are proportional (y = 

5x) and the input dataset has a perfect template of this relationship, but Virus 2 is incorrectly predicted as y = x. (B) This 

problem holds for any relation y = mx where m > 1, although values of m ≤ 1 lead to perfect recovery. (C,D) The problem is 

exacerbated when there are n copies of the missing measurements, with Virus 2 predicted as y = n-1/2x whenever m > n-1/2. (E-

F) NNM may give poor predictions when there are large swaths of missing values. Predictions for virus V0 [specified below] 

from DatasetsInfect,1→Ferret are highly accurate when using the “useful” viruses V1-V4 that behave similarly in both studies, but 

highly inaccurate when adding the additional “useless” viruses V5-V8 that don’t behave like V0 in either study. (E) Plot of the 

titers of the useful and useless viruses in both datasets, with sera sorted according to the HAI titers of V0. Values for V1-V4 

closely match those of V0 for all sera in DatasetFerret and for all sera where V0 is measured in DatasetInfect,1 (the first 125 sera). 

In contrast, V5-V8 do not behave like V0 in DatasetFerret; in DatasetInfect,1 viruses V5-V7 are never measured, and V8 is only 

measured against sera where V0 was not measured. Hence, V5-V8 should ideally not influence the matrix completion of V0. 

(F) The resulting predictions vs measurements for V0 only using V1-V4 [left] or using both V1-V4 and V5-V8 [right], with the 

latter leading to significantly larger error. In the Fonville datasets, these viruses represent V0 = VN018/EL204/2009,  

V1-V4 ={HN201/2009, HN206/2009, VN019/EL442/2010, VN020/EL443/2010}, and  

V5-V8 = {A/Singapore/37/2004, A/South Australia/53/2001, A/Sydney/228/2000, A/South Australia/84/2002}. 


