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1 Supplementary Tables

Study ID | MSFg¢ (hrs) | IPAQ (METs-hrs/wk) | PSQI | App adherence (%) | Valid Actiheart (%)
01 4.8 13.65 7 100.0 72.5
02 5.5 9.65 2 100.0 58.6
03 3.3 5.30 1 100.0 59.7
04 4.9 15.30 7 100.0 80.5
05 5.0 37.65 3 100.0 85.5
06 5.3 9.49 4 100.0 73.3
07 3.3 35.30 4 100.0 Not used
08 4.2 24.95 ) 100.0 70.3
09 3.7 2.47 7 100.0 93.7
10 4.6 53.10 7 100.0 90.8
11 3.6 3.10 3 100.0 72.4
12 5.6 28.95 2 100.0 94.4
13 4.5 14.47 9 100.0 83.4
14 2.3 10.95 2 100.0 74.3
15 4.7 23.30 ) 100.0 414
16 3.6 39.30 ) 100.0 89.6
17 4.5 5.00 ) 83.3 82.6
18 5.0 25.10 4 100.0 85.6
19 3.8 18.60 4 100.0 91.3
20 4.2 9.60 8 100.0 89.2
21 4.5 14.16 ) 100.0 60.9
22 5.8 3.22 6 Not used 81.3
23 4.3 24.95 7 100.0 86.3
24 2.5 28.82 5 100.0 74.6
25 4.2 9.65 5) 100.0 91.8

Table S1: Chronotype and data quality metrics for study participants. Related to STAR Methods. MSFg¢

(hours): chronotype variable calculated from the Munich Chronotype Questionnaire (MCTQ); IPAQ: physi-

cal activity as measured with the International Physical Activity Questionnaire (IPAQ); PSQI: sleep quality

as assessed with the Pittsburgh Sleep Quality Index. Range 0-27, where higher scores reflect lower quality

sleep.; App adherence (%): the percentage of days with two recorded meals separated by at least 5 hours,

calculated using all valid study days and excluding the first and last study days; Valid Actiheart (%): the

percentage of Actiheart data that passes quality filtering for each participant.




2 Supplementary Figures
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Figure S1: The distribution of participant characteristics in the study population, displayed as histograms.
Related to STAR Methods. BMI: body mass index. MSFg¢ (hours): chronotype variable calculated from
the Munich Chronotype Questionnaire (MCTQ); PSQL: sleep quality as assessed with the Pittsburgh Sleep
Quality Index. Range 0-27, where higher scores reflect lower quality sleep; ITPAQ: physical activity as
measured with the International Physical Activity Questionnaire (IPAQ).
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Figure S2: All recorded food and drink events for all study participants. Related to Figure 1. Each
horizontal line represents a different study day, and food and drink events are marked as vertical lines. Day
0 represents the first study day. Blue horizontal lines denote weekdays while red horizontal lines represent

the weekend. The total number of recorded ingestion events is indicated with N.
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Figure S3: CGM data for all study participants. Related to Figure 1. For each study participant, the
5th, 50th and 95th percentiles are indicated along with the study ID. For five participants there is a second
sensor (orange line). Device failure for ID 22 meant that the data is missing for this participant, and an

empty space is left.
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Figure S4: Activity data for all study participants, as measured with the Actiheart device. Related to
Figure 1. For each study participant, the 5th, 50th and 95th percentiles are indicated along with the study

ID. Device failure for ID 07 meant that the data is missing for this participant, and an empty space is left.
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Figure S5: Heart rate data for all study participants (bpm: beats per minute), as measured with the
Actiheart device. Related to Figure 1. For each study participant, the 5th, 50th and 95th percentiles are
indicated along with the study ID. Device failure for ID 07 meant that the data is missing for this participant,

and an empty space is left.
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Figure S6: Heart rate variability data for all study participants (RMSSD: root mean square of successive

differences between heartbeats), as measured with the Actiheart device. Related to Figure 1. For each study

participant, the 5, 50 and 95% percentiles are indicated along with the study ID. Device failure for ID 07

meant that the data is missing for this participant, and an empty space is left.
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Figure S7: Glucose time-series data over a two-week period for all participants. Related to Figure 1.
Individual days are represented by different coloured lines and the mean glucose level over all measured days

in black.
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Figure S8: Posterior distributions (shown as boxplots) for all glucose model parameters (Model 1) across all
participants. Related to Figure 3. The first panel shows the correlation between the inferred model (including
meals and circadian time) and the glucose CGM data for each participant. The boxplots represent the 25th,
median (50th) and 75th percentiles of the posterior distribution and the whiskers represent the 5th and 95th

percentiles.
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Figure S9: Accessory figures related to Figure 3. (A) The relationship between glucose levels (blue),
meals (grey dotted lines) and sport events (shaded areas with annotations) for participant ID 04. Due to
a sensor failure, the glucose data for ID 04 is in two blocks. (B-C) Simulating glucose traces using the full
model with random fluctuations creates realistic glucose traces. (B) Examples comparing the CGM data
(blue) with the model prediction incorporating circadian dynamics (black) plus meal consumption (orange)
for two participants with overdamped and underdamped dynamics, respectively. Same panels as Figure
3E-F, repeated here for easy comparison with panel C. (C) Simulations from the full glucose model that also
includes random fluctuations (blue). The timestamps of meals are shown as black dashed lines. (D) Posterior
distribution over inferred meal heights for ID 14 and 23, where meal heights are defined as glucose increases
relative the baseline glucose levels. The number indicates the number of times the meal was consumed.
The boxplots represent the 25th, median (50th) and 75th percentiles of the posterior distribution and the
whiskers represent the 5th and 95th percentiles.
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Figure S10: The difference in BIC score between Model 1 with a circadian component and Model 1
without a circadian component. Related to Figure 4. The two models were first optimised to their maximum
a posteriori probability (MAP) estimates, then the BIC score was calculated. A negative difference in BIC
score favours Model 1 with a circadian component, while a positive difference in BIC score favours the Model
1 without a circadian component. The dotted red line marks the threshold at which Model 1 without the
circadian component is preferred, while the dotted green line marks the threshold at which Model 1 with

the circadian component is preferred.
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Figure S12: Model parameters when only one input from the physical and heart activity model is allowed.
Related to Figure 5. (A) Maximum a posteriori probability (MAP) estimate of coefficients Cs1, Cs; and Cs;
with all physical and heart activity inputs. (B) MAP estimate of the coefficients C5; when physical activity
(via parameter C;) is the only physical and heart activity input into the glucose model. (C) MAP estimate
of the coefficients C52 when heart rate (via parameter Csz) is the only physical and heart activity input into
the glucose model. (D) MAP estimate of the coefficients Cs3 when heart rate variability (via parameter Css)

is the only physical and heart activity input into the glucose model.



3 Methods S1: details of the Kalman filter model, related to
STAR Methods

3.1 Missing data and data quality

For each participant, we collected data for two weeks using the following devices: 1) timestamps of food /drinks
and text annotations collected with the smartphone application (app) MyCircadianClock; 2) continuous glu-
cose monitoring (CGM) using the FreeStyle Libre Pro device (Abbott); 3) physical activity, heart rate (HR)
and heart rate variability (HRV using RMSSD ™) using the Actiheart device (CamNTech). FreeStyle CGMs
were replaced when devices fell off participants within the first week, which occurred 6 times, and data
was not used when there was less than 48 hours of valid measurements. For one participant (ID 22), the
FreeStyle CGM device failed without falling off, but due to device blinding this was not detected until the
end of the experiment, and hence there is no glucose data for this participant. While the Actiheart device
is waterproof, participants were permitted to briefly remove the device during showers and baths. At each
time point the Actiheart produces an estimated quality of the signal (range 0-1), and we filtered the data
based on a threshold of 0.8. After filtering the signal based on the quality, an average of 78.5% of the data
was included, although this was specific to each participant (Table S1). There was an Actiheart device
failure for one participant (ID 07). The Actiheart data was exported with a time resolution of 5 minutes,
while the FreeStyle CGM device records glucose every 15 minutes. To align the Actiheart and FreeStyle
CGM time series, we chose the Actiheart measurement that was closest in time to the corresponding CGM
measurement. This induces a maximum misalignment of 2.5 minutes, which we consider acceptable given

that glucose typically has a response time >1 hour (Figure 3A).

3.2 Modelling wearable time series data

We use a linear Gaussian state space model (otherwise known as a Kalman filter, see Sérkkd and Solin
[S1] for details) to analyse the time series generated by the wearable devices, and here we will first outline
the general parameter inference framework before giving details for the specific models used. To account for
both dynamics in underlying physiological variables changes as well as measurement error of the devices, this
approach considers underlying physiological variables (referred to as latent state variables) @ (tx) (measured
at times t;) and observed variables y,. The linear Gaussian state space model of the wearable data has the

following three components:

3.2.1 Dynamic model

The dynamic model x(tx) ~ p (x(t;) | (tx—1)) describes the transition probabilities of the underlying phys-

iological variables. Our starting point is a continuous-time system of stochastic differential equations (SDEs)



da(t) = Wa(t)dt + dg, (1)

where W is a matrix describing the interactions between the variables and 3 is a brownian noise term with
covariance matrix (). The specific forms of W and @ are unique for each model and will be described in
the following sections. We then convert this system of continuous-time SDEs into a model where time is

discrete.

x(ty) = Fr_12(tk—1) + N(0,Xk_1), (2)

where F}, is the state-transition model and X is the covariance of the process noise. To perform this time
discretisation we use the following two formulas, where details on their precise calculation for each model

will also be specified below
Fk = exp (WAtk) 5

Aty
Yy = /0 exp (W (At — 7)) Qexp (W (At — 7)) dr.

3.2.2 Initial distribution

The initial distribution x(tg) ~ p(x(to)) specifies the distribution of the physiological variables at the
initial time k = 0. This is specified with p (z (to)) = N (x (to) | mo, Py), and where we use the stationary
distribution of the SDE to define the mean and covariance mg and P.

3.2.3 Measurement model

The measurement model y, ~ p(y, | (tx)) describes the observation process, which again assumes a

Gaussian distribution.

y(tk) = ka(tk) + N(mk, Rk), (4)

where Hj, is the observation matrix and my and Ry represents the mean and covariance of the observation

noise, respectively.

3.3 The marginal posterior distribution of parameters

The parameters of the model can be represented with the parameter vector 6, and the goal is to infer
the parameters for each participant. Within a Bayesian framework, the parameters of the model can be

estimated from the data as follows

PO yrr) xp(@)p(y..r|0), (5)



where p(0) is the prior distribution of parameters and p (y;.- | €) is the likelihood of observing the temporal
data yq.p given the set of parameters 8. Considering the time series sequence of data, the likelihood term

for a given set of parameters @ can be re-expressed as

T

P 10) =pw, 10) ][ (| yik1.0). (6)
k=2

and the sequence of distributions p (y,€ | Y1.5—1s 0) are calculated within a Kalman filtering framework that

we will now describe.

3.4 Kalman Filter

We will now describe the Bayesian filtering approach used to estimate the likelihood term p (y;.r | 0).
Starting with the mean my and covariance P, of the initial distribution p (x (t9)) = N (x (to) | mo, Po), the
Kalman filter recursion operates from the first to last data point k = 1,2,...,T. At each time point, there
is first a prediction step that predicts the current state of the latent variables @ (¢x) based on all previous

measurements up to y,_;

p(m(tk)|y1,...,yk_1):N(m(tk)|m,:,Pk_), (7)

and where the predicted mean and covariance are calculated from

my, = Fy_1my_1,
i . (®)
P =Fy 1 Pe 1 Fy |+ X1,
The measurement vy, at time ¢ is then incorporated to create an updated estimation of the latent state

x (ty)

p(@te) [y1,-- -5 y,) = N(z () | ma, Py) 9)

and where the updated mean and covariance are calculated using the update steps

v =y, — Hymy,

Sy = Hy P, H\ + Ry,

K, = P H/} S, (10)
my = m,;, + Ky,

Py, =P, — KiK.

From these equations the terms necessary for the likelihood (Equation 6) can be calculated as a by-product

p(Ye lY1s-- - yr1) =Ny, | Hemy,, Sk) . (11)



We will now specify the three models used, which allow calculation of the terms in Equation 11 and hence
the likelihood using Equation 6. For each of the models we use the ”LinearGaussianStateSpaceModel”
distribution within Tensorflow Probability. This distribution requires the specification of the mean and
covariance of both the dynamics and observation models, and the log likelihood is then calculated using the

"log-prob()’ method.

3.5 Model 1: glucose and meals model

We model glucose dynamics with a two-dimensional system of SDEs with two variables: zgrLuc: and zgrucs.
The second variable zqruce acts as an input into the observation model to produce the measured variable y,
which corresponds to the continuous glucose monitor (CGM) data. In matrix form, the model is expressed

as follows

dx(t) = Wa(t)dt + dB

2(t) = raLuc (t) W= —Apn —Ap 0= 0 0 7 (12)
raLucz(t) A1 —Aa 0 B

where the coefficients A;; are constrained to be positive. Given the coefficients in the W matrix, the positive
constraints on the coefficients A;; ensures stability of the matrix (ie. —A;1 — Asx < 0 and Aj; Az >
—A12A51). There are two principal reasons for modelling the glucose with two variables: 1) the inclusion of
a second variable allows for negative feedback via the negative term — Ao, as negative feedback can arise due
to the action of insulin; 2) when meals are consumed, we model this as impacting the first variable zgruc:.
As the first variable zgruc1 acts to increase levels in the second variable zgrucs (via the parameter Ay ),

this leads to smooth, continuous increases in glucose after food consumption, which is a feature observed in

the data. The covariance of the brownian noise term 3 is given by Q.

3.5.1 State-transition model

The state-transition model Fj can be calculated using a 2x2 matrix exponential

Fy, = exp (WAt),

- ((cosh(ﬁAtk) —s

sinh(,/yAty) sinh(,/7Atg) (13)
o)),

where

s = (—An — A»)/2,
(14)
v =(—A11 + Ag)? /4 — A3 Ay = 5% — det(W).



If v < 0 then
cosh \/yAty = cos/—7yAty,
sinh /7 Aty _siny/—yAty

vl V=

3.5.2 Covariance of the process noise

The covariance of the process noise Xj can be calculated from the steady-state covariance P, as follows

S(Aty) = Poo — Fi(Aty) Py (Aty), (15)

where P, can be calculated symbolically using the following formula

WPy + P, W' +Q=0. (16)

3.5.3 Incorporating meal events

The smartphone application provides a list of the recorded ingestion event times {t,, }*_, for a total of M
meals. We model the effect of meal event m as causing an instantaneous increase of size d,, to variable
zgrLuci- Given the delays from eating to reaching the insterstitial tissue measured by the CGM, we also
include a time lag parameter 7 for each participant, which is learnt in addition to the other parameters

during model fitting. The response function 7, (¢, ¢, @) to a meal is then given by

A1 8y e 7T sinh (/7 (=T —1m))

Ot —T —tm) , v>0
Pt tm, 0) = I : (17)
@(t ot )A21 Om € m sln(\/—ify(t—'r—tm)) <0
m \/_7,), ’ ’7
where the Heaviside function ©(t — 7 — ¢,,,) is defined as
1, >0
O(z) = . (18)
0, <0

The meal function is then sum of the M individual meals

M
r(t) =Y rm(t,tm,0). (19)

m=1
To simplify the interpretation of the perturbation parameters d,, (and to also make the definition of the
prior simpler), we reparameterise the parameters ¢,, to correspond to the maximum height of the glucose

meal response. The time ¢ of the maximum height of the meal response is

Tmax

_Janh T =AY/ >0 (20)

tan=! (—y7/8)// T, 7 <0

Tmax



and the the maximum height of the glucose meal response is then given as

Asq 8y e® trmax) sinh(\ﬁ(trmax))

;o 7>0
max (1 (t, t, 0)) = v (21)
A21 6m e’ (*rmax) Sin(\/jﬂf(trmax)) < 0
V= v
A meal height parameter ¢F, is then defined as 4}, = max(r,,(t,t,,,0)), and the original perturbation

parameter d,, is then found by renormalising.

3.5.4 Circadian dynamics

In addition to the effect of external meal events, we also model underlying circadian rhythms in glucose

levels with a sinusoidal function

gaLuc(t) = Ao.cruc + Ar,cruc(l + cos(wt — ¢aruc))/2, (22)

where Ao cruc is the baseline level, A; gLuc is the amplitude, w is the frequency (fixed at 27/24), and

¢aruc is the peak time of the 24-hour function.

3.5.5 Observation matrix

The observation matrix Hj, is such that only the second variable is observed

Hy, = [0,1]. (23)

3.5.6 Observation model

Finally, the observation model has the following form

Y = Hk:c(tk) + N(mk,Rk)

my = 7(t) + gaLuc(t), Rk = 0dpuc.



3.5.7 Parameter description and priors

Parameter Description Prior
Ao.cLuc Circadian baseline Ap cLuc ~ half-normal(5)
Ai cLuc Circadian amplitude A1.cLuc ~ half-normal(1)
daLUC Circadian phase ocruc ~ U(0,24)
A zaruct degradation rate log(A11) ~N(0,1)
Ao Suppression of zgruci by zaLuce log(Ai2) ~ N(0,1)
Asy Activation of zgruce by zaLuct log(Aa1) ~ N(0,1)
Aoy zaLuce degradation rate log(A22) ~ N(0,1)
T Delay in meal response 7 ~ half-normal(0.5)
Bss Glucose diffusion noise Bss ~ half-normal(0.5)
5 Meal-induced glucose increase 47, ~ half-normal(5)

Parameters Model 1 : glucose and meals model.

3.6 Model 2: physical and heart activity model

We model physical and heart activity dynamics with a three-dimensional system of SDEs, where the first
variable xacT represents physical activity, the second variable zyr represents heart rate and the third
variable xygry represents heart rate variability, where we use the inverse of the root mean square of successive
differences between normal heartbeats (RMSSD™!). We normalise all three variables by their respective

standard deviations before inferring parameters. In matrix form, the model is expressed as follows

da(t) = Wa(t)dt + d3,

xACT(t) —-Cn1 0 0 Dy, 0 0

(25)
z(t)=| zur(t) |W=| Cu —Cxn 0 Q= 0 Doy pvVD22D33 |
HRv () C31 0 —C33 0 pvDaDs33 D33

where the coefficients C;; are constrained to be positive. The covariance of the brownian noise term 3 is
given by ). Dynamic changes and fluctuations in HR and HRV might be correlated, where this correlation
is mediated by e.g. the autonomic nervous system. In the model, the correlation in the fluctuations between

HR and HRV is quantified with the correlation parameter p € (—1,1).

3.6.1 State-transition model

The state-transition model Fj can be calculated using a 3x3 matrix exponential



Fk = exp (WAtk) y

e~ At 0 0 (26)
— _ Oy e~ C11 Aty —Ca1 e C22 Atk 67022 Aty 0
C11—C22
_ Cae”“112% (5 6”933 2% 0 e~ Cs3 Aty
C11—Cj33

3.6.2 Covariance of the process noise

Similarly to the glucose model, the covariance of the process noise is calculated symbolically using the

following formulae

Y(Aty) = Py — Fi(Aty) P FY (Aty), (27)

WPy + P WT +Q=0. (28)

3.6.3 Circadian dynamics

We model the underlying circadian rhythms in activity levels with a sinusoidal function

gact(t) = Coact + Cr,acT (1 + cos(wt — pacr))/2, (29)

where Cj is the baseline level, C; is the amplitude, w is the frequency (fixed at 27/24), and ¢acr is the
peak time of the function. Given that physical activity acts as an input into HR, the circadian function for
HR receives an input from physical activity. We therefore model the circadian rhythms for HR using two
functions: a term that integrates input from physical activity gig(t) and an independent function gig ().

The expression for the term gll{R(t) that integrates input from physical activity is then given by

d
%gll{R(t) = Cngacr(t) — Caagiir (1),
gl (t) _ C() 021 Cl 021 . 01 021 w sin (@ACT — wt) 01 021 022 COS (QOACT — wt) (30)
HR Ca2 2Cy 2 (0222 + w2) 2 (0222 + w2) '
We then model the additional circadian component gy (t) with a separate function
gir(t) = Conr + Crur (1 + cos(wt — ¢ur))/2. (31)

The total circadian function is then a sum of these two components

gur(t) = gi (t) + gim (1) (32)



The same framework is then used for the HRV signal, with a term that integrates input from physical activity

Jiiry (t) and an independent function gigy(t). The expression for the term gigy(t) that integrates input

from physical activity is then given by

d
agllmv(t) = Cigact(t) — Coagiiry (t)

GOz | C1C31 C1Csywsin(pacr —wt) | Oy O3 Csz cos (pact — wt)

1
t) = _
guary (1) Cs3 2C33 2 (C33° + w?)

We then model additional HRV circadian component g%ﬂw(t) with a separate function

gir (1) = Courv + C1urv (1 + cos(wt — dury))/2.

The total circadian function is then a sum of these two components

gurv () = iy () + gimy (1)-

3.6.4 Observation matrix

The observation matrix Hj, is such that all three variables are observed

100
He=10 10
0 0 1

3.6.5 Observation model

Finally, the observation model has the following form

y(tk) = Hkil:(tk) + N(mk, Rk)7

gacr(t) oXor O
my = | gur(t) |,Bk= 0 ofgr
gurv (1) 0 0

2
OHRV

2 (0332 + wz)

(35)

(37)



3.6.6 Parameter description and priors

Parameter Description Prior
Co,acT; Cour, Co HRV Circadian baseline (activity, HR, HRV) Co,acT, Cour, Coury ~ half-normal(1)
Cl,ACT, C1,HR, Cl,HRV Circadian amplitude (activity, HR, HRV) Cl,ACTa Ol,HR; C1 HRV ~ half—normal(l)

dACT, PHR, PHRV

Circadian phase (activity, HR, HRV)

dAacT; PuR, ¢urv ~ U(0, 24)

C11,Ca2,C33 Relaxation rate (activity, HR, HRV) Ciit, Cot, Cot ~ half-normal(0.01)
Coy Activation of xyr by TacT log(Cs1) ~ N(0,5)
Cs1 Activation of zgry by zacT log(Cs1) ~ N(0,5)
p Correlation in diffusion between xpr and ryry p~TU(-1,1)
D11, Do5, D33 Diffusion noise (activity, HR, HRV) D11, D33, D33 ~ half-normal(5)

OACT; OHRs OHRV

Measurement noise (activity, HR, HRV)

OACT,OHRy OHRV "~ half—normal(l)

3.7 Model 3: combined model

Parameters Model 2 : physical and heart activity model.

The final model connects the physical and heart activity signals with glucose dynamics by connecting Model

1 (the glucose and meals model) with Model 2 (physical and heart activity). Three new parameters Cs1, Cso

and Cs3 are introduced that describe the effect of physical activity, HR and HRV on glucose levels (zgrucs),

respectively. These three parameters are left unconstrained and can take either positive, negative or zero

values.

de(t) = Wa(t)dt + dg

racT(t) -Cnn 0
Tur(t) Ca1  —Ca
rarv(t) |W=1 Cn 0
raruct (t) 0 0
zaruoz(t) | | Csi Cs
Dy, 0 0 0
0 Do pv/ D2z D3z 0
0  pvDa2Ds3 D33 0
0 0 0 0
0 0 0 0

0 0 0
0 0 0
—C3s3 0 0
0 —An —Ap
Csz  Aar —Ag | (38)
.
0
0
0
Bss

To simplify the model inference problem, the parameters from Model 2 describing the physical and heart

activity model in isolation were locked to their posterior mean values. The covariance of the brownian noise




term 3 is given by Q.

3.7.1 State-transition model

Symbolic calculation of the matrix exponential required for the state-transition model becomes too cumber-

some for Model 3, and we therefore use a Taylor series to approximate it [S2].

l
exp (WAL) = > (WAL) /5!, (39)
7=0
along with the scaling property
e(WAtk) — (e(WAtk)/m)m. (40)

We use [ =5 and m = 2.

3.7.2 Covariance of the process noise

For the covariance of the process noise, we use the Matrix Fraction Decomposition approach [S3-S4] to solve

az(r)

- = WEO+SOWT +Q. £(0)=0 (41)

If we define matrices Cx;(At) and Dy (At) such that S(At) = Cx(At) D' (At) then we can now use matrix

fractions to solve

Cx(At) w Q 0
= exp At
Dx(AY) o -w' I
(42)
[ exp(WAL) X(At) exp(WAt)~ T 0
0 exp(WA#)~T I

As D' (At) = exp(WA?) T, there is no need for a matrix inversion.

3.7.3 Observation matrix

The observation matrix Hj, is such that physical activity (zact(t)), HR (zur(t)) and HRV (zprv(t)) are

observed along with the glucose levels (zgruca(t)).

100 00
0100 0

Hy = (43)
0010 0
00001



3.7.4 Observation model

Finally, the observation model has the following form

Yy, = Hyx(ty) + N(my, Ry)

JACT (t) U?\CT 0 0 0
gur(t) 0 oig O 0 (44)
my = , R =
gurv (t) 0 0 012{RV 0
garuc(t) 0 0 0 0l

3.7.5 Parameter description and priors

Parameters for the physical and heart activity model (Model 2) are fixed at their posterior mean values, and
the parameters for the glucose model (Model 1) are relearnt with the same priors. The priors for the 3 new

parameters (Cs1, Csa, Cs3) in Model 3 are then as follows

Parameter Description Prior
Csy Activation of zgruca(t) by activity | Cs1 ~ N(0,1)
Cso Activation of zgruce(t) by HR Cso ~ N(0,1)
Css Activation of xgruce(t) by HRV Cs3 ~ N(0,1)

Parameters Model 3 : combined model.

3.8 Posterior parameter sampling with MCMC

The parameter posterior distribution was sampled using Hamiltonian Markov Chain Monte Carlo (HMC),
which uses the gradients of the posterior to improve the efficiency of the sampling. To initialise the sam-
pler, we found the maximum a posteriori probability (MAP) parameter estimate using the BFGS optimiser
"bfgs_minimize’ within TensorFlow Probability. We then used the 'HamiltonianMonteCarlo’ function with
TensorFlow Probability with 5 leapfrog steps, and we scaled the step size of each variable to approximately
match the standard deviation of the posterior distribution. To achieve this, we sampled posterior param-
eters using two steps. Firstly, we sampled 10000 parameters (with a burn-in of 10,000 samples) using the
"SimpleStepSizeAdaptation’ kernel to select the global step size, which adapts the global step size to achieve
a target acceptance probability of 0.75 [S5]. We then scaled the step size of each variable according to the
standard deviation of this initial posterior distribution. Next, we resampled model parameters from the pos-
terior distribution using 4 different chains with 10,000 samples each (with a burn-in of 10,000 samples), again
using 'SimpleStepSizeAdaptation’ kernel to globally rescale the step size. The 'SimpleStepSizeAdaptation’
kernel was only applied to first 80% of the burn-in samples.
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