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Supplementary information for Experimental Section 

CSF data set curation 

The data set of Macron2018A (7) was retrieved from Supporting Information Table S1. The number of 

peptides per unique Uniprot ID (referred to as Protein Accession Number in the table) was counted. If 

several Uniprot IDs were associated with a unique protein, the first Uniprot ID was kept. All unique 

proteins reported in the study could be identified.  

The data of Macron2020 (16) was collected from Supplementary Table S1 of the publication. The same 

data curation steps were taken as reported for Macron2018A. All unique proteins reported in the 

study could be identified. 

The Zhang2015 (17) study published only the unique proteins which were identified by at least two 

different peptides in Table 1 of the Data Article. The maximum number of identified peptides across 

the columns Flow-through Proteins, Original Proteins, and Bound Proteins was kept as the peptide 
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count for each reported protein. Because of the two-unique-peptides criterion only 2513 of the total 

3256 unique proteins were included. 

The results of the Guldbrandsen2014 (18) study were accessed through the CSF Proteome Resource 

at https://proteomics.uib.no/csf-pr-id/. The following protein data sets were downloaded: CSF GLYCO 

MIXEDMODE, CSF MIXED-MODE DEPLETED FRACTION, CSF MIXED-MODE BOUND FRACTION, CSF GEL 

DEPLETED FRACTION, CSF GEL BOUND FRACTION. For all five data sets only unique proteins with at 

least one associated peptide and that are validated were included. The highest reported unique 

peptide account across the five data sets was kept for each unique protein. The total number of unique 

proteins (2484) comprised 80.62% of the reported 3081 proteins identified in the study. 

The data of Macron2018B (19) was collected from Supplementary Table S1 of the publication. The 

same data curation steps were taken as reported for Macron2018A. All unique proteins reported in 

the study could be identified.  

The identified peptides and proteins of the Schutzer20106 (20) study were identified by IPI instead of 

Uniprot ID. The IPI-to-Uniprot conversion tool of the bioDBnet web server (64) at https://biodbnet-

abcc.ncifcrf.gov/db/db2db.php was used to map IPI to Uniprot IDs. The number of peptides per IPI 

was used to derive the associated peptide count. Of the reported 2630 unique proteins 2067 (78.59%) 

could be matched to a known Uniprot ID. 

The Higginbotham2020 (21) data was obtained from Supplementary Table S2A containing all proteins 

identified in their discovery cohort. Information on isoforms was not considered leading to all reported 

2828 unique proteins being included.  

Of the 2327 proteins identified in the Sathe2019 (22) study and listed in Supplementary Table 3, we 

could map 2310 proteins to a unique Uniprot ID within the human proteome.  

Bader2020 (23) reported 1484 unique proteins that have been identified in at least 20 out of the 197 

included samples. All of these proteins were listed in Dataset EV3. If multiple Uniprot IDs were 

reported for one protein, the first identifier was retained. 

Feature generation 

For all human proteins in our training, test and control data sets with a unique Uniprot ID the canonical 

protein sequence was downloaded. Subsequently, 52 sequence-based features were produced for 

each entry for the machine learning model to learn on.  

The length of the protein sequence was derived as a feature. The Biopython Bio.SeqUtils package (65) 

was utilized to calculate molecular weight, the percentage of each amino acid type in the sequence, 

isoelectric point, and instability index (29). The amino acid type related features are represented by 

their one-letter code.  

NetSurfP-2.0 (30) was downloaded and run locally to produce secondary structure (helix, sheet, coil) 

and disorder prediction for protein sequences. NetSurfP-2.0 was run using MMseqs2 and the 

Uniclust30 database (Release: 2017_04) to generate the required sequence profiles for prediction. 

The per-residue predictions of disorder and secondary structure were aggregated across the entire 

protein sequence to obtain an average disorder score and the proportion of each secondary structure 

element of the sequence. 

https://proteomics.uib.no/csf-pr-id/
https://biodbnet-abcc.ncifcrf.gov/db/db2db.php
https://biodbnet-abcc.ncifcrf.gov/db/db2db.php
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SignalP-6.0 (31) was downloaded and run locally to predict signal peptides within the protein 

sequence. The slow mode was used, and the prediction was limited to only eukaryotic signal peptide 

prediction. 

The glycosylation predictor NetNglyc-1.0 (32) was downloaded and run locally. Only high confidence 

glycosylation sites were included (indicated by +++). The prediction results were then implemented as 

a binary feature indicating presence or absence of any glycosylation site. GlycoMine (33) prediction 

results of C-, N-, and O-linked glycosylation sites of the entire human proteome are provided online at 

https://glycomine.erc.monash.edu/Lab/GlycoMine/. These data sets were downloaded and used to 

annotate proteins regarding the presence or absence of glycosylation sites. The thresholds reported 

at https://glycomine.erc.monash.edu/Lab/GlycoMine/ were used to determine a positive prediction. 

DeepLoc-1.0 (34) was downloaded and run locally for subcellular localization prediction based on 

sequence. Every protein is assigned to the subcellular localization with the highest predicted 

probability out of ten possible classes: Cytoplasm, nucleus, cell membrane, extracellular, 

mitochondrion, endoplasmic reticulum, Golgi apparatus, peroxisome, lysosome/vacuole, and plastid. 

TMHMM-2.012 (35) was used to predict transmembrane residues and regions from sequence. The 

web server at https://services.healthtech.dtu.dk/service.php?TMHMM-2.0 was accessed and the 

predicted number of transmembrane helices (PredHel), the number of transmembrane residues in 

the entire sequence (ExpAA) as well as in the first 60 residues (First60ExpAA) were extracted as a 

feature. Transmembrane regions were also included as a binary feature indicating absence or 

presence of any transmembrane helix. 

The web server of NetGPI-1.1 (36) at https://services.healthtech.dtu.dk/service.php?NetGPI was used 

to produce predictions of GPI-anchors from sequence. Any protein sequences with the result "GPI-

Anchored" were annotated as such.  

The ScanProsite tool (38) (https://prosite.expasy.org/scanprosite/) was used to identify motifs of the 

PROSITE database (37) (Release 2022_01) in the brain elevated proteome. Patterns significantly 

enriched in either the CSF positive or negative group were implemented as a feature indicating 

presence or absence in the protein sequences. For more information on the included patterns, see 

the associated PROSITE documentation: 

• EGF1 (PROSITE accession: PS00022, https://prosite.expasy.org/PDOC00021); 

• EGF2 (PROSITE accession: PS01186, https://prosite.expasy.org/PDOC00021); 

• Cadherin-1 (PROSITE accession: PS00232, https://prosite.expasy.org/PDOC00205); 

• G-protein receptor F1 (PROSITE accession: PS00237, https://prosite.expasy.org/PDOC00210); 

• Zinc Finger C2H2 (PROSITE accession: PS00028, https://prosite.expasy.org/PDOC00028); 

• Homeobox (PROSITE accession: PS00027, https://prosite.expasy.org/PDOC00027). 

Annotations of ectodomain shedding proteins were taken from two previously published efforts to 

collect all known human ectodomain shedding proteins. The known shedding proteins listed on the 

web server DeepSMP (40) (http://www.csbg-jlu.info/DeepSMP/browse.php19) and the human 

shedding proteins in the SheddomeDB (41) (https://bal.lab.nycu.edu.tw/sheddomedb/app/browse) 

were combined and used to annotate ectodomain shedding proteins in our protein set. 

https://glycomine.erc.monash.edu/Lab/GlycoMine/
https://glycomine.erc.monash.edu/Lab/GlycoMine/
https://services.healthtech.dtu.dk/service.php?TMHMM-2.0
https://services.healthtech.dtu.dk/service.php?NetGPI
https://prosite.expasy.org/scanprosite/
https://prosite.expasy.org/PDOC00021
https://prosite.expasy.org/PDOC00021
https://prosite.expasy.org/PDOC00205
https://prosite.expasy.org/PDOC00210
https://prosite.expasy.org/PDOC00028
https://prosite.expasy.org/PDOC00027
http://www.csbg-jlu.info/DeepSMP/browse.php19
https://bal.lab.nycu.edu.tw/sheddomedb/app/browse
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Curated annotations of EV associated proteins from a recently published study were added as a 

feature (27). 

Supplementary tables 

Table S1. Included CSF proteomics studies to establish the AD CSF proteome. AD – Alzheimer’s 

Disease; HC – healthy controls 

Study name  Reported  

CSF 

proteins  

Included  

CSF 

proteins  

HC:AD 

subject 

ratio  

Female: male 

subject ratio  

Median subject  

age in years  

Ref.  

Higginbotham

2020  

2875  2828  20:20  9:11 (HC)  

8:12 (AD)  

N.A.  (21)  

Sathe2019  2327  2310  5:5  3:2 (HC)  

4:1 (AD)  

67 (64-83) (HC)  

73 (57-80) (AD)  

(22)  

Bader2020  1484  1484  109:88  50:59 (HC)  

49:39 (AD)  

68 (20-88) (HC)  

72 (57-88) (AD)  

(23)  

 

Table S2. Gene ontology term enrichment analysis of CSF brain proteins (separate file) 

Table S3. Predicted probability scores for full human proteome (separate file) 

Supplementary figures 

 

Figure S1. Overlap of CSF and brain proteome datasets. (A) The inter-study proteome variability is 

indicated by a heat map showing the protein overlap between the studies which are sorted by protein 

set size. The protein overlap is displayed as a value between 0 (no overlap) and 1 (complete overlap). 

Protein sets between different studies have an overlap between 0.61 and 0.9. (B) The relative overlap 

of the CSF proteome with the brain elevated HPA proteome increases in the higher stringency CSF 

protein sets. 
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Figure S2. Overlap of proteome composition in healthy and Alzheimer’s Disease CSF studies. (A) The 

overlap of the healthy CSF proteome with the AD CSF proteome is high and increasing in the high 

confidence CSF3+ protein sets. Note that only proteins that are part of the human proteome were 

included here. (B) The fraction of shared unique proteins between healthy and AD CSF studies was 

compared to investigate if disease status strongly influences CSF composition similarity between 

studies. Each row displays for one study the relative overlap of protein sets with the other included 

healthy and AD CSF studies (see Table 1 and Table S1) in a pair-wise manner. The dot colour indicates 

if the compared study investigated healthy or AD CSF. The relative overlap of the protein sets is not 

systematically affected by disease status (B). AD – Alzheimer’s Disease 

 

 

Figure S3. Ectodomain shedding and EV association in CSF and non-CSF brain proteins. CSF secreted 

proteins are significantly more often annotated as ectodomain shedding and EV associated proteins 

than non-CSF proteins. This observation is more distinct in the higher confidence CSF proteins (CSF2+, 

CSF3+). Both properties could explain the high occurrence of single-transmembrane proteins in the 

CSF (Figure 3D). EV – extracellular vesicle 
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Figure S4. Enriched motifs in CSF and non-CSF brain proteins. (A) The PROSITE patterns of EGF-like 

domain signature 1, EGF-like domain signature 2 and Cadherin-1 are strongly enriched in CSF brain 

proteins. (B) Patterns of G-protein receptor F1, the Zinc Finger C2H2 and homeobox domain are 

predominantly found in non-CSF brain proteins. EGF – epidermal growth factor 
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Figure S5. Differences in brain protein abundance and RNA tissue distribution in false negative 

predicted brain detected proteins. (A) Comparison of protein abundances shows that proteins 

detected in CSF but not predicted to be secreted have a much higher average abundance in the brain 

according to PaxDB annotations. (B) RNA tissue distribution according to the HPA reveals a higher 

fraction of proteins detected in all human tissues in the false negative group compared to other 

proteins. High abundance and ubiquitous expression might explain easy detection of these proteins in 

CSF. FN – false negative; FP – false positive; PPM – parts per million; TN – true negative; TP – true 

positive 
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