Supplementary for "Iberian Margin surface ocean cooling led

freshening during Marine Isotope Stage 6 abrupt cooling events"

Hongrui Zhang^{1*}, Yongsong Huang², Reto Wijker¹, Isabel Cacho³, Judit Torner³, Madeleine Santos¹, Oliver Kost¹, Bingbing Wei⁴, Heather Stoll¹

1. Geological Institute, ETH Zürich, 8092 Zürich, Switzerland;

2. Department of Earth, Environmental and Planetary Sciences, Brown University,

Providence, RI 02912, USA;

3. Grup de Recerca Consolidat en Geociències Marines, Department de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Barcelona, Spain;

4. Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, 27570, Germany

* Correspondence and requests for materials should be addressed to HZ

Email: zhh@ethz.ch

This document includes:

Figure S1. Gas chromatographic results in two samples with low and high C_{37:4}%.

Figure S2. Sea surface temperature during MIS 6 in different site on the Iberian Margin

Figure S3. Reworked fossils and oxygen isotope of deep ocean.

Figure S4. The oxygen isotope and Mg/Ca ratio measurements.

Figure S5. Comparison of alkenone-based SST and Mg/Ca SST on the Iberian Margin

Figure S6. Cross plot among C_{37:4}%, $\delta^{18}O_{sw}$ and alkenone-based SST.

Table S1. The endmember of mixing calculations in Figure 2.

Figure S1. Gas chromatographic results in two samples with low and high $C_{37:4}$ %.

Figure S2. SST by U^{k'}₃₇ **along the Iberian Margin.** (a) Position of each site. (b) Simulated cooling events on the Iberian Margin (37.97°N, 10.2°W) with forced freshwater (light blue) and without freshwater (grey)¹. (c) SST reconstructed by alkenone thermometers in the MIS 3. (d) The data in site MD99-2331, MD95-2040 and MD95-2042 are from ². The results in site IODP U1385 are from this study and ³. Red lines are SST reconstructed by U^{k'}₃₇ with Bayesian calibration. Green lines are SST reconstructed by U^k₃₇⁴.

Figure S3. Reworked fossils and oxygen isotope of deep ocean. (a) fossils in circular polarized microscope. From 1 to 5: *Chiasmolithus* spp., *Reticulofenestra filewiczii, Discaster deflandrei, Chiastozygus stylesii* and *Micula staurophora*. **(b)** The stack of deep ocean (benthic foraminifera) oxygen isotope⁵. The pink bars represent the occurrence time of fossils (Nannotax3).

Figure S4. The oxygen isotope and Mg/Ca ratio measurements. (a) Oxygen isotope of planktonic foraminifera, *Globigerina bulloides* (orange dots) and fine fraction (<63µm, blue dots). **(b)** The Mg/Ca ratio of *G. bulloides*. The error bars represent the standard deviation of measurement.

Figure S5. Comparison of alkenone-based SST and Mg/Ca SST on the Iberian Margin. Red lines are SST reconstructed by $U_{37}^{K'}$ with Bayesian calibration ⁶. Green lines are SST reconstructed by $U_{37}^{K'}$ by Rosell-Melé ⁴. Blue lines are SST reconstructed by $U_{38Me}^{K'}$ by Novak, et al. ⁷. The shaded areas are C_{37:4}%. Grey lines are Mg/Ca of *G. bulloides* in site ODP 977 ⁸ and grey dots are new records in this study.

Figure S6. Cross plot among C_{37:4}%, $\delta^{18}O_{sw}$ and alkenone-based SST. (a) Cross plot between C_{37:4}% and $\delta^{18}O_{sw}$. (b-e) Cross plot among C_{37:4}%, $\delta^{18}O_{sw}$ and SST estimated by U_{37}^K and $U_{38Me}^{K'}$. The squares and dots in b-e represent SST reconstructed by $U_{38Me}^{K'}$ and U_{37}^K , respectively.

Table S1. The endmember of mixing calculations in Figure 2.

	Group I		Group II		Group III warm		Group III cold	
	C _{37:4} %	C38ME::C38ET						
Figure 2c	40	0.2			0	0.3-2		
Figure 2d			15-40	0	0	0.3-1		
Figure 2e					0	0.3-1	10-40	2

Supplementary references

- 1 Pedro, J. B. *et al.* Dansgaard-Oeschger and Heinrich event temperature anomalies in the North Atlantic set by sea ice, frontal position and thermocline structure. *Quaternary Science Reviews* **289**, doi:10.1016/j.quascirev.2022.107599 (2022).
- 2 Davtian, N., Bard, E., Darfeuil, S., Ménot, G. & Rostek, F. The Novel Hydroxylated Tetraether Index RI-OH' as a Sea Surface Temperature Proxy for the 160-45 ka BP Period Off the Iberian Margin. *Paleoceanography and Paleoclimatology* **36**, doi:10.1029/2020pa004077 (2021).
- 3 Martrat, B. *et al.* Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. *Science* **317**, 502-507 (2007).
- Rosell-Melé, A. Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high-latitude locations. *Paleoceanography* 13, 694-703, doi:10.1029/98PA02355 (1998).
- 5 Westerhold, T. *et al.* An astronomically dated record of Earth's climate and its predictability over the last 66 million years. *Science* **369**, 1383-1387, doi:10.1126/science.aba6853 (2020).
- 6 Tierney, J. E. & Tingley, M. P. BAYSPLINE: A New Calibration for the Alkenone Paleothermometer. *Paleoceanography and Paleoclimatology* **33**, 281-301, doi:10.1002/2017pa003201 (2018).
- 7 Novak, J. *et al.* UK'38ME Expands the linear dynamic range of the alkenone sea surface temperature proxy. *Geochimica et Cosmochimica Acta* **328**, 207-220, doi:10.1016/j.gca.2022.04.021 (2022).
- 8 Torner, J. *et al.* Ocean-atmosphere interconnections from the last interglacial to the early glacial: An integration of marine and cave records in the Iberian region. *Quaternary Science Reviews* **226**, 106037, doi:10.1016/j.quascirev.2019.106037 (2019).