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Note: This Supporting Information fully details the procedure leading to the exact solutions reported in
the main text. For completeness, deep-level passages are also reported, for each step of the solution pro-
cedure. Moreover, in order to foster reproducibility, contextual details are added when citing some refer-
ences, as appropriate for pointing to specific expressions therein. For instance, ([SR1] 19.2.11) points to
expression 19.2.11 in reference [SR1]. Furthermore, equations are sequentially numbered starting from
the last number appearing in the main text, for ease of readability.

S1. The function that permits to compute all the solutions: C

All the solutions achieved in the study are computed based on the so-called Bulirsch integral C, which
is defined as follows:

C(kc, p, a, b) :=
∫ π/2

0

a cos2 ψ + b sin2 ψ

(cos2 ψ + p sin2 ψ)
√
cos2 ψ + k2c sin2 ψ

dψ, (19)

with kc, p, a, b ∈ R, kc ̸= 0 and p ̸= 0 ([SR1] 19.2.11). C, which is commonly implemented in software
libraries [SR2], is the only function that is needed to implement all the analytical solutions obtained for
magnetic field, gradient, force and torque.

C permits to conveniently compute the complete elliptic integrals of the first, second and third kind,
respectively denoted in literature by K, E and Π [SR3], as follows: K(k) = C(kc, 1, 1, 1) = C(kc, w, 1, w),
E(k) = C(kc, 1, 1, k2c ) and Π(1− p, k) = C(kc, p, 1, 1), with k2c := 1− k2 and w ∈ R. The follow-
ing relations, which were used in the derivations, are thus immediately verified: uK(k) + v E(k) =
C(kc, 1, u+v, u+v−vk2), uK(k) + vΠ(1−p, k) = C(kc, p, u+v, up+v), with u, v ∈ R. In order to avoid
some representation singularities at ρ = 0 (e.g., for H∥ρ/ρ̄ when computing grad (H) in cylindrical coor-
dinates), we also exploited the following relation:

ρ−1 C(kci, 1,−1, 1) =
4

d2
i

C
(

2
√
kci

1 + kci
, 1, 0,

2

(1 + kci)3

)
(which can be derived by applying the Gauss transformation to the underlying elliptic integrals [SR3]),
in particular through the introduction of f3 in Table 4 (from which even kci and di are recalled). For the
sake of illustration, Figure S1a shows some contour plots of C(kc, p, a, b), for selected values of p, a and b.

In order to determine the solution for magnetic field and gradient, we also used the so-called nor-
malized Heuman Lambda function Λ, since its introduction allowed us to circumvent singularities that
arise, in particular, when using Π. Λ can be defined as follows ([SR3] 150.02, up to a sign amendment

consistent with 410.04): Λ(σ2, k) :=
√
p̃ σ2 L, with p̃ := (1− σ2k2c )/(1− σ2), k2c := 1− k2, L :=∫ K(k)

0
du dn2(u)/ (1−ω sn2(u)) and ω :=1−p̃. (For reference, let us observe that σ2 corresponds to sin2(β)

in [SR3]). Λ is well-behaved over its domain (0≤σ2≤ 1, 0≤k≤ 1), including its boundaries: Λ(0, k)=0,

Λ(1, k) = π/2, Λ(σ2, 0) = π
√
σ2 /2, and Λ(σ2, 1) = arcsin(

√
σ2) (see Figure S1b). However, by observing

that ([SR3] 339.01) L = ω−1 (k2K(k) + (ω − k2)Π(ω, k)) = ω−1(k2 C(kc, p̃, 1, p̃)+(ω−k2) C(kc, p̃, 1, 1)) =
C(kc, p̃, 1, k2c ), we defined Λ via C as in Table 4, thus making it possible to compute all the solutions by
means of a single algorithmic building block, namely C. While enabling compact and robust implementa-
tions, this can also foster computational efficiency, e.g., by algorithmic optimization, in particular when
addressing complex magnets systems.
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(a) (b)

Figure S1. a) Illustrative contour plots of C(kc, p, a, b), for selected values of p, a and b. b) Contour plot of Λ(σ2, k).

S2. Magnetic field and gradient: Solution details for Step1

Working in non-dimensional cylindrical coordinates (for which we systematically assumed ρ> 0, with-
out loss of generality), at Step1 we expressed φ̃∥ and φ̃⊥ in terms of the Bessel functions of the first kind
Jn [SR4] (by also recalling relevant expressions such as z±, cϕ and [·]+− from Table 4).

As for φ̃∥, once introduced ψ := ϕ − ϕ′ and δ := +
√
ρ2+ρ′2−2ρρ′ cψ, from ([SR4] 6.611-1) it follows

that:

R̄

||P−P′||
=

1√
δ2 + z2i

=

∫ ∞

0

J0(sδ) e
−s|zi| ds, i =+ for P′∈Sb, i =− for P′∈St (20)

(with Sb and St shown in Figure 1a). Moreover, considering that ([SR4] 8.531-1)

J0(sδ) = J0(sρ
′)J0(sρ) +2

∞∑
m=1

Jm(sρ
′)Jm(sρ) cmψ, (21)

so that Equation (20) and (21) lead to

∫ 2π

0

[
dϕ′√
δ2 + z2i

]−
+

= 2π

[∫ ∞

0

J0(sρ
′)J0(sρ) e

−s|zi| ds

]−
+

,

one obtains

φ̃∥

2π
=

∫ 1

0

dρ′ρ′
[∫ ∞

0

J0(sρ
′)J0(sρ) e

−s|zi| ds

]−
+

,

and by using the fact that
∫ 1

0
dρ′ ρ′J0(sρ

′) = s−1J1(s), the sought expression for φ̃∥ finally reads:

φ̃∥

2π
=

[∫ ∞

0

s−1 J1(s)J0(sρ) e
−s|zi| ds

]−
+

. (22)
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As for φ̃⊥, once introduced (with minor abuse of notation) δ :=+
√
ρ2+1−2ρ cψ, by leveraging Equa-

tion (20) (with z−z′ in place of zi) and Equation (21) (with ρ′=1), it follows that:∫ 2π

0

cϕ′ dϕ
′√

δ2+(z−z′)2
= 2π cϕ

∫ ∞

0

J1(s)J1(sρ) e
−s|z−z′| ds,

so that

φ̃⊥

2π
= cϕ

∫ L

−L

dz′
∫ ∞

0

J1(s)J1(sρ) e
−s|z−z′| ds

and, upon integration over z′, the sought expression for φ̃⊥ finally reads:

φ̃⊥

2π
=



cϕ

[∫ ∞

0

J1(s)J1(sρ)

s
e−szids

]−
+

for z≥L

cϕ

∫ ∞

0

J1(s)J1(sρ)

s

(
2−esz−−e−sz+

)
ds for |z|<L

cϕ

[∫ ∞

0

J1(s)J1(sρ)

s
eszids

]+
−

for z≤−L.

(23)

For ease of presentation, we anticipate that, in light of Equation (23), at Step2 we proceeded by con-
sidering the following integrals involving products of Bessel functions:

Iλαβ(a, b, c) :=
∫ ∞

0

sλ Jα(s a)Jβ(s b) e
−s c ds,

with α, β, λ∈Z, such that: α+β+λ>−1 if c>0; α+β+1>−λ>−1 if c=0 and a ̸= b; α+β+1>−λ>0
if c=0 and a= b (in order to recall relevant expressions from [SR5]). Moreover, we separately addressed
the three cases z≥L, |z|<L and z≤−L, for ease of derivation.

S3. Magnetic field and gradient: Solution details for Step2-3, case z ≥ L

For z≥L, |z+|=z+ and |z−|=z− (relevant expressions from Table 4 are tacitly recalled). As for axial
contributions, the following relations are derived from Equation (22) (also using ∂ρJ0(sρ)=−sJ1(sρ)):

φ̃∥ =2π
[
I−1
10 (1, ρ, zi)

]−
+

(24)

−∂ρφ̃∥ =2π
[
I0
11(1, ρ, zi)

]−
+

(25)

−∂zφ̃∥ =2π
[
I0
10(1, ρ, zi)

]−
+

(26)

−∂ρ∂zφ̃∥ =2π
[
I1
11(1, ρ, zi)

]+
−

(27)

−∂z∂zφ̃∥ =2π
[
I1
10(1, ρ, zi)

]+
−
. (28)
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By recalling ([SR5] Table3: ENS-4.2, ENS-4.7), Equation (25) and (26) can be recast in terms of C and
Λ, thus leading to Equation (1) and (2), respectively. Similarly, by recalling ([SR5] Table3: ENS-4.4,
ENS-4.8), Equation (27) and (28) respectively lead to Equation (8) and (9). For completeness, by using
([SR5] Table3: ENS-4.6) we also recast Equation (24) as follows:

φ̃∥

2
=
[
C
(
kci, 1, ϖi, ϖi − dik

2
i

) ]−
+
+ 2π LH(1−ρ) + sign(1−ρ)

[
zi Λ(σ

2
i , ki)

]−
+
, (29)

with ϖi :=di + (1−ρ2)/di. Let us observe that φ̃∥ is continuous, in particular across τl (in Figure 1a).
As regards diametric contributions, the following relations are derived from Equation (23) (also using

∂ρJ1(sρ)=sJ0(sρ)− ρ−1J1(sρ)):

φ̃⊥ =2π cϕ

[
I−1
11 (1, ρ, zi)

]−
+

(30)

−∂ρφ̃⊥ =2π cϕ

[
ρ−1I−1

11 (1, ρ, zi)− I0
10(1, ρ, zi)

]−
+

(31)

−∂ϕφ̃⊥ =2π sϕ

[
I−1
11 (1, ρ, zi)

]−
+

(32)

−∂zφ̃⊥ =2π cϕ

[
I0
11(1, ρ, zi)

]−
+

(33)

−∂ϕ∂ρφ̃⊥ =2π sϕ

[
ρ−1I−1

11 (1, ρ, zi)− I0
10(1, ρ, zi)

]+
−

(34)

−∂ϕ∂ϕφ̃⊥ =2π cϕ

[
I−1
11 (1, ρ, zi)

]−
+

(35)

−∂ρ∂zφ̃⊥ =2π cϕ

[
I1
10(1, ρ, zi)− ρ−1I0

11(1, ρ, zi)
]−
+

(36)

−∂ϕ∂zφ̃⊥ =2π sϕ

[
I0
11(1, ρ, zi)

]+
−

(37)

−∂z∂zφ̃⊥ =2π cϕ

[
I1
11(1, ρ, zi)

]+
−
. (38)

By recalling ([SR5] Table3: ENS-4.2, ENS-4.7, ENS-4.9), Equation (31), (32) and (33) can be recast in
terms of C and Λ, thus leading to Equation (3), (4) and (5), respectively. Similarly, by recalling ([SR5]
Table3: ENS-4.2, ENS-4.4, ENS-4.7, ENS-4.8, ENS-4.9), Equation (34), (35), (36), (37) and (38) respec-
tively lead to Equation (10), (11), (12), (13) and (14). For completeness, by using ([SR5] Table3: ENS-
4.9) we also recast Equation (30) as follows:

φ̃⊥ = cϕ ρ
−1

([ zi
di

C
(
kci, 1, (1−ρ)2, (1+ρ)2

) ]+
−

− (1−ρ2) sign(1−ρ)
[
Λ(σ2

i , ki)
]+
−

)
. (39)

Let us observe that φ̃⊥ is continuous, in particular across τl, and it can can be robustly computed even
for ρ→0, since ([SR4] 6.611-1) I−1

11 (1, ρ→0, zi) = (ρ/2)(
√

z2i + 1− zi)/
√
z2i + 1 +O(ρ3)=O(ρ).

Finally, even f2 (defined in Table 4) can be robustly computed for ρ→ 0, since the underlying term is
given by ρ−2 γ(ρ, zi), with γ(ρ, zi) := 2 I−1

11 (1, ρ, zi) − ρ I0
10(1, ρ, zi), so that ([SR4] 6.621-4) γ(ρ→ 0, zi) =

ρ3(3 zi/8)(1 + z2i )
−5/2 +O(ρ5), whence f2 = O(ρ).
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S4. Magnetic field and gradient: Solution details for Step2-3, case |z| < L

For |z|<L, |z+|=z+ and |z−|=−z− (relevant expressions from Table 4 are tacitly recalled). As for ax-
ial contributions, the following relations are derived from Equation (22) (also using ∂ρJ0(sρ)=−sJ1(sρ)):

φ̃∥ =2π
(
I−1
10 (1, ρ,−z−)− I−1

10 (1, ρ, z+)
)

(40)

−∂ρφ̃∥ =2π
(
I0
11(1, ρ,−z−)− I0

11(1, ρ, z+)
)

(41)

−∂zφ̃∥ =2π
(
− I0

10(1, ρ,−z−)− I0
10(1, ρ, z+)

)
(42)

−∂ρ∂zφ̃∥ =2π
(
I1
11(1, ρ,−z−) + I1

11(1, ρ, z+)
)

(43)

−∂z∂zφ̃∥ =2π
(
− I1

10(1, ρ,−z−) + I1
10(1, ρ, z+)

)
. (44)

By recalling ([SR5] Table3: ENS-4.2, ENS-4.7), Equation (41) and (42) can be recast in terms of C and
Λ, thus leading to Equation (1) and (2), respectively. Similarly, by recalling ([SR5] Table3: ENS-4.4,
ENS-4.8), Equation (43) and (44) respectively lead to Equation (8) and (9). For completeness, by using
([SR5] Table3: ENS-4.6) we also recast Equation (40) as follows:

φ̃∥

2
=
[
C
(
kci, 1, ϖi, ϖi − dik

2
i

) ]−
+
+ 2π zH(1−ρ) − sign(1−ρ)

(
z− Λ(σ2

−, k−) + z+ Λ(σ2
+, k+)

)
, (45)

with ϖi :=di + (1−ρ2)/di. Let us observe that φ̃∥ is continuous, in particular across Sl (in Figure 1a).
As regards diametric contributions, the following relations are derived from Equation (23) (also using

∂ρJ1(sρ)=sJ0(sρ)− ρ−1J1(sρ)):

φ̃⊥ =2π cϕ

(
2 I−1

11 (1, ρ, 0)− I−1
11 (1, ρ,−z−)− I−1

11 (1, ρ, z+)
)

(46)

−∂ρφ̃⊥ =2π cϕ

(
−2 I0

10(1, ρ, 0) + I0
10(1, ρ,−z−) + I0

10(1, ρ, z+) +

− ρ−1
(
−2 I−1

11 (1, ρ, 0) + I−1
11 (1, ρ,−z−) + I−1

11 (1, ρ, z+)
) )

(47)

−∂ϕφ̃⊥ =2π sϕ

(
2 I−1

11 (1, ρ, 0)− I−1
11 (1, ρ,−z−)− I−1

11 (1, ρ, z+)
)

(48)

−∂zφ̃⊥ =2π cϕ

(
I0
11(1, ρ,−z−)− I0

11(1, ρ, z+)
)

(49)

−∂ϕ∂ρφ̃⊥ =2π sϕ

(
2 I0

10(1, ρ, 0)− I0
10(1, ρ,−z−)− I0

10(1, ρ, z+) +

− ρ−1
(
2 I−1

11 (1, ρ, 0)− I−1
11 (1, ρ,−z−)− I−1

11 (1, ρ, z+)
) )

(50)

−∂ϕ∂ϕφ̃⊥ =2π cϕ

(
2 I−1

11 (1, ρ, 0)− I−1
11 (1, ρ,−z−)− I−1

11 (1, ρ, z+)
)

(51)

−∂ρ∂zφ̃⊥ =2π cϕ

(
I1
10(1, ρ,−z−)− I1

10(1, ρ, z+)− ρ−1
(
I0
11(1, ρ,−z−)− I0

11(1, ρ, z+)
) )

(52)

−∂ϕ∂zφ̃⊥ =2π sϕ

(
I0
11(1, ρ, z+)− I0

11(1, ρ,−z−)
)

(53)

−∂z∂zφ̃⊥ =2π cϕ

(
I1
11(1, ρ,−z−) + I1

11(1, ρ, z+)
)
. (54)
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By recalling ([SR5] Table2 - where I0
10(1, 1, 0), although not formally included in the given definition of

Iλαβ, is correctly reported, see ([SR4] 6.512-3)) and ([SR5] Table3: ENS-4.2, ENS-4.7, ENS-4.9), Equa-
tion (47), (48) and (49) can be recast in terms of C and Λ, thus leading to Equation (3), (4) and (5), re-
spectively. Similarly, by recalling ([SR5] Table3: ENS-4.2, ENS-4.4, ENS-4.7, ENS-4.8, ENS-4.9), Equa-
tion (50), (51), (52), (53) and (54) respectively lead to Equation (10), (11), (12), (13) and (14). For com-
pleteness, by using ([SR5] Table2, Table3: ENS-4.9) we also recast Equation (46) as follows:

φ̃⊥ = cϕ ρ
−1

([ zi
di

C
(
kci, 1, (1−ρ)2, (1+ρ)2

) ]+
−

− (1−ρ2) sign(1−ρ)
(
Λ(σ2

+, k+) + Λ(σ2
−, k−)

))
. (55)

Let us observe that φ̃⊥ is continuous, in particular across Sl, and it can can be robustly computed even
for ρ → 0, since ([SR4] 6.611-1, 6.561-14) 2 I−1

11 (1, ρ→0, 0)−I−1
11 (1, ρ→0,−z−)−I−1

11 (1, ρ→0, z+) =

(ρ/2)
(
2− (

√
z2− + 1 + z−)/

√
z2− + 1− (

√
z2+ + 1− z+)/

√
z2+ + 1

)
+O(ρ3)=O(ρ).

Finally, even f2 (defined in Table 4) can be robustly computed for ρ→ 0, since the underlying terms
are given by ρ−2 γ0(ρ) and ρ

−2 γ±(ρ,±z±), with γ0(ρ) := 2 I−1
11 (1, ρ, 0) − ρ I0

10(1, ρ, 0) and γ±(ρ,±z±) :=
2 I−1

11 (1, ρ,±z±)− ρ I0
10(1, ρ,±z±), so that ([SR4] 6.512-3, 6.621-4) γ0(ρ<1) = ρ

∫∞
0
J1(s)J2(ρs)ds ≡ 0 and

γ±(ρ→0,±z±) = ρ3(±3 z±/8)(1 + z2±)
−5/2 +O(ρ5), whence f2 = O(ρ).

S5. Magnetic field and gradient: Solution details for Step2-3, case z ≤ −L

For z ≤ −L, |z+| = −z+ and |z−| = −z− (relevant expressions from Table 4 are tacitly recalled). As
for axial contributions, the following relations are derived from Equation (22) (also using ∂ρJ0(sρ) =
−sJ1(sρ)):

φ̃∥ =2π
[
I−1
10 (1, ρ,−zi)

]−
+

(56)

−∂ρφ̃∥ =2π
[
I0
11(1, ρ,−zi)

]−
+

(57)

−∂zφ̃∥ =2π
[
I0
10(1, ρ,−zi)

]+
−

(58)

−∂ρ∂zφ̃∥ =2π
[
I1
11(1, ρ,−zi)

]−
+

(59)

−∂z∂zφ̃∥ =2π
[
I1
10(1, ρ,−zi)

]+
−
. (60)

By recalling ([SR5] Table3: ENS-4.2, ENS-4.7), Equation (57) and (58) can be recast in terms of C and
Λ, thus leading to Equation (1) and (2), respectively. Similarly, by recalling ([SR5] Table3: ENS-4.4,
ENS-4.8), Equation (59) and (60) respectively lead to Equation (8) and (9). For completeness, by using
([SR5] Table3: ENS-4.6) we also recast Equation (56) as follows:

φ̃∥

2
=
[
C
(
kci, 1, ϖi, ϖi − dik

2
i

) ]−
+
− 2π LH(1−ρ) − sign(1−ρ)

[
zi Λ(σ

2
i , ki)

]−
+
, (61)

with ϖi :=di + (1−ρ2)/di. Let us observe that φ̃∥ is continuous, in particular across τl (in Figure 1a).
As regards diametric contributions, the following relations are derived from Equation (23) (also using

∂ρJ1(sρ)=sJ0(sρ)− ρ−1J1(sρ)):
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φ̃⊥ =2πcϕ

[
I−1
11 (1, ρ,−zi)

]+
−

(62)

−∂ρφ̃⊥ =2πcϕ

[
ρ−1I−1

11 (1, ρ,−zi)− I0
10(1, ρ,−zi)

]+
−

(63)

−∂ϕφ̃⊥ =2πsϕ

[
I−1
11 (1, ρ,−zi)

]+
−

(64)

−∂zφ̃⊥ =2πcϕ

[
I0
11(1, ρ,−zi)

]−
+

(65)

−∂ϕ∂ρφ̃⊥ =2πsϕ

[
ρ−1I−1

11 (1, ρ,−zi)− I0
10(1, ρ,−zi)

]−
+

(66)

−∂ϕ∂ϕφ̃⊥ =2πcϕ

[
I−1
11 (1, ρ,−zi)

]+
−

(67)

−∂ρ∂zφ̃⊥ =2πcϕ

[
I1
10(1, ρ,−zi)− ρ−1I0

11(1, ρ,−zi)
]−
+

(68)

−∂ϕ∂zφ̃⊥ =2πsϕ

[
I0
11(1, ρ,−zi)

]+
−

(69)

−∂z∂zφ̃⊥ =2πcϕ

[
I1
11(1, ρ,−zi)

]−
+
. (70)

By recalling ([SR5] Table3: ENS-4.2, ENS-4.7, ENS-4.9), Equation (63), (64) and (65) can be recast in
terms of C and Λ, thus leading to Equation (3), (4) and (5), respectively. Similarly, by recalling ([SR5]
Table3: ENS-4.2, ENS-4.4, ENS-4.7, ENS-4.8, ENS-4.9), Equation (66), (67), (68), (69) and (70) respec-
tively lead to Equation (10), (11), (12), (13) and (14). For completeness, by using ([SR5] Table3: ENS-
4.9) we also recast Equation (62) as follows:

φ̃⊥ = cϕ ρ
−1

([ zi
di

C
(
kci, 1, (1−ρ)2, (1+ρ)2

) ]+
−

+ (1−ρ2) sign(1−ρ)
[
Λ(σ2

i , ki)
]+
−

)
. (71)

Let us observe that φ̃⊥ is continuous, in particular across τl, and it can can be robustly computed even
for ρ→0, since ([SR4] 6.611-1) I−1

11 (1, ρ→0,−zi) = (ρ/2)(
√
z2i + 1 + zi)/

√
z2i + 1 +O(ρ3)=O(ρ).

Finally, even f2 (defined in Table 4) can be robustly computed for ρ → 0, since the underlying term
is given by ρ−2 γ(ρ, zi), with γ(ρ, zi) := 2 I−1

11 (1, ρ,−zi) − ρ I0
10(1, ρ,−zi), so that ([SR4] 6.621-4) γ(ρ→

0, zi) = ρ3(−3 zi/8)(1 + z2i )
−5/2 +O(ρ5), whence f2 = O(ρ).

S6. Magnetic field and gradient: Solution details for Step4

With reference to Table 1 and 2, cylindrical components of both magnetic field and gradient are de-
fined for ρ > 0, namely for off-axis P points, for ϕ (whence êρ and êϕ) to be defined. Differently, the
corresponding complete solutions (namely Equation (6) and (15)) seamlessly hold in the whole computa-
tional domain. As for H, Equation (6) circumvents the indeterminacy of ϕ for points P on the cylinder
axis thanks to the fact that u=ρM⊥(c2ϕ êx+s2ϕ êy) and v=−ρ (M∥ cϕ êx+M∥ sϕ êy+M⊥ cϕ êz), with both
u and v vanishing for ρ=0. More in detail, for ρ > 0, the above expression for u is recast in Table 4 as a
reflection across the plane through the origin O with unit normal ν, and the definition of ν consistently
provides a continuous extension of u at ρ=0. As for grad (H), Equation (15) circumvents the indetermi-
nacy of ϕ for points P on the cylinder axis thanks to the continuous extension provided through the def-
inition of J̃∥, J̃⊥, c̃ and s̃ in Table 4. Let us remark that, in numerical implementations, the conditions
ρ>0 and ρ=0 should be replaced by ρ>ϵ and ρ≤ϵ, respectively, where ϵ≪1 is a chosen threshold.
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S7. Magnetic scalar potential: Solution

The resulting expression of the magnetic scalar potential reads:

φ =
(
(p·ê⊥) (f1+ρ f2)M⊥ − (f̆0+2f̆)M∥

)
R̄/ π, (72)

where

f̆(ρ, z; L) :=
1

4

([
1

di
C
(
kci, 1, 2 (1+ρ) + z2i , 2 (1−ρ) + z2i

)]+
−
+ f̆Λ

)

f̆Λ(ρ, z; L) := sign(1−ρ)

[
zi Λ(σ

2
i , ki)

]+
− , f̆0(ρ, z; L) :=−πH(1−ρ) L for z ≥ L

f̆Λ(ρ, z; L) := sign(1−ρ)
(
z+ Λ(σ2

+, k+) + z− Λ(σ2
−, k−)

)
, f̆0(ρ, z; L) :=−πH(1−ρ) z for |z| < L

f̆Λ(ρ, z; L) := sign(1−ρ) [zi Λ(σ2
i , ki)]

−
+ , f̆0(ρ, z; L) :=+πH(1−ρ) L for z ≤ −L

and the remaining terms are recalled from Table 4. More in detail, from Equation (29), (45) and (61),

it follows that φ̃∥ = −4 (f̆0 + 2f̆). Furthermore, from Equation (39), (55) and (71), it follows that
φ̃⊥ = 4 (cϕ ρ) (f1 + ρf2) = 4 (p · ê⊥) (f1 + ρf2), where the latter equality permits to circumvents the
indeterminacy of ϕ for points P on the cylinder axis. Equation (72) is then obtained by recalling that
φ =

(
M∥ φ̃∥ +M⊥φ̃⊥

)
R̄/(4π). As anticipated in Section S3, S4, S5, Supporting Information, φ is contin-

uous in the whole computational domain (as well as across the magnet surface).

S8. Magnetic force and torque: Solution details

Upon non-dimensionalization, R2 := R̄2/R̄1, L1 := L̄1/R̄1, L2 := L̄2/R̄1, d := d̄/R̄1 (and R1 := R̄1/R̄1=1).
By using the results in Table 1 and 2, integration about the axial direction (namely the ϕ-sweep of the
underlying volume integrals) provides:

f1→2
∥ = 2µ0 R̄

2
1 F5 (M∥1 ·M∥2) ê

1→2 (73)

f1→2
⊥ =−µ0 R̄

2
1 F5 (M⊥1 ·M⊥2) ê

1→2 (74)

t1→2
⊥ = 2µ0 R̄

3
1 F1 (M⊥1×M⊥2), (75)

with

F1 :=

∫ R2

ρ=0

∫ d+L2

z=d−L2

f1(ρ, z; L1) ρ dρ dz and F5 :=

∫ R2

ρ=0

∫ d+L2

z=d−L2

f5(ρ, z; L1) ρ dρ dz.

Based on the assumption that magnet C2 resides in the z>L1 half-space (which does not affect the gen-
erality), from relevant expressions in Section S3, Supporting Information, one straightforwardly obtains

f1 = (π/4) [I0
10(1, ρ, zi)]

−
+ and f5 = (π/2) [I1

10(1, ρ, zi)]
+
−, so that direct integration (first in ρ, then in z)

leads to:

−4F1

πR2

= I−2
11 (1,R2, d−L1+L2) + I−2

11 (1,R2, d+L1−L2)− I−2
11 (1,R2, d+L1+L2)− I−2

11 (1,R2, d−L1−L2)

2F5

πR2

= I−1
11 (1,R2, d−L1+L2) + I−1

11 (1,R2, d+L1−L2)− I−1
11 (1,R2, d+L1+L2)− I−1

11 (1,R2, d−L1−L2) .
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Starting from the above expressions, the solutions in Table 3 can be obtained by recasting I−2
11 (1,R2, x)

and I−1
11 (1,R2, x) in terms of C, yet some attention must be paid to seamlessly encompass the cases x>0

and x=0, as sketched below.
First, by assuming x > 0, we used ([SR5] Table4) to recast I−2

11 (1,R2, x) and I−1
11 (1,R2, x) in terms

of C, so as to finally map Equation (73), (74) and (75) onto Equation (16), (17), and (18), respec-
tively. To the purpose, and with reference to Table 5, we introduced, in particular, f6(R2, x), f7(R2, x)

and f8(R2, x), based on which we defined η(R2, x) := x η̃(R2, x) and ζ(R2, x) := ζ̃(R2, x), with

η̃(R2, x) := (f6−f7) /ℓ and ζ̃(R2, x) := ((2 (1+R2
2)− x2)f6+f8) /ℓ. Contextually, we introduced ξ

in order to seamlessly deal with all the three cases R2 ⋚ 1. We then addressed the case x = 0, by
considering the corresponding limit expressions, namely f6(R2, 0) = −ξD(ξ), f7(R2, 0) = ξD(ξ) and

f8(R2, 0) = 4R2K(ξ), with D(ξ) := C
(√

1−ξ2, 1, 0, 1
)
, whence η̃(R2, 0) = −2 ξD(ξ)/ℓ(ξ) and ζ̃(R2, 0) =

2 (2R2E(ξ)− ξ (1+R2
2− 2R2 ξ)D(ξ)) /ℓ(ξ), with ℓ(ξ) = 1 for R2 ≤ 1 and ℓ(ξ) = R2 for R2 > 1. Both

η̃(R2, 0) and ζ̃(R2, 0) (whose expression can be alternatively obtained by initially recasting I−2
11 (1,R2, 0)

and I−1
11 (1,R2, 0) in terms of C through ([SR5] Table2)) can be straightforwardly computed for 0<ξ < 1,

thus allowing to immediately extend the above definitions of η and ζ to (R2, 0), with the only exception
of R2 = 1 (corresponding to ξ = 1). By observing that η(R2, 0) = 0 for 0< ξ < 1, we extended η by conti-
nuity, by defining η(1, 0) := 0, thus circumventing the fact that η̃(1, 0) is not defined since D(1) diverges
(regardless of the fact that the corresponding expression, namely C(0, 1, 0, 1), is not formally included
in the given definition of C, namely Equation (19), for which the first two arguments are assumed to be

different from zero). Finally, although ζ̃(R2, 0) is defined even for R2 = 1, and in particular ζ̃(1, 0) = 4,
we introduced a continuous extension for ζ as well, by defining ζ(1, 0) := 4. This is due to the fact that

ζ̃(R2, 0) = 2 C
(√

1−ξ2, 1, 2R2, 2R2 (1−ξ2)− ξ (1+R2
2− 2R2 ξ)

)
/ℓ(ξ), so that ζ̃(1, 0) = 4 C(0, 1, 1, 0) is not

formally included in the given definition of C, for the same reason recalled above. Let us remark that, in
numerical implementations, the condition (R2, x) ̸= (1, 0) should be replaced by |R2−1| ≤ ϵR and x≤ ϵx,
where ϵR≪1 and ϵx≪1 are chosen thresholds.
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