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1. Supplementary Results 

1.1 Patients 

Inclusion criteria were FIGO Stage IIIC/IV, high-grade serous cancer (HGSC, confirmed by 

histopathology review), ovarian, fallopian tube or primary peritoneal carcinoma, meeting 

survival group criteria; either short-term survivors (death within 2 years); moderate-term 

survivors (death ≥2 and <10 years); or long-term survivors (overall survival ≥ 10 years; 

Extended Data Fig. 1a). Age at diagnosis, tumor grade and FIGO stage were similar between 

survival groups (Extended Data Fig. 1b, Supplementary Table 1). All cases were classified 

HGSC according to the current two tier WHO classification1 for serous ovarian cancer, and 

there was no difference between the survival groups according to the Silverberg three tier 

ovarian cancer grading system2 that was previously in common use. Long-term survivors were 

more likely to have no macroscopic residual disease following primary debulking surgery 

(13/60, 22%) compared with short-term (1/34, 3%) and moderate-term survivors (2/32, 6%; P 

= 0.0227; Extended Data Fig. 1b). 

Compared to short-term survivors, moderate and long-term survivors were less likely 

to have primary peritoneal cancer (P = 0.1010) and neoadjuvant chemotherapy (P = 0.0640), 

although neither feature was significantly different between the groups (Extended Data Fig. 

1b). We note that patients who received neoadjuvant chemotherapy were all either short- (n = 

3) or moderate-term survivors (n = 1), and therefore may have unique molecular or clinical 

features. However, the four neoadjuvant cases did not belong to unique mutational signature 

clusters (FDR adjusted P value (Padj) = 0.6131, Extended Data Fig. 4b), methylation clusters 

(Padj = 0.0654, Supplementary Fig. 11) or immune clusters (Padj = 0.8976, Extended Data Fig. 

9a), and there were no significant associations between molecular or clinical features in 

neoadjuvant compared to adjuvant cases, aside from progression-free and overall survival (data 

not shown). 

 

1.2 Homologous recombination deficiency analysis 

The functional impact of homologous recombination gene alterations was measured in tumor 

genomes using the Classifier of Homologous Recombination Deficiency (CHORD)3 method, 

which integrates base substitution, indel, and structural rearrangement signatures to generate 

BRCA1-type homologous recombination deficiency (HRD) and BRCA2-type HRD prediction 

scores. The majority of BRCA1 germline mutant (19/24, 79.2%), BRCA1 promoter methylated 

(14/16, 87.5%) and BRCA1 somatic mutant (8/10, 80%) tumor genomes were classified as 
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BRCA1-type HRD (BRCA1-type CHORD score >0.5; Fig. 1b). All BRCA2 germline mutant 

(11/11, 100%) and BRCA2 somatic mutant (5/5, 100%) tumors were classified as BRCA2-type 

HRD (BRCA2-type CHORD score >0.5; Fig. 1b).  

We noted that while some BRCA1 altered tumors had a BRCA1-type CHORD score 

less than 0.5 (9/50, 18%), most of these (7/9, 77.8%) had a score between 0.15 and 0.5 that was 

consistently higher than wild-type homologous recombination proficient tumors (mean 

CHORD score of 0.01, range 0.00 to 0.04), indicating that the 0.5 cut-off may exclude some 

BRCA1 altered tumors. Of the two BRCA1 altered tumors with an exceptionally low BRCA1-

type CHORD score, AOCS-079 (BRCA1-type CHORD score 0.02) had a somatic BRCA1 

frameshift mutation in exon 10, and MMAY00631 (BRCA1-type CHORD score 0.03) had a 

germline missense mutation (NM_007294.3:c.5096G>A), which is considered pathogenic but 

with a reduced penetrance compared to the average truncating BRCA1 mutation4. 

All tumors in patients with germline mutations in RAD51C (n = 2), PALB2 (n = 1) and 

BRIP1 (n = 2) were classified as BRCA2-type HRD (BRCA2-type CHORD score >0.5; Fig. 

1b), indicating a shared mutational process with BRCA2 mutated tumors. Of the tumors with 

somatic homologous recombination gene alterations (other than BRCA1 and BRCA2), 62.5% 

(5/8) were classified as BRCA2-type HRD, including tumors driven by RAD51D deletion (n = 

1), RAD51C promoter methylation (n = 2), RAD51C splice site mutation (n = 1), and PTEN 

deletion (n = 1). The three tumors with somatic homologous recombination gene alterations 

that were classified as homologous recombination proficient (CHORD score of <0.01), 

included one ATM structural variant (SV), one RAD51B SV, and one RAD51C SV. 

CDK12 inactivation has been previously associated with HRD5 and PARP inhibitor 

sensitivity6, however, we found that tumors with somatic CDK12 mutations demonstrated low 

BRCA1-type and BRCA2-type HRD signatures (CHORD score <0.01; Fig. 1b), and were thus 

classified as homologous recombination proficient. Rather, CDK12 inactivated tumors were 

characterized by tandem duplications (Fig. 1b), as previously shown in HGSC7 and metastatic 

prostate cancer8. Notably, although there were only six cases with CDK12 mutations, 83.3% 

(5/6) were long-term survivors. 

Retention of the wild-type germline allele of BRCA1 or BRCA2 in HGSC tumor 

genomes has been associated with treatment resistance and short survival9, however we found 

that all germline homologous recombination pathway mutations (40/40, 100%) were associated 

with loss of the wild-type allele (Supplementary Table 5). 

CCNE1 amplification tends to be mutually exclusive with BRCA1 and BRCA2 

mutations10,11, and thus is a marker for homologous recombination proficiency. Indeed 90.1% 
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(19/21) of CCNE1 amplified tumors were classified as homologous recombination proficient 

(CHORD score <0.5; Fig. 1b). Of the two CCNE1 amplified tumors classified as HRD, one 

had a germline BRIP1 mutation (BRCA2-type HRD) and the other had a somatic BRCA1 SV 

(BRCA1-type HRD). Accordingly, CCNE1 amplification tended to be mutually exclusive with 

BRCA1 alterations (Padj = 0.0169, Fisher’s exact; co-occurrence in one case, 0.79%; 

Supplementary Fig. 1, Supplementary Table 15). CCNE1 amplification and BRCA2 alterations 

did not co-occur in any primary tumor samples, however this gene pair did not reach statistical 

significance (Padj = 0.4554; Supplementary Fig. 1, Supplementary Table 15). 

 

 
Supplementary Fig. 1 | Mutual exclusivity and co-occurrence of DNA repair pathway 

alterations. The degree of overlap (co-occurrence) or mutual exclusivity of germline and 

somatic alterations in genes of interest was measured in primary tumors (n = 126). Genes were 

those listed in Fig. 1b (i.e. homologous recombination pathway genes, other DNA repair genes, 

CCNE1, and immune genes) with alterations in at least three primary tumors. Each square 

represents the relationship between two genes, the first gene is labelled on the left (rows) and 

the second gene is labelled at the top (columns). To avoid testing mutually dependent 

observations, CXCL9 amplification was considered representative of the 4q13 amplicon, which 

also includes the genes CXCL10 and CXCL11. The number of samples with an alteration is 

indicated in parentheses after each gene name. The color of each square indicates the mutual 

exclusivity or co-occurrence of a gene pair, with the intensity of the color indicating the -log10 
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P value. P values (two-sided) were calculated using the Fisher’s exact test, with multiple 

hypothesis testing correction applied (* Padj < 0.1). 

 

In the remaining subset of tumors with no CCNE1 amplification, CDK12 mutations or 

homologous recombination gene alterations identified (i.e. homologous recombination wild-

type), 91.3% (21/23) were classified as homologous recombination proficient (CHORD score 

<0.5; Fig. 1b). Two of these cases (MMAY00566 and MAOC02193) were classified by 

CHORD as HRD with no underlying homologous recombination gene alteration identified, 

both of which were long-term survivors. 

Some tumor genomes had evidence of a mixture of both BRCA1-type and BRCA2- type 

signatures (Fig. 1b). Using a CHORD probability score cut-off of >0.15 for both BRCA1-type 

and BRCA2-type HRD, 14 tumors had an apparent contribution of both HRD signatures, which 

in some cases could be attributed to independent alterations in at least two homologous 

recombination genes. For example, BRCA1 germline mutation case AOCS-143 also had 

somatic RAD51C promoter methylation, and evidence of both BRCA1- and BRCA2-type 

CHORD scores (BRCA1-type 0.64, BRCA2-type 0.20). In another example, BRCA2 germline 

mutation carrier MAOC00673 also had a somatic inter-chromosomal translocation disrupting 

BRCA1, and evidence of both HRD signatures (BRCA2-type 0.64, BRCA1-type 0.28). 

To predict whether DNA repair pathway alterations tended to be clonal (present in all 

tumor cells) or subclonal (present in a fraction of tumor cells), we performed subclonal 

reconstruction estimation using bulk tumor DNA sequence data (see Supplementary Methods). 

While we were unable to assess clonality of BRCA1 and RAD51C promoter methylation events, 

all remaining germline and somatic SNVs, indels, structural variants and copy number variants 

in homologous recombination and DNA repair genes were included in this analysis. As 

expected, all germline alterations (100%, 40/40) were classified as clonal, and there was a 

mixture of both clonal and subclonal somatic alterations (Supplementary Fig. 2a).  
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Supplementary Fig. 2 | Clonality of DNA repair pathway alterations. a, Bars at the top 

represent the number of DNA repair pathway alterations (y axis) within a sample (excluding 

promoter methylation of BRCA1 and RAD51C), and bar colors indicate the alteration 

classification as either germline clonal, somatic clonal or somatic subclonal. The heatmap 

below shows the cancer cell fraction (CCF) of each alteration, with germline alterations 

labelled “G” and cells containing a subclonal mutation are highlighted blue. Rows are ranked 

1 to 4 based on highest to lowest CCF within a sample. Columns (tumor samples) are sorted 

first by the total number of alterations, then by the total somatic clonal mutations and finally 

by the number of germline clonal mutations. Primary tumor DNA sample IDs are labelled 

across the bottom of each column. b, Bars show the number (left) and proportion (right) of 

samples with DNA repair pathway alterations classified as germline clonal, somatic clonal or 

somatic subclonal, grouped by the number of DNA repair alterations detected (samples with at 

least 1 alteration n = 87, at least 2 alterations n = 43, at least 3 alterations n = 21, and 4 

alterations n = 5). 

 

For samples with multiple DNA repair pathway alterations, the alterations were ranked 

1 to 4 from highest to lowest cancer cell fraction (CCF), which is an estimation of the fraction 

of cancer cells in which a given mutation is present12. In samples with at least two alterations 

(n = 43), the majority of second hits were clonal (72.1%, 31/43; Supplementary Fig. 2b). In 

tumor samples with more than two DNA repair alterations, the third and fourth alterations were 

more likely to be subclonal, with 52.4% (11/21) and 60% (3/5) classified as subclonal 

respectively (Supplementary Fig. 2b). 
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1.3 Recurrent gene mutation analysis 

As is characteristic of HGSC13, non-synonymous TP53 mutations were present in 100% 

(126/126) of primary tumor samples (Fig. 3, Supplementary Table 7). Confirming previous 

reports10,14, apart from TP53, somatic point mutations and indels in cancer-associated genes 

are rare, with only two other genes statistically enriched with non-synonymous SNVs and 

indels: BRCA1 and RB1 (Padj < 0.1; Extended Data Fig. 2a, Supplementary Data 1). 

Consistent with previous observations in HGSC14,15, structural rearrangements that 

disrupt tumor suppressor genes were more common than point mutations (Extended Data Fig. 

2a). In addition to known putative driver SVs in RB1, NF1, PTEN and RAD51B14, this analysis 

identified recurrent disruption of the tumor suppressor genes MYH9, EZH2, ARID1B, 

TBL1XR1, ARID1A, YWHAE, CREBBP, RHOA, ATRX, AXIN1 and STAG1 (Padj < 0.1; 

Extended Data Fig. 2a; Supplementary Data 2). 

Copy number analysis revealed extensive somatic copy number alterations (SCNA) 

across the cohort of 126 primary tumors, including 20 amplified and 47 deleted genomic 

regions (Padj < 0.1; Supplementary Data 3). Common, frequent SCNA regions included 

amplification of 8q24 (61.1%, 77 of 126 samples), 3q26 (52.4%, 66/126) and 12p13 (23%, 

29/126), containing known ovarian cancer-associated genes MYC, MECOM and CCND2 

respectively, and loss of 6q27 (74.6%, 94/126), 13q14 (70.6%, 89/126), and 10q23 (34.1%, 

43/126), containing ARID1B, RB1 and PTEN respectively.  

Amplification of 4q13 and 12q15 was only observed in tumors of long-term survivors 

(Fig. 1b). Notably, both regions contain genes that encode cytokines (4q13: CXCL9, CXCL10, 

and CXCL11, and 12q15: IFNG). Although not subject to homozygous deletion, copy loss of 

CXCR3 at Xq.13, which encodes the receptor for CXCL9, CXCL10 and CXCL11, was frequent 

in short-term survivors (41.2%, 14/34) and moderate-term survivors (37.5%, 12/32) compared 

to long-term survivors (15%, 9/60; Supplementary Fig. 3a). Analysis of transcriptome data 

showed higher expression of cytokines in long-term survivors relative to short-term survivors, 

with a significant increase seen in IFNG expression (Padj = 0.0220) (Supplementary Fig. 3b). 

In an independent HGSC cohort (The Cancer Genome Atlas, TCGA10,16) high mRNA 

expression of CXCL11 and IFNG was associated with better survival (P < 0.05; Supplementary 

Table 8), with a trend towards better survival observed in patients with high expression of 

CXCL9 (P = 0.052) and CXCL10 (P = 0.081), which have previously been associated with 

improved survival in HGSC patients17,18. 
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Supplementary Fig. 3 | Copy number and transcriptional alterations of cytokines. a, 

Proportion of copy number events in genes encoding cytokines (IFNG, CXCL9, CXCL10, 

CXCL11) and the receptor CXCR3 across survival groups (n = 34 short-term survivors, STS; n 

= 32 moderate-term survivors, MTS; n = 60 long-term survivors, LTS). b, Boxplots (left) 

summarize gene expression by survival group (STS n = 34, MTS n = 32, LTS n = 60); points 

represent each sample, boxes show the interquartile range (25-75th percentiles), central lines 

indicate the median, and whiskers show the smallest/largest values within 1.5 times the 

interquartile range. Differential expression analysis was performed using DESeq2 to determine 
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fold change (right) of gene expression between survival groups (two-tailed Wald test, 

unadjusted P values and Benjamini-Hochberg adjusted P values (Padj) are shown). 

 

To investigate whether observed genomic alterations were associated with survival, all 

high confidence non-synonymous SNVs, indels, SVs and copy number alterations (restricted 

to homozygous deletions and amplifications) affecting known cancer-associated genes were 

tallied, and the frequencies compared across survival groups (Extended Data Fig. 2). 

Alterations were enriched in several cancer-associated genes (EXT1, YWHAE, RAD21, ZNRF3, 

BLM, and ALK) in long-term survivors relative to short-term survivors, while alterations in 

other cancer-associated genes (CEP89, CEBPA, CCNE1, and KTN1) were enriched in short-

term survivors relative to long-term survivors (Extended Data Fig. 2; P < 0.05, Fisher’s test). 

For example, CEP89 had a mutation frequency of 32.4% (11/34) in short-term survivors, 

mostly due to gene amplification, compared to 6.3% (2/32) in moderate-term survivors and 

8.3% (5/60) of long-term survivors (Extended Data Fig. 2). Accordingly, high expression of 

CEP89 in TCGA was associated with poor survival (P = 0.0084; Supplementary Table 8). The 

mutational frequency of an additional 8 cancer-associated genes were significantly different 

between either moderate- and short-term survivors (RECQL4, UBR5, MYC, CSMD3, and 

NDRG1), or long- and moderate-term survivors (ANK1, PPARG, and SCG2; Extended Data 

Fig. 2; P < 0.05, Fisher’s test).  

RHOA is a cancer related gene that was flagged as frequently affected by SVs (GRIN 

analysis), as well as in the GISTIC deletion peak at 3p21 (Padj < 0.0001). Combined mutation 

analysis indicated the mutation frequency was not significantly different between survival 

groups, however high expression of this gene correlates with longer survival in TCGA10 (P = 

0.032). Further investigation is warranted to determine if RHOA deletion is the key driver of 

the deletion peak at 3p21, or if indeed other nearby gene targets may be important. Long-term 

survivors had the highest frequency of RHOA gain (46.7%, 28/60) compared to short-term 

(38.2%, 13/34) and moderate-term survivors (28.1%, 9/32), which may partially explain the 

survival association with expression observed in TCGA. It should be noted that RHOA is 

considered both an oncogene and a tumor suppressor gene in the Cancer Gene Census19. 

 

1.4 Gene fusions 

A total of 42,705 gene fusion events were detected in RNA-seq data of 126 primary tumors 

and 3 relapse tumors using Arriba20 (Supplementary Data 5), and of these 555 were in-frame 
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fusion events with medium or high confidence (according to Arriba annotations). Seven gene 

fusions were recurrent (detected in more than one patient), and 2 were considered genuine gene 

fusions upon manual review (excluding tandem duplications, read-through events, and variants 

associated with poor mapping quality). These were USP7-CARHSP1 (16p13.2) and KIF1B-

PGD (1p36.22), each with a frequency of 2 out of 126 primary tumors (1.6%). These findings 

are consistent with our previous report that recurrent in-frame gene fusions are rare in HGSC14. 

Neither USP7-CARHSP1 or KIF1B-PGD fusions have been observed in previous HGSC 

studies21-23 or in other cancers24. The two USP7-CARHSP1 fusions were both detected in long-

term survivors and the KIF1B-PGD fusions were found in one long-term and one moderate-

term survivor. 

 

1.5 Relapse samples 

To examine relapse disease in long-term survivors we were able to whole-genome sequence 

five samples from four patients collected during additional surgeries (Fig. 2a). We confirmed 

that all samples collected at relapse were clonally related to primary tumors, for example 

sharing TP53 mutations (Supplementary Table 7, Fig. 2c) and somatic SVs (Fig. 2b). Three of 

the relapse patients carried BRCA1 mutations, for which there was no evidence of secondary 

reversion mutations at recurrence, and the BRCA1-type CHORD scores were consistent 

between primary and relapse tumor samples (Fig. 2c). All relapse tumors had a higher mutation 

burden and SV burden than primary tumors (Fig. 2c), likely associated with further genomic 

evolution and exposure to DNA damaging therapeutic agents. 

Patient MWMH00552 had the lowest proportion of shared SVs between primary and 

relapse tumor samples and the longest period of disease-free remission (13.5 years), indicating 

that surviving primary tumor cells were dormant for an exceptionally long time, before the 

relapsing clone was able to expand. Whilst there was no evidence for reversion of the somatic 

BRCA1 mutation, the emergent clone at recurrence lacked the RB1 deletion present in the 

primary tumor (Fig. 2d), which may explain the relatively short duration of responses to 

chemotherapy at relapse, given the association between co-mutation of BRCA1 and RB1 with 

exceptional survival in HGSC25. In contrast, two patients (MAOC00944 and MAOC01893) 

maintained co-mutation of BRCA1 and RB1 at relapse, and were both alive at last follow up 

(Figs. 2a, c). Surprisingly, the metastatic brain tumor sample in MAOC00944 had acquired a 

different RB1 deletion to the primary tumor (Fig. 2d), perhaps indicating that while RB1 
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inactivation is common and advantageous to HGSC growth, it is also associated with treatment 

vulnerability and exceptional outcomes. 

For two cases, RNA sequencing was also performed on relapse samples. MAOC01893 

underwent a switch from C2/immunoreactive to C1/mesenchymal molecular subtype, which 

was also associated with loss of chemokine amplification (CXCL9, CXCL10, CXCL11), 

between primary and relapse tumor samples (Fig. 2c). By contrast, patient MWMH00758 

maintained the C2/immunoreactive subtype and chemokine amplification (CXCL9, CXCL10, 

CXCL11) from the primary tumor to two subsequent relapses (sampled at 6.4 and 8.6 years 

after diagnosis), indicating that this patient had a sustained immune response that along with 

chemotherapy and surgery augmented disease remission for more than 10 years. 

 

1.6 BRCA1-altered tumors 

Unsupervised clustering of primary tumor genomes based on their composition of mutational 

signatures stratified BRCA1 altered tumors into three groups with different outcomes (Fig. 3, 

Extended Data Fig. 3b). Cluster SIG.7 had the highest proportion of long-term survivors (75%, 

12/16), followed by SIG.6 (56%, 5/9) and SIG.5 (27%, 6/22). In order to identify key features 

of these groups, we performed a subset analysis of genomic and clinical characteristics, 

considering only the BRCA1-altered clusters. The key mutational signatures driving these 

clusters, in order of significance, were the double base substitution signature 2 (DBS2) in SIG.5 

(Padj = 0.0050), rearrangement signature Ovary_A in SIG.6 (Padj = 0.0092), and single base 

substitution signature 40 (SBS40) in SIG.7 (Padj = 0.0092; Supplementary Fig. 4).  
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Supplementary Fig. 4 | Relative enrichment of mutational signatures in BRCA1-altered 

signature clusters. Boxplots show the relative proportion (y axis) of mutational signatures 

across BRCA1-altered mutational signature clusters (SIG.5 n = 22, SIG.6 n = 9, SIG.7 n = 16); 

points represent each sample, boxes show the interquartile range (25-75th percentiles), central 

lines indicate the median, whiskers show the smallest/largest values within 1.5 times the 

interquartile range, red triangles indicate the mean, and dotted lines join the means of each 

cluster to visualize the trend. Pairwise Mann-Whitney-Wilcoxon test adjusted P values (two-

sided) and Kruskal-Wallis test adjusted P values are reported. Signatures are ordered left to 

right and top to bottom by their significance. 

 

DBS2 is proposed to be associated with tobacco smoking and/or other mutagens26, and 

is further explored in section 1.8 below. SBS40 is a relatively featureless signature seen in 

various cancer types that has not yet been linked to a plausible underlying cause26. 

Rearrangement signature Ovary_A is associated with BRCA2 alterations27, and its detection in 

the SIG.6 BRCA1-altered cluster indicates there may be combined BRCA1 and BRCA2 

deficiency in tumors in this subgroup. Indeed, there are multiple tumors in SIG.6 with a mixture 

of both BRCA1-type and BRCA2-type HRD (CHORD scores, Fig. 3), and there is a higher 

prevalence of BRCA2-type non-clustered 1-100 kb deletions in SIG.6 compared to SIG.5 and 

SIG.7 (Extended Data Fig. 3d). It is plausible that tumors with combined BRCA1 and BRCA2 
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loss of function may have greater sensitivity to DNA damaging chemotherapies, and this may 

explain why some HGSC patients with BRCA1-driven tumors have a better survival than 

others.  

There were no significant differences in clinical features between BRCA1-altered 

clusters, although there was a trend towards bulkier residual disease (>1 cm) in cluster SIG.6 

(Padj = 0.2891; Supplementary Fig. 5) and a lower age of diagnosis in cluster SIG.5 (Padj = 

0.5934; Supplementary Fig. 6). 

 

 
Supplementary Fig. 5 | Categorical clinical and molecular features of BRCA1-altered 

signature clusters. Proportion of patients with each feature across BRCA1-altered mutational 

signature clusters (SIG.5 n = 22, SIG.6 n = 9, SIG.7 n = 16). Fisher’s exact test (two-sided) 

adjusted P values are reported, and features are ordered by significance. Features include 

homologous recombination (HR) status, homologous recombination deficiency (HRD) type, 

number of DNA repair pathway alterations, survival group (LTS, long-term survivor; MTS, 

moderate-term survivor; STS, short-term survivor), status at last follow-up (D, dead; P, 

progressed and alive; PF, progression-free and alive), self-reported smoking status, molecular 

subtype (C1, mesenchymal; C2, immunoreactive; C4, differentiated; C5, proliferative), and 

neoadjuvant treatment (Y, yes; N, no). 
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Supplementary Fig. 6 | Clinical and genomic features of BRCA1-altered signature 

clusters. Boxplots summarize numerical clinical and genomic features across BRCA1-altered 

mutational signature clusters (SIG.5 n = 22, SIG.6 n = 9, SIG.7 n = 16); points represent each 

sample, boxes show the interquartile range (25-75th percentiles), central lines indicate the 

median, whiskers show the smallest/largest values within 1.5 times the interquartile range, red 

triangles indicate the mean, and dotted lines join the means of each cluster to visualize the 

trend. Pairwise Mann-Whitney-Wilcoxon test adjusted P values (two-sided) and Kruskal-

Wallis test adjusted P values are reported. Features are ordered by their significance and 

clusters are ordered by the proportion of long-term survivors. CD8 scores were measured by 

immunohistochemistry25 and scored as density of CD8+ T cells (average cells/mm2, y axis) in 

the tumor epithelium (TE). HRD, homologous recombination deficiency; DEL, deletions; 

DUP; duplications; SV, structural variants; Mb, megabase; ITX, interchromosomal 

translocations; LOH, loss-of-heterozygosity; INV, inversions. 

 

 Immune cell composition inferred from gene expression data28 was compared between 

the BRCA1-altered clusters (Supplementary Fig. 7). While the majority of predicted immune 

cell types were relatively similar, the largest difference was observed in the activated natural 

killer (NK) cell signature, which was particularly elevated in clusters SIG.6 and SIG.7 
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compared to SIG.5 (SIG.5 vs SIG.6 Padj = 0.0760, SIG.5 vs SIG.7 Padj = 0.0580). Although not 

significant, the resting NK cell signature showed the opposite trend, with an elevated score in 

cluster SIG.5 compared to SIG.6 and SIG.7 (SIG.5 vs SIG.6 Padj = 0.1460, SIG.5 vs SIG.7 Padj 

= 0.1460).  

 

 
Supplementary Fig. 7 | Immune cell subsets inferred from gene expression data. Boxplots 

indicate the estimated abundance (y axis) of each immune cell type across BRCA1-altered 

mutational signature clusters (SIG.5 n = 22, SIG.6 n = 9, SIG.7 n = 16); points represent each 

sample, boxes show the interquartile range (25-75th percentiles), central lines indicate the 

median, whiskers show the smallest/largest values within 1.5 times the interquartile range, red 

triangles indicate the mean, and dotted lines join the means of each cluster to visualize the 

trend. Pairwise Mann-Whitney-Wilcoxon test adjusted P values (two-sided) and Kruskal-

Wallis test adjusted P values are reported. Cell types are ordered left to right and top to bottom 

by their significance. 
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0.67, 95% confidence interval (CI) = 0.44-1.04, P = 0.0717; Extended Data Fig. 7c) and could, 

at least partially, explain the longer overall survival observed in clusters SIG.6 and SIG.7 

compared to SIG.5. Concordantly, immune cluster IMM.1, which is enriched with the activated 

NK cell signature (Fig. 5, Extended Data Fig. 8a), was the dominant immune cluster in both 

SIG.6 (44.4%, 4/9) and SIG.7 (43.8%, 7/16), and the least abundant immune cluster in SIG.5 

tumors (13.6%, 3/22; P = 0.4700, Supplementary Fig. 8). 

 

 
Supplementary Fig. 8 | Immune clusters in BRCA1-altered tumors. The fraction of tumors 

in each immune cluster IMM.1, IMM.2, IMM.3, IMM.4 or IMM.5, according to unsupervised 

clustering shown in Fig. 5. Samples are grouped according to their BRCA1-altered mutational 

signature clusters (SIG.5 n = 22, SIG.6 n = 9, SIG.7 n = 16). Differences in proportions between 

groups were assessed by Fisher’s test (two-sided). 
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mutational signature 2 (DBS2; Fig. 3), which is thought to be associated with exposure to 
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mutational signatures known to be associated with tobacco smoking (SBS4 and ID3) across 

the cohort of 126 primary tumor samples, however these signatures were present in only a few 

samples at a low level (mean relative contribution 0.005 and 0.026 respectively), and were 
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therefore excluded from the mutational signature fitting and clustering analyses (see 

Supplementary Methods). 

Self-reported smoking history was available for 84.9% (107/126) of participants. 

Across the seven mutational signature subgroups, the poor survival BRCA1-mutant SIG.5 

subgroup had the highest frequency of ever smokers (66.7%, 12/18), followed by SIG.1 (50%, 

7/14) and SIG.7 (50%, 6/12; Padj = 0.5092; Extended Data Fig. 4b). Across the survival groups, 

tobacco smoking was more common in moderate-term survivors (50%, 16/32), compared to 

short-term (38%, 13/34) and long-term survivors (30%, 18/60; Chi-square P = 0.1433; 

Extended Data Fig. 1b). 

The relative contribution of all mutational signatures was compared between never 

smokers (n = 60) and ever smokers (n = 47), and the most predominant mutational signatures 

in smokers were DBS2 (P = 0.0457) and Ovary_G (BRCA1 rearrangement signature; P = 

0.0610), however these associations were not significant following multiple correction possibly 

due to the small number of cases (Supplementary Fig. 9, Supplementary Table 16). Altogether, 

there is evidence that the DBS2 mutational signature observed in our cohort may be associated 

with tobacco smoking. 

 

 
Supplementary Fig. 9 | Association between pre-diagnosis smoking and mutational 

signatures. Box plots summarize the relative contribution (y-axis) of selected mutational 

signatures in never smokers (n = 60) and ever smokers (n = 47); points represent each sample, 

boxes show the interquartile range (25-75th percentiles), central lines indicate the median, and 

whiskers show the smallest and largest values. The proposed aetiology of each signature is 

shown in parentheses. SBS1 and Ovary_A were included in the figure as predominant 

mutational signatures in HGSC that are not associated with smoking status. Mann-Whitney test 

(two-tailed) was used to compare relative signature prevalence between groups, and both 

unadjusted and Benjamini-Hochberg adjusted P values (Padj) are displayed. Results for all 

mutational signatures are shown in Supplementary Table 16. 
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In the landmark pan-cancer mutational signature analysis26, SBS4, ID3 and DBS2 were 

detected at high levels in cancers caused by direct tobacco smoke exposure, for example lung 

and head and neck cancers. Given SBS4 and ID3 were not predominant in our cohort, it is not 

clear if the DBS2 mutations in our cohort are directly linked to tobacco smoking. Mutations 

consistent with DBS2 have been experimentally linked to acetaldehyde31, a known carcinogen 

that is a constituent of cigarette smoke and a metabolite of alcohol. Tobacco and alcohol intake 

are correlated32, so it is possible that smoking status in our cohort may be a proxy for alcohol 

intake, and that DBS2 could be associated with acetaldehyde exposure from drinking alcohol. 

Alcohol exposure information was not available for participants in this study at the time of 

writing, but the potential combined effects of acetaldehyde exposure and homologous 

recombination deficiency merits further investigation. 

 

1.8 Methylation analysis 

Gene inactivation by epigenetic silencing is a driver of HGSC10. To determine whether 

exceptional survival is associated with distinct patterns of tumor DNA methylation, we 

examined genome-wide differential DNA methylation between each survival group 

(Supplementary Data 6). Filters were applied to select CpG probes that negatively correlated 

with gene expression across the cohort of 126 primary tumors. For the complete differential 

methylation analysis workflow and filtering steps see Supplementary Methods.  

 There were 34 probes, associated with 25 protein coding genes, identified as 

differentially methylated between long-term survivors (n = 60) and moderate-term survivors 

(n = 32). Among these 25 genes, four were identified as having reduced expression in long-

term survivors compared to moderate-term survivors: ABT1, CPE, PAIP2B and PRSS23 

(DESeq2 Padj < 0.1, log2 fold change < 0; Supplementary Data 4). Comparing long-term 

survivors and short-term survivors (n = 34), we identified 43 differentially methylated probes, 

associated with 29 genes. Three of these genes (CPE, PAIP2B, PRSS23) also had significantly 

lower expression in long-term survivors compared to short-term survivors (DESeq2 Padj < 0.1, 

log2 fold change < 0; Supplementary Data 4). Despite being clinically distinct, we did not 

identify differentially methylated probes between moderate and short-term survivors. This is 

comparable with our previous analysis14, in which we did not identify significantly 

differentially methylated loci between primary sensitive and primary resistant/refractory 

HGSC. 
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 Of the 37 genes associated with methylated loci in long-term survivors, three have been 

causally implicated in human cancer19: EPHA7, FGFR1, and SLC34A2. SLC34A2 (NaPi2b) is 

of particular interest, as it has been implicated as a tumor suppressor gene in several cancer 

types33,34, is a potential new therapeutic target in ovarian cancer35-37, and decreased expression 

is associated with enhanced chemosensitivity in breast cancer38. EPHA7 mutations are 

associated with enhanced anti-tumor immunity and better clinical outcomes in patients treated 

with immune checkpoint inhibitors, in multiple cancer types39. Additional studies will be 

required to determine which of these candidates are epigenetically modified in HGSC, and to 

explore their association with clinical outcomes. 

 We performed consensus clustering of the 1% most variable CpG probes (number of 

probes = 3,645) across all 126 primary tumors, and identified five clusters with moderate to 

weak correlations with progression-free (P = 0.1949) and overall survival (P = 0.0587, 

Extended Data Fig. 6). Cluster MET.2 had the longest overall survival (median OS 11.9 years), 

followed by MET.5 (median OS 10.4 years), MET.3 (median OS 8.4 years), MET.1 (median 

OS 5.7 years), and MET.4 (median OS 2.5 years). Across all genomic and clinical 

characteristics considered in the study, we identified BRCA1 alterations as the key difference 

between methylation clusters, with a particularly high proportion of BRCA1-altered tumors in 

cluster MET.1 (71.7%, n = 33/46; Padj < 0.0001, Supplementary Fig. 10). Concordantly, MET.1 

had a high proportion of BRCA1-type HRD (Padj = 0.0003, Supplementary Fig. 11) and the 

lowest BRCA1 expression of all the clusters (Padj = 0.0083, Supplementary Fig. 12). This 

finding is consistent with previous studies that identified an association between BRCA1 

inactivation and distinct genome-wide methylation patterns in breast cancer40,41, suggesting 

that BRCA1 deficiency may lead to global DNA methylation changes. 
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Supplementary Fig. 10 | Gene alterations across DNA methylation clusters. Proportion of 

patients affected by gene alterations per methylation cluster. Genes are ordered by significance 

using Fisher’s exact test (two-sided) and clusters are ordered by the proportion of long-term 

survivors. MUT, mutated; WT, wild-type. The Fisher’s test P values displayed are Benjamini-

Hochberg adjusted P values.  
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Supplementary Fig. 11 | Proportion of genomic and clinical features by DNA methylation 

cluster. Features are ordered by significance using Fisher’s exact test (two-sided) and the 

clusters are arranged by the proportion of long-term survivors. P values are Benjamini-

Hochberg adjusted. Features include homologous recombination (HR) status, homologous 

recombination deficiency (HRD) type, number of DNA repair pathway alterations, self-

reported smoking status, survival group (LTS, long-term survivor; MTS, moderate-term 

survivor; STS, short-term survivor), status at last follow-up (D, dead; P, progressed and alive; 

PF, progression-free and alive), molecular subtype (C1, mesenchymal; C2, immunoreactive; 

C4, differentiated; C5, proliferative), and neoadjuvant treatment (Y, yes; N, no). 
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Supplementary Fig. 12 | Clinical and genomic features of DNA methylation clusters. 

Boxplots summarize numerical clinical and genomic features across methylation clusters 

(MET.4 n = 19, MET.1 n = 46, MET.3 n = 17, MET.5 n = 30, MET.2 n = 14); points represent 

each sample, boxes show the interquartile range (25-75th percentiles), central lines indicate the 

median, whiskers show the smallest/largest values within 1.5 times the interquartile range, red 

triangles indicate the mean, and dotted lines join the means of each cluster to visualize the 

trend. Pairwise Mann-Whitney-Wilcoxon test adjusted P values (two-sided) and Kruskal-

Wallis test adjusted P values are reported. Features are ordered by their significance and 

clusters are ordered by the proportion of long-term survivors from left to right. HRD, 

homologous recombination deficiency; DEL, deletions; DUP; duplications; SV, structural 

variants; Mb, megabase; ITX, interchromosomal translocations; LOH, loss-of-heterozygosity; 

INV, inversions. CD8 scores were available for n = 54 primary tumors as measured by 

immunohistochemistry25 and scored as density of CD8+ T cells (average cells/mm2, y axis) in 

the tumor epithelium (TE). 

 

Given the frequency of somatic methylation of the BRCA1 5’ UTR CpG island North 

Shore in HGSC10, we wondered if the methylation clusters could be driven by differential 

methylation of the BRCA1 CpG sites. However, of the 3,645 probes in the cluster analysis, only 

Kruskal, P < 0.0001

Kruskal, P = 0.0059

Kruskal, P = 0.1140

Kruskal, P = 0.3807

Kruskal, P = 0.0003

Kruskal, P = 0.0083

Kruskal, P = 0.1203

Kruskal, P = 0.3807

Kruskal, P = 0.0019

Kruskal, P = 0.0163

Kruskal, P = 0.1752

Kruskal, P = 0.4682

Kruskal, P = 0.0032

Kruskal, P = 0.0223

Kruskal, P = 0.2662

Kruskal, P = 0.4682

Kruskal, P = 0.0032

Kruskal, P = 0.0748

Kruskal, P = 0.2835

Kruskal, P = 0.4772

Kruskal, P = 0.0033

Kruskal, P = 0.1080

Kruskal, P = 0.3064

Kruskal, P = 0.5255

Progression−free
survival (years) Number of neoantigens Total SVs Number of SVs (DEL) Number of SVs (ITX) Purity

Variants/Mb % Whole genome
duplication Number of SVs (DUP) CD8 score (TE) Number of

not−clustered SVs
Overall survival

(years)

Age at diagnosis BRCA1 expression Ploidy % Whole genome
loss scarHRD mean CHORD BRCA2

signature proportion

CHORD BRCA1
signature proportion Number of SVs (INV) CHORD total HRD

proportion % Whole genome LOH CIBERSORTx
absolute score

Number of
clustered SVs

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

ME
T.4
ME
T.1
ME
T.3
ME
T.5
ME
T.2

0

50

100

150

200

0.00
0.25
0.50
0.75
1.00
1.25

5
10
15
20
25

0.3

0.5

0.7

0.9

2
3
4
5

10

20

30

40

300

600

900

50
100
150
200
250

20

40

60

80

20

40

60

80

0

5

10

200

400

600

0.00
0.25
0.50
0.75
1.00
1.25

2
3
4
5

100
200
300
400
500

300

600

900

50

100

150

200

0
2
4
6

25
50
75
100
125

100

200

300

0.0

0.3

0.6

0.9

40

60

80

2.5
5.0
7.5
10.0
12.5

5
10
15
20
25



 23 

two were BRCA1 promoter CpG sites (cg25288140, cg15065591), neither of which were used 

in the classification of BRCA1 promoter methylation.  

The MET.2 subset had the best prognosis, and was enriched for alterations in RB1 (Padj 

= 0.0090), KMT2C (Padj = 0.0968), and CDK12 (Padj = 0.0984, Supplementary Fig. 10). MET.4, 

the methylation cluster associated with the poorest survival, was characterised by the lowest 

CIBERSORTx absolute score (Padj = 0.0032, Supplementary Fig. 12), the most frequent 

amplification of CCNE1 (37%, 7/19; Padj = 0.0009), and enrichment for the C5/proliferative 

molecular subtype (Padj = 0.0009, Supplementary Fig. 11), which is known to be immune 

depleted and associated with unfavorable outcomes42,43. MET.4 likely corresponds with the 

methylation cluster associated with the poorest survival in TCGA10, DNA Methylation Subtype 

2 or “MC2”, which was also significantly enriched for the C5/proliferative molecular subtype. 

CCNE1 amplification status appeared to differentiate the two main branches of the 

methylation dendrogram (Extended Data Fig. 6a), as the three clusters constituting the right 

branch (MET.3, MET.4, and MET.5) all had a high proportion of CCNE1 amplification (27% 

to 37%) compared to the clusters on the left branch (MET.1 and MET.2), which had a CCNE1 

amplification rate of 2% (1/46) and 0% (0/14) respectively (Padj = 0.0009; Supplementary Fig. 

11). In addition to lacking CCNE1 amplification, MET.1 and MET.2 also had a high proportion 

of tumors with multiple DNA repair alterations (Padj = 0.0225; Supplementary Fig. 11), and a 

high proportion of whole genome loss (Padj = 0.0223; Supplementary Fig. 12).  

Despite their similarities, patients in MET.1 and MET.2 had vastly different survival 

outcomes (median OS 5.7 vs. 11.9 years), so we contrasted their clinical and molecular 

features, finding that MET.1 had the largest proportion of smokers (64%, 23/36) and MET.2 

the lowest (8.3%, 1/12; Padj = 0.0225, Supplementary Fig. 11), indicating a potential link 

between pre-diagnosis smoking exposure and differential methylation patterns. Exposure to 

cigarette smoke can result in DNA methylation changes detected in peripheral blood44 and lung 

cancer samples45, and some studies have linked tobacco exposure to methylation changes in 

distal sites such as bladder cancer46 and adipose tissue47, however little is currently known 

about smoking associated DNA methylation alterations in ovarian cancer. Similar to the 

smoking-associated cluster SIG.5, the MET.1 subgroup also had a younger age of diagnosis 

(Padj = 0.0059, Supplementary Fig. 12). Indeed, the MET.1 cluster is enriched for mutational 

signature cluster SIG.5 tumors (Supplementary Fig. 13), indicating that the DNA methylation 

clustering analysis has also identified the poor survival subset of BRCA1-altered tumors 

associated with smoking and a younger age of diagnosis. 
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Supplementary Fig. 13 | Mutational signature clusters versus DNA methylation clusters. 

The proportion of tumors in each mutational signature cluster according to consensus clustering 

shown in Fig. 3a. Samples are grouped according to their DNA methylation clusters. 

Differences in proportions between groups were assessed by Chi-square test. 

 

1.9 Immune cell estimation versus immunohistochemical staining 

To evaluate the presence of immune cells in the tumor microenvironment, the CIBERSORTx28 

immune cell deconvolution method was used to estimate the relative abundance of 22 immune 

cell types. To verify the accuracy of this method, we compared the CIBERSORTx absolute 

score (an aggregate gene set score associated with overall immune activity) to the CD8+ T-cell 

counts, which were previously quantified by immunohistochemistry and image analysis25 in a 

subset of tumors (n = 54 primary tumors). The CIBERSORTx absolute score showed a positive 

correlation with the density of CD8+ T cells, both in the tumor epithelium (P < 0.0001) and 

the stromal compartments (P = 0.0002, Supplementary Fig. 14a). 
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Supplementary Fig. 14 | Comparison of RNA-seq based immune cell estimation and 

immunohistochemical staining. a, Scatter plots show gene expression-based immune cell 

estimation scores (CIBERSORTx absolute scores, x axis) plotted against the density of CD8+ 

T cells (average cells/mm2, y axis) as measured by immunohistochemistry staining in the tumor 

epithelium (TE; left) and stroma (STR; right). CD8+ T cell scores were available in the TE for 

n = 54 primary tumors, and a subset of n = 50 had CD8+ T cell counts in the STR. Spearman 

correlation P values reported (two-tailed). b, Density (in cells/mm2) of CD8+ lymphocytes in 

TE and STR, grouped by the immune cluster category. Black lines indicated the median score; 

Kruskal-Wallis (K—W) test P values are reported with no adjustments for multiple 

comparisons.  

 

Unsupervised clustering of primary tumors based on the estimated relative abundance 

of the most common immune cell types, stratified tumors into five groups with different 

outcomes (Fig. 5). The two immune clusters associated with the best prognosis, IMM.1 and 

IMM.3, were found to have higher densities of CD8+ T cells in both the tumor epithelium (P 

= 0.0105) and stromal compartments (P = 0.1458) compared to the other immune clusters 

(Supplementary Fig. 14b). 
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1.10 Feature independence 

Some features associated with survival by univariate analysis were moderately correlated, 

including the number of DNA repair gene alterations and neoantigen count (0.43), and HRD 

type (BRCA1-type, BRCA2-type, none) and CCNE1 amplification (-0.66), however most 

features were only weakly associated with each other (Supplementary Fig. 15). Features 

significantly associated with overall survival by univariate analysis (Fig. 6b) were also tested 

in a multivariable Cox regression model. Of the seven features entered in the model, four 

independent predictors remained: PCNA expression, plasma cells, HRD type and residual 

disease (Supplementary Tables 13 and 14). 

 

 
Supplementary Fig. 15 | Correlation of prognostic features. Correlation plot showing the 

pair-wise associations between individual prognostic factors. HRD, homologous 

recombination deficiency; NK, natural killer. 
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the 6 tumors had low CHORD scores consistent with being homologous recombination 

proficient, with one exception (MMAY00621) showing a clonal somatic BRCA1 structural 

variant associated with an elevated BRCA1-type CHORD score. All CCNE1 amplifications, 

regardless of survival group, were classified as clonal events (100%, 21/21; Supplementary 

Table 17). The distribution of CCNE1 copy number in tumors with CCNE1 amplification was 

equivalent between survival groups (Padj = 0.6013, Supplementary Fig. 16a), and there was a 

strong correlation between CCNE1 copy number and expression (Pearson r = 0.69, P < 0.0001; 

Supplementary Fig. 16b).  

 

 
Supplementary Fig. 16 | CCNE1 copy number and expression. a, Boxplots show CCNE1 

log2 copy number ratio (y-axis) in primary tumor samples, grouped by CCNE1 copy number 

status and survival groups (n = 126); symbols represent each sample, boxes show the 

interquartile range (25-75th percentiles), central lines indicate the median, and whiskers show 

the smallest/largest values within 1.5 times the interquartile range. Kruskal-Wallis adjusted P 

values are reported. b, CCNE1 log2 mRNA expression (y-axis) plotted against CCNE1 log2 

copy number ratio (x-axis) in primary tumor samples (n = 126; Pearson’s correlation test, two-

sided). Tumor samples with CCNE1 amplification are labelled by survival group. In a and b, 

symbols represent each tumor sample, with shapes indicating homologous recombination (HR) 

status (triangle, proficient; circle, deficient) and colors showing the CCNE1 copy number 

status. LTS, long-term survivor; MTS, moderate-term survivor; STS, short-term survivor. 
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gene alterations and were classified as homologous recombination proficient (n = 21; 

Supplementary Data 7). Gene set enrichment analysis using the MSigDB Hallmark gene sets49 

found that CCNE1 amplified tumors in long-term survivors were characterized by 

transcriptional activation of proliferation and immune-related pathways, and downregulation 

of epithelial mesenchymal transition (FGSEA Padj < 0.05, Supplementary Fig. 17a). Consistent 

with this observation, tumors with CCNE1 amplification in long-term survivors were 

predominantly the C2/immunoreactive10,42 molecular subtype (83.3%, 5/6); a significant 

enrichment compared to the short-term survivors (9.09%, 1/11; Padj = 0.0150, Supplementary 

Fig. 17b). Molecular subtypes in CCNE1 amplified tumors in short-term survivors were mixed; 

although the C1/mesenchymal subtype, characterized by a desmoplastic stroma and poor 

survival43, was most common in this group (45.5%, 5/11). 

 

 
Supplementary Fig. 17 | Transcriptomic features of tumors with CCNE1 amplification. a, 

MSigDB Hallmark gene sets enriched in long-term survivors (LTS, n = 6) or short-term 

survivors (STS, n = 11) with CCNE1 amplification compared to a reference group of 

homologous recombination proficient tumors with no CCNE1 amplification or loss and no 

homologous recombination gene alterations (n = 21). The normalized enrichment score (NES, 

x-axis) generated by FGSEA indicates the strength and direction of pathway activity 

(downregulated or upregulated) compared to the reference. P values (two-sided) were 

calculated using the FGSEA default Monte Carlo method; bubble size corresponds to the 

negative log10 Benjamini-Hochberg adjusted P value (Padj) and bubble border color indicates 

significant enrichment (black = Padj < 0.05, grey = Padj ≥ 0.05). Colored text indicates gene sets 
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associated with proliferation (gold) and immune activity (blue). Complete FGSEA results are 

listed in Supplementary Data 7. b, The proportion of tumors with CCNE1 amplification 

classified as either C1/mesenchymal, C2/immunoreactive, C4/differentiated or 

C5/proliferative molecular subtype by survival group. Pairwise Mann-Whitney-Wilcoxon test 

adjusted P values and Fisher’s test adjusted P values are reported (both two-sided). MTS, 

moderate-term survivor. 

 

To further explore the enrichment of immune signatures, we performed gene 

expression-based immune cell estimation (CIBERSORTx) in the 21 tumors with CCNE1 

amplification (STS n = 11, MTS n = 4, LTS n = 6), finding significant enrichment of activated 

CD4 memory T cells (Padj = 0.0050), CD8 T cells (Padj = 0.0100) and M1 macrophages (Padj = 

0.0440) in long-term survivors compared to short-term survivors (Supplementary Fig. 18). This 

suggests that some patients, despite having features associated with primary treatment failure 

(i.e. homologous recombination intact tumors with CCNE1 amplification), display features of 

an activated immune response and can attain long-term survival. 

 

 
Supplementary Fig. 18 | Immune cell subsets in CCNE1 amplified tumors. Boxplots 

indicate the estimated abundance (y axis) of immune cell types in CCNE1 amplified tumors 

across survival groups (STS, short-term survivor n = 11; MTS, moderate-term survivors n = 4; 

LTS, long-term survivors n = 6); points represent each sample, boxes show the interquartile 
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range (25-75th percentiles), central lines indicate the median, whiskers show the 

smallest/largest values within 1.5 times the interquartile range, red triangles indicate the mean, 

and dotted lines join the means of each cluster to visualize the trend. Pair-wise Mann-Whitney-

Wilcoxon test adjusted P values (two-sided) and Kruskal-Wallis test adjusted P values are 

reported. Cell types are ordered left to right and top to bottom by their significance, and only 

include cell types in which ≥5 samples had CIBERSORTx absolute enrichment scores >0. 

 

We investigated other molecular features of CCNE1 amplified tumors, finding no 

significant differences in mutational signature contributions or the number of genomic 

alterations between survival groups. Among long-term survivors with CCNE1 amplification, 

one patient (MWMH00758) had amplification of the 4q13 chemokine gene cassette (containing 

CXCL9, CXCL10 and CXCL11), and two other patents (AOCS-124, MMAY00010) had 

amplification of the cytokine gene IFNG (Fig. 1b). Although the sample sizes are small, we 

noted that two-thirds of CCNE1 amplified long-term survivors (n = 4/6) also had RAD51B 

structural variants compared to 18% of short-term survivors (n = 2/11, Fig. 1b). There were no 

significant differences in clinical features between survival groups among cases with CCNE1 

amplification (age at diagnosis, primary site, grade, stage, residual disease, neoadjuvant 

therapy, smoking status), aside from features associated with survival group selection (current 

status, progression-free and overall survival; data not shown).  

In summary, features associated with long-term survival, such as highly proliferative 

tumors or an active immune response, may override CCNE1 driven resistance to primary 

chemotherapy. 
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2. Supplementary Methods 

2.1 Sample quality control 

The median estimated tumor cell purity using FACETS50 was 0.63 (range: 0.30 to 0.92; 

Supplementary Table 3). Following quality control checks, two tumor samples in the short-

term survivor category were flagged as outliers with a high somatic mutation rate (>20 

mutations/Mb). One due to cross sample contamination and the second due to a previously 

described germline mutation in the mismatch repair gene PMS214. The two samples AOCS-

076 and AOCS-166 were therefore excluded from further analyses. 

 

2.2 Mutation burden and downsampling 

To compare mutation burden across samples with variable coverage, higher coverage tumor 

BAMs were downsampled such that the median coverage between the previously sequenced 

samples14 (ICGC cohort) and the recently sequenced samples (MOCOG cohort) was balanced. 

Downsampling was performed using Picard DownsampleSam (v2.17.3), which applies a 

downsampling algorithm to BAMs to retain a random subset of reads at a predetermined 

fraction. ICGC tumors had a median coverage of 52.15x and the MOCOG tumors had a median 

coverage of 77.81x. Thus, a downsampling fraction of 0.67 was used for the MOCOG BAMs 

to achieve equal median coverage with the ICGC samples. Tumor sample coverage before and 

after downsampling is listed in Supplementary Table 3, and following downsampling the 

number of called SNVs, MNVs, indels and SVs were independent of coverage (Supplementary 

Fig. 19). 
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Supplementary Fig. 19 | Correlation of coverage and tumor cell purity with observed 

somatic alterations. Scatter graphs show coverage (x-axis, left) and tumor cell purity (x-axis, 

right) plotted against the number of mutations (y-axis) detected in each tumor sample (n = 131), 

based on the down-sampled tumor genomes (Spearman correlation test, two-sided). Mutation 

types include: SNVs, single nucleotide variants; MNVs, multi-nucleotide variants; INDELs, 

small-scale insertions and deletions; SVs, structural variants.  
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2.3 Somatic base substitution and indel annotation 

Blacklisted Duke and DAC mappability regions were annotated along with repeatmasker 

elements from the repeatmasker database using BCFtools51 (v1.9). Strand specific read counts 

were added to the VCF using bam-readcount (v0.8.0 with -w 0 --min-mapping-quality 10 --

min-base-quality 10 --max-count 100,000,000). Variants were annotated using the Ensembl 

Variant Effect Predictor52 (VEP v92.4). 

 

2.4 Structural variants (SVs) 

SV annotation: SVs were annotated for genes using the R package csaw (v1.20.0) against the 

GRCh37.87 annotation release using the parameters (dist=5000, promoter=c(3000, 1000), 

ignore.strand=TRUE). Breakpoints were individually annotated to overlapping genes. A gene 

with any overlapping breakpoint as produced by the csaw analysis was deemed broken and was 

noted in the resulting table. Arriba20 (v1.1.0) was used to detect gene fusions using RNA-seq 

data, using the default settings which only outputs fusions with at least two supporting reads. 

Grouping SVs at the patient level: To identify shared and unique SVs in patients with primary 

and relapse tumors, the per sample SV calls in BEDPE format were combined into one call-set 

as a pairs object using the R library rtracklayer (v1.46.0) and function import. Only high 

confidence SVs (called by 2 or more callers) were kept. A "GInteractions" object was made 

from the SVs using the R library InteractionSet (v1.14.0) and mode "strict". Then the 

"findOverlaps" method was used to find the interacting overlaps in the SV call set. The 

parameters used for "findOverlaps" were (maxgap = 5, ignore.strand=FALSE, select = "first", 

type = "start", use.region="both"). 

 

2.5 Copy number variant (CNV) annotation 

CNVs were annotated for genes using the R package csaw (v1.20.0) against the GRCh37.87 

annotation release using the parameters (dist=5000, promoter=c(3000, 1000), 

ignore.strand=TRUE). The VCF is available at: 

https://ftp.ncbi.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VCF/common_all_2

0180423.vcf.gz. Segments were annotated to contain all genes overlapping the segments along 

with flanking parameters as described above. CNVs were categorized as follows: total copy 

number (TCN); loss of heterozygosity (LOH); lower or minor copy number (LCN). The 

classification of copy number alteration types is provided below in Supplementary Table 18. 

CCNE1 copy number was previously assessed53 by in situ hybridization (ISH) in 27 of the 126 
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primary tumors, with whole-genome (FACETS) derived CCNE1 TCN showing a positive 

correlation with ISH derived CCNE1 copy number (Spearman r = 0.55, P = 0.0025). A 

threshold of TCN ≥7 for gene amplification achieved a high specificity, with 96.3% (26/27) of 

tumors concordantly classified for CCNE1 amplification status by FACETS and ISH. 

 

Supplementary Table 18: Classification of copy number alteration types 

Deletion (DEL) TCN = 0 

Loss (LOSS) TCN = 1 

Neutral TCN = 2, LCN = 1 

Gain (GAIN) TCN > 2 and TCN ≤ 6 

Amplification (AMP) TCN ≥ 7 

Copy-neutral loss-of-heterozygosity (cnLOH) TCN = 2, LCN = 0 

 

In order to visualize fluctuations in coverage associated with CNVs, bigWig tracks were 

generated on whole-genome sequencing data using deepTools (v3.0.0) with parameters (--

binSize 10 --minMappingQuality 10 --normalizeUsing CPM --skipNonCoveredRegions --

samFlagExclude 1024 --outFileFormat bigwig). Only chromosomes 1-22 and X were used for 

normalisation and track generation. Encode mappability blacklisted regions were excluded 

from the analysis. 

 

2.6 Recurrent gene mutation detection 

Small-scale mutations: The dNdScv54 R package (v0.0.1.0) was used to detect putative driver 

genes enriched with small scale mutations (base substitutions and indels). High confidence 

SNVs and indels were fed into the “dndscv” function with parameters (refdb = "hg19", sm = 

"192r_3w", max_muts_per_gene_per_sample = Inf, max_coding_muts_per_sample = Inf, 

use_indel_sites = FALSE). 

Structural variants: High confidence SVs in protein coding genes were selected for SV driver 

analysis. Breakpoints were analyzed using the tool GRIN55 (v1.4). Results were further filtered 

to only contain expressed genes (those with a CPM greater than 0.5 in at least 10 samples) that 

were not in fragile sites, and P values were corrected again using GRIN’s internal “robust.fdr” 

method. 

Recurrent CNV analysis: Recurrent CNVs were identified using GISTIC256 (v2.0.23). LogR 

ratios in the segmentation data were first median centred per sample, then fed into the GISTIC2 
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tool with parameters (-savegene 1 -maxspace 1000 -ta 0.1 -td 0.1 -rx 0 -cap 3 -broad 0 -twoside 

1 -res 0.05 -genegistic 0 -v 10). 

Altered gene enrichment analysis: To compare the frequencies of gene mutations across 

survival groups, all types of high confidence variants were collated into one table and the 

following workflow was applied to generate the variants of interest per sample across the 

cohort: 

1) A list of expressed protein coding genes was generated using RNA-seq data. Expressed 

genes were those with a CPM greater than 0.5 in at least 10 samples. 

2) For gene level annotated CNVs with multiple overlapping segments, in order to select 

the most deleterious “loss-of-function” event, only the segment with the lowest logR 

value was kept.  

3) For genes with high confidence SVs, if a gene had multiple breakpoints, only the 

breakpoint with the highest allele frequency was retained. 

4) For high confidence small-scale variants (SNVs, indels and MNVs), only the most 

severe consequence variant as ranked by VEP was kept per gene. The order of severity 

is available on the Ensembl website: 

https://m.ensembl.org/info/genome/variation/prediction/predicted_data.html 

5) CNVs, SVs and small-scale variants were then combined and filtered to only retain the 

expressed protein coding genes as generated in 1). 

6) For samples with genes affected by multiple variants, in order to select the most 

damaging variant, each gene was annotated per sample using the rank order shown 

below in Supplementary Table 19.  

7) Fisher’s test was performed to compare the proportion of mutated (high and moderate 

impact variants) and wild-type (low impact or no variant) samples for each survival 

group versus the other (i.e. LTS vs MTS, LTS vs STS, MTS vs STS). 

 

Supplementary Table 19: Rank of gene alteration severity  

Rank Variant Event Impact Level Variant Type 

1 Nonsense_Mutation High SNV, Indel, MNV 

2 Frame_Shift_Del High SNV, Indel, MNV 

3 Frame_Shift_Ins High SNV, Indel, MNV 

4 Splice_Site High SNV, Indel, MNV 

5 CNV_Del = 0  High CNV 
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6 SV_gene_body High SV 

7 Translation_Start_Site High SNV, Indel, MNV 

8 Nonstop_Mutation High SNV, Indel, MNV 

9 CNV_Amp = ≥7 High CNV 

10 Missense_Mutation Moderate SNV, Indel, MNV 

11 In_Frame_Ins Moderate SNV, Indel, MNV 

12 In_Frame_Del Moderate SNV, Indel, MNV 

13 Splice_Region Low SNV, Indel, MNV 

14 Silent Low SNV, Indel, MNV 

15 None None Any 

 

Filtering of altered genes of interest: Genes were filtered as follows: 1) to include only 

expressed genes, that is genes with > 0.5 CPM in at least 10 samples, 2) to remove 49 genes 

heavily affected by artefacts listed here54, 3) to remove FrequentLy mutAted GeneS (FLAGS57) 

listed in section “Whole Genome Sequencing (Somatic SNV/Indel calling)”, and 4) to remove 

genes affected by fragile sites as previously identified in the PCAWG studies58,59. Cancer-

related genes were those included in the COSMIC Cancer Gene Census version “Thu Mar 26 

00_38_30 2020” (https://cancer.sanger.ac.uk/census). 

 

2.7 Mutual exclusivity analysis 

Pairwise Fisher’s exact tests for mutual exclusivity or co-occurrence of alterations in genes of 

interest was performed using the “somaticInteractions” function of maftools60 (v2.2.10), only 

including genes with alterations in a minimum of three primary tumors. P values were adjusted 

for multiple hypothesis testing using the Benjamini-Hochberg procedure. 

 

2.8 Clonality analysis 

DNA repair pathway alterations were manually reviewed in IGV to get the most accurate 

estimate of their depth and variant read count. The alteration positions were then intersected 

with FACETS copy number data to determine the total copy number at each variant locus. The 

depth, variant read counts and FACETS total copy number for each alteration, along with 

FACETS purity estimates for each sample, were fed into the function 

“absolute.cancer.cell.fraction”, which calculates the purity and copy number corrected cancer 

cell fraction (CCF) and classifies the clonal or subclonal status of each variant. The function is 
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freely available at the GitHub repository [https://github.com/ucl-respiratory/preinvasive], and 

the methods to calculate the CCF and classify clonality are described in the associated 

publication12. 

 To estimate clonality of copy number segments containing CCNE1, the FACETS 

cellular fractions (CF) of CCNE1 segments were converted to cancer cell fractions (CCF) by 

dividing the CF by the sample purity (Supplementary Table 17). A CF value of 1 in FACETS 

indicates normal ploidy, so segments with a CF of 1 were designated a CCF of 0. CCF values 

were upper bound to 1 to account for noise. All CCNE1 amplifications were in copy number 

segments with CCFs in the range of 0.999 to 1 and were considered clonal. 

 

2.9 Mutational signature fitting 

Signature fitting was performed using the R package signature.tools.lib and its function 

“SignatureFit_withBootstrap” [method = "KLD", nboot = 100, randomSeed = 42, 

threshold_percent = 2, threshold_p.value = 0.05]. Fitting was carried out in two steps. An initial 

signature fitting was performed using all single base substitution (SBS), double base 

substitution (DBS) and indel (ID) signatures in COSMIC 

(https://cancer.sanger.ac.uk/signatures/), and SV signatures in SIGNAL 

(https://signal.mutationalsignatures.com/)27. This generated absolute signature exposures or 

contributions per sample, per signature. Then a second fit was performed using just the ovary 

identified signatures in COSMIC (for SBS, DBS and ID) and SIGNAL (for SV), along with 

any other signatures that were present at high levels in the cohort. This was determined by 

visualising the mean of the signature exposures across the cohort and selecting an acceptable 

threshold. The resulting absolute contributions could then be converted into relative 

contributions by dividing each of the absolute contributions by the sum total per sample. 

 

2.10 Mutational signature clustering 

The relative contributions of the COSMIC (SBS, DBS, ID) and SIGNAL (SV) signatures fit 

by signature.tools.lib were used to generate the mutational signature clusters. The sample by 

signature proportion matrix was filtered to only contain signatures with a mean of at least 4% 

across the cohort. This was determined by visualising the mean contribution of each signature 

across the cohort and selecting an appropriate cut-off (Supplementary Fig. 20). 
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Supplementary Fig. 20 | Selection of mutational signatures used for clustering. Bars 

indicate the mean relative signature contribution (y axis) across the cohort of primary tumor 

samples (n = 126), of the 37 COSMIC and SIGNAL signatures fit by signature.tools.lib. Dotted 

line indicates the cut-off and red bars indicate signatures that were included in the clustering. 

Signatures are ordered by mean relative contribution in ascending order. 

 

The proportions were then scaled and centred across the cohort using the “scale” 

function in R. The standardized values were fed into the R package ConsensusClusterPlus61 

(v1.50.0) with parameters (maxK = 10, reps=1000, pItem=0.9, pFeature=0.9, 

clusterAlg="pam", distance="pearson", innerLinkage="ward.D2", finalLinkage="ward.D2", 

seed=12345678) to generate sample clusters. The heatmap and cumulative distribution 

function (CDF) plots of the consensus matrices, and the Delta Area Plot generated by 

ConsensusClusterPlus was visualized to select an appropriate cut-off for the number of clusters. 

The chosen cut-off was also based upon visual inspection of the final sample clusters with their 

known features whilst retaining an appropriate cluster size for statistical analyses. The rows 

(signatures) were clustered using R functions dist (method = “euclidean”) and hclust (method 

= “ward.D2”). Both sample and signature clusters were reordered for optimal leaf ordering 

using the function “reorder.hclust” from the R package “seriation” (v1.3.0) with parameter 

(method = “OLO”). 
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2.11 RNA sequencing batch correction 

The batch correction was performed in order to remove batch effects while retaining group 

differences using limma’s removeBatchEffect function with the parameters (exp_data, batch = 

LibraryType, design = model.matrix(~SurvivalGroup)) where “exp_data” is the log2 TMM 

normalized data. The design of the study is shown in Supplementary Table 20 below.  

 

Supplementary Table 20: RNA-seq samples grouped by library type and survival group  

SurvivalGroup LibraryType stranded LibraryType unstranded 

LTS 56 7 

STS and MTS 0 68 

 

Given the unbalanced nature of the RNA sequencing data, we acknowledge that the 

batch corrected expression data may have some limitations and points of caution62. When using 

batch corrected expression data produced by limma for statistical inference, true biological 

differences may be exaggerated. On the other hand, these same differences might be dampened 

by tools such as DESeq2 that incorporate the batch into the model itself. Where possible when 

performing comparative or differential expression analysis between the survival groups for 

individual genes, both the boxplots of the normalized and batch corrected expression data and 

the DESeq2 generated adjusted P values and fold-changes are shown. The DeepCC expression 

analysis is largely unaffected by such biases, as stated by the authors63. 

 

2.12 Expression analyses 

Molecular subtype classification: DeepCC63 (v0.1.1) was used for the molecular subtype 

classification of tumor samples. The Tothill42 dataset of ovarian tumor samples (GSE9891) was 

used for training. Of the 285 samples in the dataset, 215 C1, C2, C4 and C5 HGSC samples 

were used to generate the classifier. The DeepCC function “getFunctionalSpectra” with default 

parameters was used on the Tothill expression matrix to get the functional spectra. The function 

“train_DeepCC_model” was used to train the model. Since the training gave slightly different 

results in each iteration, 10 iterations were performed to get 10 different models. Each of the 

models were then run against the functional spectra of our batch corrected RNA-seq data to 

obtain subtype predictions. The subtype predicted the greatest number of times, after 

classifying using each of the 10 models, was selected as the final subtype. 
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Differential expression analysis: DESeq264 (v1.26.0) was used to identify differentially 

expressed protein coding genes between sample groups of interest, with batch effects accounted 

in the model. Raw counts were filtered to remove lowly expressed genes before running the 

analysis. 

Gene Set Enrichment Analysis (GSEA): An R package for fast, pre-ranked gene set enrichment 

analysis (FGSEA v1.15.1) was used to calculate gene set enrichment across comparison 

groups. P values obtained from DESeq2 were transformed to signed P values by converting 

the gene level P values to a negative log10 value and applying the sign of the fold change to 

these values. These values were then sorted and fed into FGSEA via its function 

fgseaMultilevel (minSize=15, maxSize = 500, gseaParam = 0, eps = 0) to generate enrichment 

scores and FDR adjusted P values across the Hallmark gene sets in the MSigDB database49 

(v7.4). 

Immune cell deconvolution: CIBERSORTx28 was used to estimate immune cells present in the 

tumor microenvironment using the web-based pipeline (https://cibersortx.stanford.edu/). The 

analysis was run with batch correction enabled and B-mode, quantile normalisation disabled, 

absolute mode and 500 permutations. The LM22 signature matrix was used for immune cell 

deconvolution. 

CIBERSORTx survival analysis: CIBERSORTx absolute values were centred and scaled across 

the cohort using the R function “scale”. A multi-variate Cox analysis for overall survival using 

all detected cell types was performed using the R package survival (v3.2-7) and its function 

“coxph” with parameter (robust = TRUE). 

Immune cell clustering: CIBERSORTx absolute cell abundances were used to generate 

immune clusters. Only cell types with a value greater than 0 in at least 10 samples were used 

(Supplementary Fig. 21). The sample by cell type abundance matrix was then used to generate 

immune clusters, as per the method described for the mutational signature cluster analysis. 
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Supplementary Fig. 21 | Selection of cell types used for clustering. Bars indicate the number 

of primary tumor samples (y axis) for which the CIBERSORTx cell type abundance was 

greater than 0. Dotted line indicates the cut-off and red bars indicate cell types that were 

included in the clustering. Cell types are ordered by number of tumor samples with abundance 

>0 in ascending order.  

 

2.13 Methylation analyses 

Differential methylation (DM) analysis: A shared methylation array probe set (364,406 probes) 

was generated for all 126 primary tumor samples as described in “Methylation data processing 

and quality control” in the Methods. The DM analysis between survival groups was performed 

following the workflow described here:  

https://www.bioconductor.org/packages/release/workflows/vignettes/methylationArrayAnaly

sis/inst/doc/methylationArrayAnalysis.html. Multi-dimensional scaling (MDS) plots were 

generated to visualize potential sources of variation between samples. Methylation array 

specific variation was observed between samples run on the EPIC versus the 450k arrays, and 

therefore was added to the statistical model of limma for DM analysis. To identify methylation 

sites that negatively correlate with expression, a Pearson correlation analysis was performed 

between batch corrected RNA-seq data and methylation beta values for 126 primary tumor 

samples. Correlation analysis was performed on each probe and its associated gene using the 
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base R “cor.test” function. DM results for each probe in each survival group comparison was 

then annotated with expression specific correlation analysis data as described above.  

Only CpG probes with an unadjusted P value <0.05 were output to results tables 

(Supplementary Data 6). A column was added to each DM analysis results table to indicate the 

genes that were deemed to be turned off in the long-term survivors 

(EXP_TURNED_OFF_IN_LTS) versus the short- or moderate-term survivors, and the genes 

that were deemed to be turned off in the moderate-term survivors 

(EXP_TURNED_OFF_IN_MTS) in contrast to the short-term survivors. The filters used were 

as follows: 1) adjusted P value < 0.1 to select for significant probes, 2) logFC > 0 to select for 

probes with higher methylation values in either the long- or moderate-term survivors in contrast 

to the relevant comparison group, and 3) Pearson correlation with expression data < -0.2 to 

select for probes that negatively correlated with gene expression in the entire cohort of 126 

primary tumors. 

Methylation clustering: Unsupervised consensus clustering of methylation data was performed 

across all primary tumors (n = 126) using the top 1% most variable CpG probes65 across the 

cohort (number of probes = 3,645). Batch corrected methylation beta values were transformed 

to M-values66, and clustering was performed with M-values using the clustering method 

described above for the mutational signature cluster analysis. The ConsensusClusterPlus 

parameters used for the methylation data clustering were: maxK = 10, reps=1000, pItem=0.9, 

pFeature=1, clusterAlg="pam", distance="euclidean", innerLinkage="ward.D2", 

finalLinkage="ward.D2", seed=12345678. 

Gene promoter methylation classification: BRCA1 and RAD51C promoter methylation status 

was determined by comparing BRCA1 and RAD51C mRNA expression to the methylation 

array beta values of probes located in the 5’ CpG island of each respective gene across primary 

and relapse tumor samples (n = 131), following previously established approaches10,14. Briefly, 

methylation probes demonstrating a negative correlation with mRNA expression (Spearman’s 

r <-0.30, P < 0.01) were selected (BRCA1 probes: cg04110421, cg04658354, cg08386886, 

cg09441966, cg09831010, cg10893007, cg15419295, cg16630982, cg16963062, cg19088651, 

cg20187250, cg21253966, cg24806953; RAD51C probes: cg02118635, cg05214530, 

cg24099023), and samples with a beta value of >0.2, in at least 50% of selected probes, were 

classified as methylated. 
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2.14 Multivariable analysis 

Univariable associations with progression-free and overall survival was determined using Cox 

proportional-hazards regression models for all features of interest (Fig. 6b; Supplementary 

Table 13). Continuous features (T cells CD4 memory activated, PCNA expression, plasma 

cells, neoantigen count, NK cells) were first scaled and centred using the R function “scale” 

before analysis using the “coxph” function. Features significantly associated with overall 

survival (P < 0.05) were selected for the multivariable analysis to ascertain the most significant 

independent features of prognostication (Supplementary Table 14). A pair-wise correlation 

analysis between all prognostic factors was used to investigate their independence using the R 

library polycor (v0.8-1) and its function "hetcor", which accounts for different combinations 

of continuous and categorical variables.  
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