```
### kaighobadi stevens rcode.R
### Created by Jeffrey R. Stevens on 1 Sept 2012 (<a href="mailto:jeffrey.r.stevens@qmail.com">jeffrey.r.stevens@qmail.com</a>),
### Summary: This script calculates statistics and generates figures for the
        analysis of women's intertemporal choice data across their ovulatory cycle.
### Instructions: Place this file and the data files (kaighobadi stevens data[2/3].csv)
       in the same directory. Create a folder called "figures". Set the R
###
        working directory to this directory. At the R command prompt, type
        > source("kaighobadi stevens rcode.R")
###
       This will run the script, adding all of the calculated variables to the
        workspace and saving PDF versions of the figures in the figures directory.
###
### Uses: This script can be reproduced and modified for personal and scientific use.
### Data files: Description of the data columns:
     kaighobadi stevens data2--intertemporal and risky choice data
     subject - participant number
###
      age - participant age
      condition - experimental condition (experimental [male image] or control [neutral landscape image])
      fertility - fertility status (peak or low)
###
      date - date of experiment
     time - time of day for experiment
###
      session - session number (1 or 2)
      task - order of experimental tasks
      tasktype - experimental task (Discounting [intertemporal choice] or Risk [risky choice])
      block - block number for blocks of questions
###
      switchpt - indifference point calculated for question
###
      amount1 - small amount
      time1 - short delay
      amount2 - large amount
###
     time2 - long delay
      prepost - flag for whether question occurs before or after exposure to images
     kaighobadi stevens data3--attractiveness ratings
###
     Subject - participant number
     Fertility - fertility status (peak or low)
      Image - image number with code for male image ("man") or landscape image ("L")
     Rating - participant rating of image from 0 (very unattractive) to 9 (very attractive)
      RT - response time--time between exposure to image and rating response (in ms)
# Clear variables, load libraries, include external functions, define local functions
########################
rm(list=ls())
                                   # clear all variables
library(epicalc, quietly = T)
                                   # for aggregate with multiple functions
                                   # for xYplots
library(Hmisc, quietly = T)
library(latticeExtra, quietly = T) # for layer overlaying of plots
library(boot)
                                   # for bootstrapping CIs
librarv(nparLD)
                                   # for non-parametric repeated measures stats
```

```
########################
# Data input and preparation
#########################
within <- read.csv("data/ov indiff within.csv")</pre>
                                                                                   # input data
within$ffertility <- factor(within$fertility, labels = c("peak", "low"))</pre>
                                                                                       # create factor for fertility
within$fcondition <- factor(within$condition, labels = c("control", "experimental"))# create factor for condition
within$fprepost <- factor(within$prepost, labels = c("pre", "post"))</pre>
                                                                             # create factor for prepost
#######################
# Intertemporal choice
disc <- subset(within, tasktype == "Discounting")</pre>
                                                                  # select intertemporal choice (discounting) questions
disc <- subset(disc, substr(block, 8, 8) == "7")</pre>
                                                                  # select data rows with the same question
disc$time2 <- as.character(disc$time2)</pre>
                                                                  # change time2 column to characters
disc preexposure <- subset(disc, fprepost == "pre")</pre>
                                                                  # extract pre-exposure questions
disc preexposure$subject <- as.factor(disc preexposure$subject) # convert subject to factor
###########
# Indifference point data
###########
disc_indiff_subj <- aggregate(disc_preexposure$switchpt, by = list(disc_preexposure$ffertility, disc_preexposure$subject), FUN = c("mean",</pre>
                                     # aggregate indifference points by subject, prepost, fertility, and condition
names(disc_indiff_subj) <- c("fertility", "subject", "indiff", "median", "n", "sd")</pre>
disc indiff <- aggregate(disc indiff subj$indiff, by = list(disc indiff subj$fertility), FUN = c("mean", "median", "length", "sd")) #
aggregate indifference points by fertility
names(disc indiff) <- c("fertility", "indiff", "median", "N", "sd")</pre>
boot indiff peak <- boot(subset(disc indiff subj, fertility == "peak")sindiff, function(u,i) mean(u[i]), R = 999) # bootstrap peak
fertility data
boot indiff low <- boot(subset(disc_indiff_subj, fertility == "low")$indiff, function(u,i) mean(u[i]), R = 999)
                                                                                                                        # bootstrap low
fertility data
indiff peak ci <- boot.ci(boot indiff peak, type = "norm")</pre>
                                                                                                                        # calculate 95%
confidence intervals
indiff low ci <- boot.ci(boot indiff low, type = "norm")</pre>
                                                                                                                        # calculate 95%
confidence intervals
disc indiff$ubci <- c(indiff peak ci$normal[3], indiff low ci$normal[3])</pre>
                                                                                                                        # add CIs to dataframe
disc indiff$lbci <- c(indiff peak ci$normal[2], indiff low ci$normal[2])</pre>
                                                                                                                        # add CIs to dataframe
subject col <- c("#0072B2", "#D55E00", "#009E73", "#E69F00", "#F0E442", "#CC79A7") # create list of colors
subject lty \leftarrow c(rep(c(2, 2), times = 7))
                                                                                       # create list of line types
disc_indiff_plot <- stripplot(jitter(switchpt) ~ ffertility, groups = subject, data = disc_preexposure,</pre>
    pch = 4, cex = 2, xlab = "Fertility", ylab = "Indifference point", aspect = 0.65,
    par.settings = list(axis.text = list(cex = 2), par.xlab.text = list(cex = 2.5),
        par.ylab.text = list(cex = 2.5), layout.heights = list(strip = 2)),
    panel = function(x, y, ...) {
        mean.values <<- tapply(y, x, mean, na.rm=T)</pre>
                                                                      # calculates means
        panel.stripplot(x, y, type = "b", lty = subject_lty, ...)
        panel.average(x, y, fun = mean, lwd = 4, col = "black", ...)# plot line connecting means
        panel points (mean values, pch = 16, cex = 2, col = "black") # plot means as diamonds
```

```
}
addWithinCI <- layer (panel.arrows(x, lbci[subscripts], x, ubci[subscripts], col = 'black', length = 0,
        unit = "native", angle = 90, code = 3, lwd = 2), data = disc indiff, under = FALSE) # add layer for bootstrapped CIs
pnq(file = "figures/disc indifference within.pnq", width = 900, height = 600)
                                                                                         # create PNG file
plot(disc indiff plot + addWithinCI)
dev.off()
## Parametric statistics
disc indiff aov <- aov(switchpt ~ ffertility + Error(subject/ffertility), data = disc preexposure) # within-subjects ANOVA
shapiro.test(residuals(disc indiff aov$subject))
                                                                                                    # test assumption of normality of
residuals (failed)
## Non-parametric statistics
wilcox.test(switchpt ~ ffertility, data = disc_preexposure, paired = T)
                                                                                                    # Wilcoxan signed rank test
###########
# Difference score data
###########
disc_diff_subj <- aggregate(disc$switchpt, by = list(disc$ffertility, disc$fcondition, disc$subject), FUN = "diff") # create difference
score (post - pre) as a function of fertility, condition, and subject
names(disc_diff_subj) <- c("fertility", "condition", "subject", "diff")</pre>
disc_diff_raw <- aggregate(disc_diff_subj$diff, by = list(disc_diff_subj$fertility, disc_diff_subj$condition), FUN = c("mean", "median",
"length", "sd")) # aggregate difference score by fertility and condition
names(disc diff raw) <- c("fertility", "condition", "diff", "median", "N", "sd")</pre>
disc diff expt all <- subset(disc diff subj, condition == "experimental") # create subset of experimental condition data
disc_diff_expt <- aggregate(disc_diff_expt_all$diff, by = list(disc_diff_expt_all$fertility, disc_diff_expt_all$condition), FUN = c
("mean", "median", "length", "sd")) # aggregate experimental data by fertility and condition
disc diff control all <- subset(disc diff subj, condition == "control")  # create subset of control condition data
disc_diff_control <- aggregate(disc_diff_control_all$diff, by = list(disc_diff_control_all$fertility, disc_diff_control_all$condition),
FUN = c("mean", "median", "length", "sd")) # aggregate control data by fertility and condition
names(disc diff expt) <- names(disc diff control) <- c("ferility", "condition", "mean", "median", "N", "sd")</pre>
disc diff <- data.frame(condition = c("experimental", "experimental", "control", "control"), rbind(disc diff expt, disc diff control)) #
combine experimental and control condition
disc_diff$diff <- disc_diff_raw[c(3, 4, 1, 2), 3] # append raw difference means</pre>
boot diff peak exp <- boot(subset(disc diff subj, fertility == "peak" & condition == "experimental")$diff, function(u,i) mean(u[i]), R =
999) # bootstrap peak fertility/experimental data
boot diff peak cont <- boot(subset(disc diff subj, fertility == "peak" & condition == "control")$diff, function(u,i) mean(u[i]), R =
            # bootstrap peak fertility/control data
boot diff low exp <- boot(subset(disc diff subj, fertility == "low" & condition == "experimental")$diff, function(u,i) mean(u[i]), R =
            # bootstrap low fertility/experimental data
boot_diff_low_cont <- boot(subset(disc_diff_subj, fertility == "low" & condition == "control")$diff, function(u,i) mean(u[i]), R =
               # bootstrap low fertility/control data
diff peak exp ci <- boot.ci(boot diff peak exp, type = "norm") # calculate 95% confidence intervals
diff peak cont ci <- boot.ci(boot diff peak cont, type = "norm")# calculate 95% confidence intervals
diff low exp ci <- boot.ci(boot diff low exp, type = "norm") # calculate 95% confidence intervals
diff low cont ci <- boot.ci(boot diff low cont, type = "norm") # calculate 95% confidence intervals
disc_diff$ubci <- c(diff_peak_exp_ci$normal[3], diff_low_exp_ci$normal[3], diff_peak_cont_ci$normal[3], diff_low_exp_ci$normal[3]) # add
CIs to dataframe
disc diff$lbci <- c(diff peak exp ci$normal[2], diff low exp ci$normal[2], diff peak cont ci$normal[2], diff low cont ci$normal[2]) # add
```

```
CIs to dataframe
(within subjects)",
   strip = strip.custom(factor.levels = c("Neutral Image", "Male Image"), par.strip.text = list(cex = 2)),
    par.settings = list(axis.text = list(cex = 2), par.xlab.text = list(cex = 2.5),
       par.ylab.text = list(cex = 2.5), layout.heights = list(strip = 2)),
    panel = function(x, y, ...) {
       x2 <<- tapply(as.numeric(x), x, mean)</pre>
       mean.values <<- tapply(y, x, mean, na.rm=T)</pre>
                                                                     # calculates means
       panel.stripplot(x, y, type = "b", lty = subject_lty, ...)
       panel.average(x, y, fun = mean, lwd = 4, col = "black", ...)
                                                                     # plot line connecting means
       panel.points(mean.values, pch = 16, cex = 1.5, col = "black") # plot means as diamonds
                                                                     # mark 0 line
       panel.abline(h = 0, lty = 2)
addWithinCI <- layer_(panel.arrows(x, lbci[subscripts], x, ubci[subscripts], col = 'black', length = 0.3, subscripts = T, monunit =
"native", angle = 0, code = 3, lwd = 2), data = disc diff, under = FALSE)
                                                                                                               # add layer for
bootstrapped CIs
png(file = "figures/disc diff score within.png", width = 900, height = 700) # create PNG file
plot(disc diff plot + addWithinCI)
dev.off()
## Parametric stats
disc diff aov <- aov(diff ~ condition * fertility + Error(subject/(fertility)), data = disc diff subj) # mixed effect ANOVA
# shapiro.test(residuals(disc diff aov$subject)) # test assumption of normality of residuals (failed--unbalanced data)
## Non-parametric stats
my.t < - c(2:1)
                              # create fertility predictions
my.pat \leftarrow rbind(c(2:1), c(2:1)) # create fertility predictions
disc npar <- f1.ld.f1(y = disc diff subj$diff, time = disc diff subj$fertility, group = disc diff subj$condition, subject = disc diff subj
                                                            # conduct non-parametric analysis
$subject, w.t=my.t, w.pat=my.pat, description = F)
disc_diff_npaov <- disc_npar$ANOVA.test # extract statistical test</pre>
disc diff pairedcomp <- disc npar$pattern.time # extract pairwise comparison
## Effect size of interaction effect (calculates Glass's delta [using low ferility standard deviation as control standard deviation]
because standard deviations differed slightly between high and low fertility conditions)
disc diff effect size <- (disc diff$mean[1] - disc diff$mean[2])/disc diff$sd[2]</pre>
#######################
# Risky choice
risk <- subset(within, tasktype == "Risk")  # select intertemporal choice (discounting) questions
risk <- subset(risk, substr(block, 8, 8) == "4")  # select data rows with the same question
risk preexposure <- subset(risk, fprepost == "pre") # extract pre-exposure questions
risk preexposure$subject <- as.factor(risk preexposure$subject)</pre>
```

###########

```
# Indifference point data
##########
risk_indiff_subj <- aggregate(risk_preexposure$switchpt, by = list(risk_preexposure$ffertility, risk_preexposure$subject), FUN = c("mean",
                                    # aggregate indifference points by subject, prepost, fertility, and condition
"med\overline{ian}", "\overline{length}", "sd"))
names(risk indiff subj) <- c("fertility", "subject", "indiff", "median", "n", "sd")</pre>
risk indiff <- aggregate(risk indiff subj$indiff, by = list(risk indiff subj$fertility), FUN = c("mean", "median", "length", "sd")) #
aggregate indifference points by fertility
names(risk_indiff) <- c("fertility", "indiff", "median", "N", "sd")</pre>
boot indiff peak <- boot(subset(risk indiff subj, fertility == "peak")sindiff, function(u,i) mean(u[i]), R = 999) # bootstrap peak
fertility data
boot indiff low <- boot(subset(risk indiff subj, fertility == "low")$indiff, function(u,i) mean(u[i]), R = 999)
                                                                                                                      # bootstrap low
fertility data
indiff peak ci <- boot.ci(boot indiff peak, type = "norm")</pre>
                                                                                                                      # calculate 95%
confidence intervals
indiff low ci <- boot.ci(boot indiff low, type = "norm")</pre>
                                                                                                                      # calculate 95%
confidence intervals
risk indiff$ubci <- c(indiff_peak_ci$normal[3], indiff_low_ci$normal[3])
                                                                                                                      # add CIs to dataframe
risk indiff$lbci <- c(indiff peak ci$normal[2], indiff low ci$normal[2])
                                                                                                                      # add CTs to dataframe
risk indiff plot <- stripplot(jitter(switchpt) ~ ffertility, groups = subject, data = risk preexposure,
    aspect = 0.65, pch = 4, cex = 2, xlab = "Fertility", ylab = "Indifference point", #main = "Risky choice (within subjects)",
    strip = strip.custom(factor.levels = c("Neutral Image", "Male Image"), par.strip.text = list(cex = 2)),
    par.settings = list(axis.text = list(cex = 2), par.xlab.text = list(cex = 2.5),
        par.ylab.text = list(cex = 2.5), layout.heights = list(strip = 2)),
    panel = function(x, y, ...) {
        x2 <- tapply(as.numeric(x), x, mean)</pre>
        mean.values <<- tapply(y, x, mean, na.rm=T)</pre>
                                                                         # calculates means
        panel.stripplot(x, y, type = "b", lty = subject_lty, ...)
        panel.average(x, y, fun = mean, lwd = 4, col = "black", ...)
                                                                         # plot line between means
        panel.points(mean.values, pch = 16, cex = 1.5, col = "black")
                                                                         # plot means as diamonds
addWithinCI <- layer (panel.segments(x, lbci[subscripts], x, ubci[subscripts], col = 'black', length = 0,
        unit = "native", angle = 90, code = 3, lwd = 2), data = risk indiff, under = FALSE) # add layer for bootstrapped CIs
png(file = "figures/risk indifference within.png", width = 900, height = 600)
plot(risk indiff plot + addWithinCI)
dev.off()
## Parametric stats
risk preexp aov <- aov(switchpt ~ ffertility + Error(subject/ffertility), data = risk preexposure) # within-subjects ANOVA
shapiro.test(residuals(risk preexp aov$subject))
                                                                 # test assumption of normality of residuals (passed)
summary(risk preexp aov) # no main effects or interactions
## Non-parametric stats
wilcox.test(switchpt ~ ffertility, data = risk preexposure, paired = T)
##########
# Difference score data
```

###########

```
risk diff subj <- aggregate(risk$switchpt, by = list(risk$ffertility, risk$fcondition, risk$subject), FUN = "diff") # create difference
score (post - pre) as a function of fertility, condition, and subject
names(risk_diff_subj) <- c("fertility", "condition", "subject", "diff")</pre>
risk_diff_raw <- aggregate(risk_diff_subj$diff, by = list(risk_diff_subj$fertility, risk diff_subj$condition), FUN = c("mean", "median",
"length", "sd")) # aggregate difference score by fertility and condition
names(risk diff raw) <- c("fertility", "condition", "diff", "median", "N", "sd")</pre>
risk diff expt all <- subset(risk diff subj, condition == "experimental") # create subset of experimental condition data
risk diff expt <- aggregate(risk diff expt all$diff, by = list(risk diff expt all$fertility, risk diff expt all$condition), FUN = c
("mean", "median", "length", "sd")) # aggregate experimental data by fertility and condition
risk diff control all <- subset(risk diff subj, condition == "control") # create subset of control condition data
risk diff control <- aggregate(risk diff control all$diff, by = list(risk diff control all$fertility, risk diff control all$condition),
FUN = c("mean", "median", "length", "sd")) # aggregate control data by fertility and condition
names(risk_diff_expt) <- names(risk_diff_control) <- c("ferility", "condition", "mean", "median", "N", "sd")</pre>
risk_diff <- data.frame(condition = c("experimental", "experimental", "control"), rbind(risk diff expt, risk diff control)) #
combine experimental and control condition
risk_diff$diff <- risk_diff_raw[c(3, 4, 1, 2), 3] # append raw difference means
boot diff peak exp <- boot(subset(risk diff subj, fertility == "peak" & condition == "experimental")$diff, function(u,i) mean(u[i]), R =
999) # bootstrap peak fertility/experimental data
boot_diff_peak_cont <- boot(subset(risk_diff_subj, fertility == "peak" & condition == "control")$diff, function(u,i) mean(u[i]), R =
            # bootstrap peak fertility/control data
boot_diff_low_exp <- boot(subset(risk_diff_subj, fertility == "low" & condition == "experimental")$diff, function(u,i) mean(u[i]), R =
            # bootstrap low fertility/experimental data
boot_diff_low_cont <- boot(subset(risk_diff_subj, fertility == "low" & condition == "control")$diff, function(u,i) mean(u[i]), R =
999)
                # bootstrap low fertility/control data
diff peak exp ci <- boot.ci(boot diff peak exp, type = "norm") # calculate 95% confidence intervals
diff_peak_cont_ci <- boot.ci(boot_diff_peak_cont, type = "norm")# calculate 95% confidence intervals
diff low exp ci <- boot.ci(boot diff low exp, type = "norm") # calculate 95% confidence intervals</pre>
diff_low_cont_ci <- boot.ci(boot_diff_low_cont, type = "norm") # calculate 95% confidence intervals</pre>
risk diff$ubci <- c(diff peak exp ci$normal[3], diff low exp ci$normal[3], diff peak cont ci$normal[3], diff low cont ci$normal[3]) # add
CIs to dataframe
risk diff$lbci <- c(diff peak exp ci$normal[2], diff low exp ci$normal[2], diff peak cont ci$normal[2], diff low cont ci$normal[2]) # add
CIs to dataframe
risk diff plot <- stripplot(jitter(diff) ~ fertility | condition, groups = subject, data = risk diff subj,
    pch = 4, cex = 2, subscripts = T, xlab = "Fertility", ylab = "Difference score (Post - Preexposure)", # main = "Risky choice (within
subjects)",
    strip = strip.custom(factor.levels = c("Neutral Image", "Male Image"), par.strip.text = list(cex = 2)),
    par.settings = list(axis.text = list(cex = 2), par.xlab.text = list(cex = 2.5),
        par.ylab.text = list(cex = 2.5), layout.heights = list(strip = 2)),
    panel = function(x, y, ...) {
        x2 <<- tapply(as.numeric(x), x, mean)
        mean.values <<- tapply(y, x, mean, na.rm=T)</pre>
                                                                        # calculates means
        panel.stripplot(x, y, type = "b", lty = subject lty, ...)
        panel.average(x, y, fun = mean, lwd = 4, col = "black", ...)
                                                                        # plot line between means
        panel.points(mean.values, pch = 16, cex = 1.5, col = "black")
                                                                        # plot means as diamonds
        panel.abline(h = 0, lty = 2)
                                                                        # mark 0 line
    }
```

```
addWithinCI <- layer_(panel.segments(x, lbci[subscripts], x, ubci[subscripts], col = 'black', length = 0,
        unit = "native", angle = 0, code = 3, lwd = 2), data = risk_diff, under = FALSE) # add layer for bootstrapped CIs
png(file = "figures/risk diff score within.png", width = 900, height = 700)
plot(risk diff plot + addWithinCI)
dev.off()
## Inferential stats
risk diff aov <- aov(diff ~ condition * fertility + Error(subject/(fertility)), data = risk diff subj) # mixed-effects ANOVA
# shapiro.test(residuals(risk diff aov$subject)) # test assumption of normality of residuals (failed--unbalanced data)
## Non-parametric stats
risk npar <- f1.ld.f1(y = risk diff subj$diff, time = risk diff subj$fertility, group = risk diff subj$condition, subject = risk diff subj
$subject, description = F) # conduct non-parametric analysis
risk diff npaov <- risk npar$ANOVA.test  # extract ANOVA-like statistics
############################
# Attractiveness ratings
#############################
rating_all <- read.csv("data/ov_rating_data.csv")</pre>
                                                                                     # input data
rating_all <- subset(rating_all, subject != 2, drop = T)</pre>
rating all$ffertility <- factor(rating all$fertility, labels = c("peak", "low")) # create factor for fertility
ratings <- aggregate(rating all$rating, by = list(rating all$ffertility, rating all$subject), FUN = "mean") # aggregate rating data by
fertility and subject
names(ratings) <- c("fertility", "subject", "rating")</pre>
                                                                                                 # merge discounting and rating data frames
rating disc <- merge(disc diff subj, ratings)
# rating_disc <- subset(rating_disc, subject != 2, drop = T)</pre>
rating disc peak exp <- subset(rating disc, fertility == "peak" & condition == "experimental") # subset peak and experimental data
rating_disc_low_exp <- subset(rating_disc, fertility == "low" & condition == "experimental")</pre>
                                                                                                 # subset low and experimental data
rating_disc_peak_cont <- subset(rating_disc, fertility == "peak" & condition == "control")</pre>
                                                                                                 # subset peak and control data
rating_disc_low_cont <- subset(rating_disc, fertility == "low" & condition == "control")</pre>
                                                                                                 # subset low and control data
## Ratings fertility by condition
rating raw <- aggregate(rating disc$rating, by = list(rating disc$condition, rating disc$fertility), FUN = c("mean", "length", "sd")) #
aggregate rating by fertility and condition
names(rating_raw) <- c("condition", "fertility", "rating", "N", "sd")</pre>
boot rating peak exp <- boot(subset(rating disc, fertility == "peak" & condition == "experimental")$rating, function(u,i) mean(u[i]), R =
        # bootstrap peak fertility/experimental data
boot rating peak cont <- boot(subset(rating disc, fertility == "peak" & condition == "control")$rating, function(u,i) mean(u[i]), R = 999)
# bootstrap peak fertility/control data
boot rating low exp <- boot(subset(rating disc, fertility == "low" & condition == "experimental")$rating, function(u,i) mean(u[i]), R =
999) # bootstrap low fertility/experimental data
boot rating low cont <- boot(subset(rating disc, fertility == "low" & condition == "control")$rating, function(u,i) mean(u[i]), R = 999)
   # bootstrap low fertility/control data
rating peak exp ci <- boot.ci(boot rating peak exp, type = "norm") # calculate 95% confidence intervals
rating peak cont ci <- boot.ci(boot rating peak cont, type = "norm")# calculate 95% confidence intervals
rating low exp ci <- boot.ci(boot rating low exp, type = "norm") # calculate 95% confidence intervals
rating_low_cont_ci <- boot.ci(boot_rating_low_cont, type = "norm") # calculate 95% confidence intervals</pre>
rating rawsubci <- c(rating peak cont cisnormal[3], rating peak exp cisnormal[3], rating low cont cisnormal[3], rating low exp cisnormal
```

```
[3])
        # add CIs to dataframe
rating raw$lbci <- c(rating peak cont ci$normal[2], rating peak exp ci$normal[2], rating low cont ci$normal[2], rating low exp ci$normal
        # add CIs to dataframe
rating raw$ci <- rating raw$ubci - rating raw$rating</pre>
## Ratings fertility
rating fert <- aggregate(rating disc$rating, by = list(rating disc$fertility), FUN = c("mean", "length", "sd"))
                                                                                                                       # aggregate ratings by
fertility
names(rating fert) <- c("fertility", "rating", "N", "sd")</pre>
boot rating peak <- boot(subset(rating disc, fertility == "peak")$rating, function(u,i) mean(u[i]), R = 999)
                                                                                                                       # bootstrap peak
fertility data
boot rating low <- boot(subset(rating disc, fertility == "low") rating, function(u,i) mean(u[i]), R = 999)
                                                                                                                        # bootstrap low
fertility data
rating_peak_ci <- boot.ci(boot_rating_peak, type = "norm")</pre>
                                                                              # calculate 95% confidence intervals
rating_low_ci <- boot.ci(boot_rating_low, type = "norm")</pre>
                                                                              # calculate 95% confidence intervals
rating fert$ubci <- c(rating peak ci$normal[3], rating low ci$normal[3])
                                                                              # add CIs to dataframe
rating fert$lbci <- c(rating peak ci$normal[2], rating low ci$normal[2])</pre>
                                                                              # add CIs to dataframe
rating fert$ci <- rating fert$ubci - rating fert$rating
## Ratings condition
rating cond <- aggregate(rating disc$rating, by = list(rating disc$condition), FUN = c("mean", "length", "sd"))
                                                                                                                            # aggregate
ratings by fertility
names(rating_cond) <- c("condition", "rating", "N", "sd")</pre>
boot rating \exp < boot(subset(rating disc, condition == "experimental")$rating, function(u,i) mean(u[i]), R = 999)
                                                                                                                            # bootstrap
experimental condition data
boot rating cont <- boot(subset(rating disc, condition == "control")$rating, function(u,i) mean(u[i]), R = 999)
                                                                                                                       # bootstrap control
condition data
                                                                              # calculate 95% confidence intervals
rating_exp_ci <- boot.ci(boot_rating_exp, type = "norm")</pre>
rating_cont_ci <- boot.ci(boot rating cont, type = "norm")</pre>
                                                                              # calculate 95% confidence intervals
rating_cond$ubci <- c(rating_cont_ci$normal[3], rating_exp_ci$normal[3])</pre>
                                                                              # add CIs to dataframe
rating cond$lbci <- c(rating cont ci$normal[2], rating exp ci$normal[2])</pre>
                                                                              # add CIs to dataframe
rating cond$ci <- rating cond$ubci - rating cond$rating
```