

Expanded View Figures

Figure EV1. FBL is overexpressed in cancer cell lines and promotes cell proliferation.

- A, B Western blotting analyses of FBL expression in colon/lung cancer and normal cell lines.
- C, D Cell lysates of monoclonal cell lines were immunoblotted with FBL antibodies to confirm the knockdown efficiency in HCT116/A549 cells. E, F Cells were reconstituted with full-length FBL and FBL^{E191A/D236A} in HCT116/A549 cells. Protein expressions were examined by western blot with indicated
- L, F Cells were reconstituted with full-length FBL and FBL and
- G, H Cell viability assays were performed on control (siNC) and FBL knockdown (siFBL) NCM460/BEAS-2B cells using CCK-8 assays. The data are presented as mean \pm SD from three independent experiments. The statistical significance was determined using Student's t-test. ***P < 0.001.

Figure EV2. FBL plays a crucial role in regulating cell sensitivity to DNA damage and HR-mediated DNA repair.

- A, B Cell viability analysis was performed on control (shNC) and shFBL-HCT116/shFBL-A549 cells treated with indicated concentrations of cisplatin, etoposide, camptothecin, or H_2O_2 using CCK-8 assays. Each data point represents the mean \pm SD from three replicates.
- C−F (C, E) FBL overexpression cells are sensitive to MMC. FBL WT or empty vector HCT116/A549 cells were treated with MMC. Cell survival was measured by CCK-8 assay. Each data point represents the mean ± SD from three replicates. (D, F) Cells were reconstituted with full-length FBL in HCT116/A549 cells. Protein expressions were examined by western blot with indicated antibodies.
- G, H Immunofluorescence analysis of 5-ethynyl,2'deoxyuridine (EdU) incorporation and quantitative analysis of EdU-positive cells with 5 μ M MMC or DMSO treatment. Scale bar, 50 μ m. The bar graphs present data as mean \pm SD from three independent experiments. The statistical significance was determined using one-way ANOVA. **P < 0.01and ***P < 0.001.
- I Immunofluorescence staining showed the formation of γ H2AX and Rad51 foci in shFBL and shNC HCT116 cells treated with 5 μ M MMC or mock treatment. The scale bar represents 10 μ m. The right panel displays quantification of the left panel: indicating the number of Rad51 foci per cell ($n \ge 100$ cells). The bar graphs present data as mean \pm SD from three independent experiments. The statistical significance was determined using one-way ANOVA. ns. no significance.
- J, K Western blotting analysis of FBL levels in FBL knockdown EJ5-GFP-U2OS/DR-GFP-U2OS cells.

Figure EV3. FBL interacts with YBX1 independent of DNA or RNA and its methyltransferase activity.

- A To establish cell lines stably expressing epitope-tagged proteins, HCT116 cells were transfected with plasmids encoding SFB-FBL. Protein expressions were examined by western blotting with indicated antibodies.
- B The interaction between FBL and YBX1 is not mediated by DNA or RNA. The association between FBL and YBX1 was examined by coimmunoprecipitation assays in HCT116 cells with RNase A or benzonase treatment.
- C The catalytically inactive mutant of FBL also binds YBX1 in vivo. Co-IP analyses of GFP-FBLE191A/D236A and SFB-YBX1 in HCT116 cells.

Figure EV4. The effects of FBL on the expression/subcellular localization of YBX1 and the increased interaction between YBX1 and FBL induced by MMC.

- A Western blotting analysis of YBX1 levels in YBX1-knockdown HCT116 cells. GAPDH was used as the protein-loading control.
- B Western blotting analysis of total YBX1 proteins in FBL KD (shFBL) HCT116 cells. GAPDH was used as the protein-loading control.
- C Subcellular localization of YBX1/FBL was confirmed by immunofluorescence assay after MMC (5 µM, overnight) or cisplatin (25 µM, 2 h) treatment in FBL WT or empty vector cells. Scale bar, 10 µm.
- D Subcellular localization of YBX1 was confirmed by immunofluorescence assay after H₂O₂ (2 mM, 5 min)/etoposide (10 µM, 6 h) treatment. Scale bar, 10 µm.
- E The endogenous association between FBL and YBX1 in HCT116 cells was examined by coimmunoprecipitation assays with 5 μM MMC treatment. Cells were lyzed with NETN300 buffer, and nuclear lysates were examined by IP and western blot with indicated antibodies.

Figure EV5.

Figure EV5. Effects of FBL or YBX1 on other genes expression and the impact of FBL on the cell cycle process.

- A Western blotting analysis of RPA1 and RPA2 proteins in FBL KD (shFBL) HCT116 cells. β-actin was used as the protein-loading control.
- B, C The mRNA levels of c-Myc or MDR1 were validated by RT-qPCR after FBL or YBX1 silencing in HCT116 cells. Ct values were normalized to GAPDH. A mean value \pm SD of three independent experiments is shown. Student's *t*-test. **P < 0.01.
- D The correlation of FBL and BRCA1 gene expressions. Representative images of immunohistochemical analysis of FBL and BRCA1 expressions in 40 human colon tumors. Scale bar, 25 μm.
- E The correlation analysis of FBL and BRCA1 gene expressions obtained from GEPIA database (http://gepia.cancer-pku.cn/). TPM stands for transcripts per million; R stands for correlation coefficient. Each spot indicates FBL and BRCA1 expression in a specific sample.
- F The levels of BRCA1 protein fluctuate during cell cycle progression, with its expression being regulated by FBL. HCT116 cells and shFBL-HCT116 cells were grown asynchronously (right panel) or were synchronized at the G1/S transition by a double thymidine block (DTB) and then released by addition of fresh medium (left panel). At various time points post-release, cell extracts were prepared and analyzed by western blotting using indicated antibodies. Cyclin B serves as a marker of S, G2, and M phases. Similarly, cells induced at specific time points were subjected to flow cytometry analysis. The resulting flow cytometry profiles and the cell cycle distributions are listed below the immunoblots. β-actin was used as the protein-loading control.