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Supplementary Information: Supplementary Discussion and Study Limitations 

Some of the sex dimorphic imprints we identified might be attributable to differences in acute 

disease severity (e.g., males tend to have more severe disease than females1,2). However, it is 

not clear how that might have manifested in our mild, non-hospitalized patients as neither the 

self-reported duration of acute illness nor antibody titers against SARS-CoV-2 were different 

between COVR-M and COVR-F (duration of illness Wilcoxon p=0.37; USA-WA1 IC50 Wilcoxon 

p=0.26), which together suggest that our observations are potentially independent of severity 

or immune response quality during acute disease. 

Innate “priming” effect has been observed in repeated homologous vaccination, such as 

increased innate responses following the second dose of the Pfizer-BioNTech COVID-19 vaccine 

or the AS01-adjuvanted hepatitis B vaccine compared to the first dose3,4. It remains to be seen 

whether similar, non-antigen specific virtual memory CD8 EM T-cells are involved, particularly 

given that these homologous (repeated dosing) vaccine-induced responses did not appear to be 

sex-specific and the second dose was given only 3-4 weeks after the first, compared to the 

months between mild COVID-19 and influenza vaccination in our study.  

Changes in the transcriptional and epigenetic profiles of peripheral monocytes have 

been described in both acute and convalescent COVID-19 patients with moderate-to-severe 

disease, but few included patients months out from infection5–10. These previously described 

changes during acute disease include depressed inflammation/antigen-presentation 

transcriptional phenotypes but are distinct from the monocyte depression signature involving 

TLRs that we detected months post COVID-19. The monocyte imprint we described involved 

transcriptionally depressed innate defense/receptor genes is also consistent with the notion of 

trained innate immunity11. However, our signature likely reflects different biology than the 

“poised” trained monocytes (based on epigenetic and in vitro stimulation studies) found in an 

earlier study of seven COVID-19-recovered patients, probably because those were hospitalized 

patients with severe acute disease (e.g., most had pneumonia) and the time since discharge 

was relatively short (~4-12 weeks)9. Our signature was also distinct from the other depressed 

antigen presentation or myeloid suppressor cell like states found in acute COVID-19. The finding 

that the innate immune receptor imprint we detected in monocytes can be shifted by seasonal 



influenza vaccination towards the baseline of healthy individuals suggests that in addition to 

providing antigen-specific protection, vaccines could help establish stable immune cell statuses 

in an antigen-agnostic manner. However, the functional relevance of this partial reversal 

remains to be determined. 

 

Limitations of this study  

Most study subjects were younger than 65 and thus these findings may not apply to the elderly. 

Some of the imprints considered as stable given lack of association with TSD may still be 

evolving slowly; similarly, it is possible that some of the post-vaccination shift towards the 

healthy, pre-vaccination state by D28 may reflect ongoing disease resolution. However, this is 

unlikely the case for the vaccine-induced elevation in the expression of the shifted genes 

towards the healthy state because those changes were clearly detectable on D1 after 

vaccination and persisted through D28, especially in females, indicating that this shift was 

driven (or at least accelerated) by vaccination and could not be attributed to the “natural” 

resolution process alone.   

While individual exposure history beyond prior COVID-19 can play a role in shaping the 

responses to influenza vaccination at the individual level, our study design comparatively 

assessed imprints at the group level. We enrolled, from the same geographic region, COVID-19-

recovered subjects together with matching HCs who never had COVID-19 at the time of 

influenza vaccination. It is reasonable to assume that the extent of heterogeneity in the 

exposure history within each group is, on average, quite comparable between the COVR and 

matched HC groups. Thus, the group level features shared across individuals (e.g., depressed 

monocyte signatures or the heightened IFN response after influenza vaccination in COVR-M) 

are likely largely independent of differences in personal exposure history.  

Logistical and pandemic-related challenges prevented us from enrolling and 

longitudinally following individuals starting from earlier time-points from acute COVID-19 

through influenza vaccination, but future work could further evaluate the relationship between 

acute immune responses to COVID-19 and the long-term imprints revealed in this study within 

the same individuals. At the time of the study, the COVID-19 vaccine was not yet available and 



circulating viruses were limited due social distancing and face mask adherence in the local 

area13,14; this makes us more confident that the observed immunological changes were due to 

COVID-19 and not attributable to other vaccines or viral infections between acute COVID-19 

and influenza vaccination. While it would be informative to further assess our findings in follow 

up cohorts, given our observation that vaccination could perturb some of the immune imprints 

associated with prior mild COVID-19, identification and recruitment of a sufficient number of 

individuals who have not had a viral infection or COVID-19 vaccines since their COVID-19 

disease would be impractical. Our study is thus unique in allowing us to dissect the immune 

imprints in healthy recoverees following the first wave of COVID-19 without apparent 

interference from perturbations between acute disease and influenza vaccination, including 

COVID-19 and other vaccines. Finally, the functional and clinical implications of the vaccine-

induced partial reversal of the depressed gene signatures in monocytes remain to be 

determined. 

The influenza vaccine was selected for this study due to its public health importance and 

well understood immune response dynamics in blood that permitted sample collection at the 

most informative time points post-vaccination. While previous exposure to influenza 

vaccination and/or natural infection complicates interpretation of antibody responses, we 

accounted for existing influenza antibody titers in the analyses. Administration of a vaccine 

antigen to which study participants were naïve (e.g., rabies vaccine) would have removed 

potential confounding due to prior influenza exposures, but the response dynamics to these 

vaccines are less well characterized and there was no public health indication to administer 

these vaccines. Tissue-level or lymph node responses were not assessed in our study due to 

logistical and clinical challenges, especially during the first wave of the pandemic in 2020 but 

can provide additional important insights. 
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Supplementary Fig. 1 



Supplementary Figure 1. Gating strategy for the Cytek 36-color flow cytometry panel run on 

peripheral blood mononuclear cells. 
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Supplementary Figure 2. Gene expression profile of antigen presentation, NF-

κB/inflammatory, and monocytic myeloid-derived suppressor cell (MDSC) related 

signatures in classical monocytes 

a, Heatmap showing the pseudobulk expression of the leading-edge genes (LEGs) from 

antigen presentation related gene sets, separately for male (M) and female (F), in classical 

monocytes from the CITE-seq day 0 (D0) pseudobulk data. The LEGs are from the acute 

COVID-19 vs. healthy control (HC) GSEA analysis in Liu et al15, which showed that genes in 

the antigen presentation gene sets (KEGG Antigen processing and presentation, Reactome 

Antigen processing-Cross presentation, and Reactome MHC class II antigen presentation) 

tend to be lower in COVID-19. Samples (columns) are grouped by sex and subject group [HC 

at D0 and COVID-19-recovered (COVR) at D0 as indicated by the bars above the heatmap]. 

Gene names are shown on the right. 

b, Similar to (a), but showing the LEGs of the “Hallmark Inflammatory response” gene set.  

c, Similar to (a), but showing the LEGs of the “Hallmark TNFα signaling via NF-κB” gene set 

derived from the acute COVID-19 vs. HC GSEA analysis in Liu et al15. 

d, Similar to (a), but showing the genes of MSDC/MS1 monocyte signature from Reyes et 

al17. e, Box plots showing the module scores of the LEGs of the gene sets in (a-d) 

separately for F (top row) and M (bottom row) for the indicated subject groups (columns), 

in classical monocytes from the CITE-seq D0 pseudobulk data. Each dot represents a 

sample. P values shown are from two-tailed Wilcoxon tests of the indicated two group 

comparisons. 



Supplementary Fig. 3 



Supplementary Figure 3. Gating strategies for the Cytek B-cell-centric flow-cytometry panel: 

showing the gating of influenza-specific plasmablast populations. 
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Supplementary Fig. 4. Multivariate elastic net models identifying baseline cell subsets that 

contribute to predicting day 1 IFNγ responses. 

a, Elastic net model performance, as a function of the alpha parameter (tuning between 

lasso and ridge regression), for predicting the whole blood D1 – D0 Hallmark Interferon 

Gamma (IFNγ) Response module score. The red line represents the negative mean squared 

errors (-MSE; left y-axis) of the predicted values from the true responses across a set of 

alpha parameters on the x-axis. The blue line represents the significance (-log10 p value; 

right y-axis) for each of the corresponding performance scores, derived from comparing to 

null models built from permuted samples (see Methods). 

b, A grid showing the top cell populations from CITE-seq and flow cytometry (rows) whose 

baseline frequencies were selected by the models in (a) to predict the whole blood D1 – D0 

Hallmark Interferon Gamma (IFNγ) Response module score at each of the alpha parameters 

(columns). The cell populations are ordered from top to bottom based on their significance 

at alpha = 0.7, which is the value that achieved the highest model significance in (a).  

c, Similar to (a) but modeling the D1 – D0 serum IFNγ protein level as response. 

d, Similar to (b) showing cell populations selected by the models in (c) to predict the D1 – D0 

serum IFNγ protein level. Cell populations are ordered from top to bottom based on their 

significance at alpha = 0.4. 
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Supplementary Fig. 5. Additional supporting data for IFNγ responses by subsets of CD8+ 

EM T-cells.  

a, Similar to Extended Data Fig. 4a, but for HC males and females. 

b, Similar to Extended Data Fig. 4b, but for HC males and females. 

c, Similar to Extended Data Fig. 4c, but for GPR56- (GPR56 negative) CD8 EM cells. All box 

plot elements are the same as indicated in Fig. 3. Unadjusted p values are shown. 
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Supplementary Fig. 6. Flow cytometry analyses of in vitro cytokine stimulation of baseline 

PBMCs (D0 before influenza vaccination). 

a, Gating strategies with IL-15 stimulation shown as an example. 

b, Similar to Fig. 3i and Extended Data Fig. 4j, but showing the IFNγ+ cells (as fraction of 

CD8+ T-cells) after stimulation by IL-15, IL-12, and IL-18 together (see Methods for details). 

All box plot elements are the same as indicated in Fig. 3. Unadjusted p values are shown. 
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Supplementary Fig. 7. Additional cell subsets that potentially contribute to the increased 

day 1 IFNγ responses in COVID-19-recovered males. 

a, Baseline frequencies (as fraction of total cells) of CD8 TEMRA, MAIT, NK, and CD16lo NK 

cells for HC-F (n=8), COVR-F (n=12), HC-M (n=8), and COVR-M (n=12). Significance of 

differences is determined by two-tailed Wilcoxon test.  

b, Correlation between the baseline frequencies of the four populations in (a) and the D1 vs. 

D0 change of Hallmark IFNG response module scores and IFNγ serum protein levels for all 

subjects in the CITE-seq cohort – sample sizes indicated in (a). Spearman’s rank correlation 

and unadjusted p values are shown.  

c, Similar to Extended Data Fig. 4d but for each of the four cell populations listed in (a). All 

box plot elements are the same as indicated in Fig. 3. 
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