Supporting Information

Effect of an Inhibitor on the ACE2-Receptor Binding Domain of SARS-CoV-2

Gaurav Sharma[†], Lin Frank Song[†], Kenneth M. Merz^{†‡} *

[†]Department of Chemistry, Michigan State University,

East Lansing, Michigan 48824, United States

[‡]Department of Biochemistry and Molecular Biology, Michigan State University,

East Lansing, Michigan 48824, United States

*Corresponding Author: Kenneth M. Merz

*Corresponding Author Email: merz@chemistry.msu.edu

Figure S1: X-ray structure of RBD. The receptor binding membrane (RBM) is in orange and the core is in green color.

Figure S2: Equilibrated structure of ACE2-RBD-Inhibitor (A), ACE2-RBD (B) complex with larger N-Glycans, and structure of N-glycan (C).

Figure S3: (A) Superimposed structure of ACE2-RBD (small N-glycan) in green and ACE2-RBD (large N-glycan) in red; (B) ACE2-RBD-Inhibitor (small N-glycan) in green and ACE2-RBD-Inhibitor (large N-glycan) in red.

Figure S4: Hydrophobicity surface of ACE2 and RBD interface. Red represents hydrophobic, blue as hydrophilic, and white as neutral.

Figure S5: Per-residue root mean square deviation (RMSD) of; (A) A_0 and A'_0 (B) A_C and A'_C ; and (C) RA_0 and RA'_0 complex trajectories (Red = Inhibitor present, Green = Inhibitor absent).

Figure S6: Electrostatic surface potential (ESP) of inhibitor MLN-4760.

Figure S7: (A) ACE2 surface in a closed state; (B) water molecules trapped in the active site cleft of closed state ACE2 enzyme; (C) ribbon diagram for reference; (D) ACE2 surface in open state; (E) water molecules in the active site cleft of the open state ACE2 enzyme; and (F) ribbon diagram for reference.

Figure S8: Superposition of the inhibitor bound (cyan carbons) and unbound (green carbons) structures; (A) A_0 vs A'_0 ; (B) A_C vs A'_{C1} ; (C) A_C vs A'_{C2} ; and (D) RA_0 vs RA'_0 .

Figure S9: In **RA**'₀ complex. H345 forms a hydrogen bond interaction with MLN-4760 while H505 was ~6.1 apart.

Figure S10: Most-representative structures of; (A, C) A_0 and A'_0 (B) A_C ; (D) A'_{C1} ; and (E) A'_{C2} .

Figure S11: (A) Superimposed structure of ACE2-RBD (**RA**₀) and ACE2-RBD-Inhibitor (**RA**'₀); (B) X-Ray and ACE2-RBD (**RA**₀); and (C) X-Ray and ACE2-RBD-Inhibitor (**RA**'₀).

Figure S12: Hydrophobicity surface of ACE2. The hydrophilic residues present on $\alpha 2$ and $\alpha 3$ helixes are facing each other while hydrophobic residues are on the opposite side of the $\alpha 2$ and $\alpha 3$ helixes.

Figure S13: Secondary structure evolution (DSSP analysis) of six complexes throughout MD simulations.