1	The computational study on the function of palmitoylation on the envelope protein in
2 3	SARS-CoV-2
4 5	Shengjie Sun ¹ , Chitra Karki ¹ , Javier Aguilera ² , Alan E Lopez Hernandez ¹ , Jianjun Sun ² , Lin Li ^{1,3,*}
6	
7	
8	
9	
10	Correspondence to: Lin Li (E-mail: <u>lli5@utep.edu)</u>
11 12	¹ Computational Science Program, University of Texas at El Paso, 500 W University Ave, TX, 79968, USA;
13 14	² Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, 500 W University Ave, TX, 79968, USA;
15	³ Department of Physics, University of Texas at El Paso, 500 W University Ave, TX, 79968, USA;
16	*To whom correspondence should be addressed.

- Figure S1: The structure alignment and the sequence alignment of SARS-CoV2 and SARS-CoV. The
- 20 long and short hydrophilic ends are represented in blue and green in an E protein monomer.

Figure S2: The atomic representation of palmitoylation and the transmembrane domain of E-protein.

Figure S3: The diagram of the placement of simulated H⁺ ions for electrostatic force testing.

25

27 Figure S4: The backbone RMSD of E-protein pentamer with and without Palm during 100 ns simulation

30 Figure S5: The backbone RMSD of E-protein pentamer with and without Palm during 100 ns for triple

³¹ simulations

- Figure S6: The structural comparison of E-protein pentamer without (A) and with (B) Palm in triple
- 35 simulations where the RMSD calculation is based on the first simulations (red and blue). The shadows are
- 36 the general comparison on pores
- 37

- 39 Figure S7: The minimal pore radius of the E-protein pentamer in C-terminal (residue 30-39) of TMD
- 40 during the whole simulation (by an average of 3 testings)

The volume of the pore on the C-terminal of TMD

41

42 Figure S8: The volume of the E protein pentamer in the C-terminal part of TMD during the whole

43 simulation

Minimal radius of the pore on the middle part of TMD

44

Figure S9: The minimal pore radius of the E-protein pentamer in the middle part (residue 21-30) of the
TMD during the simulation.

47

Figure S10: The minimal pore radius of the E-protein pentamer in the N-terminal (residue 10-20) duringthe simulation.

52

Figure S11: The RMSF of the residues (residues 17 to 37) in the transmembrane domain of E-proteinpentamer.

57 Figure S12: The distance of the salt bridges of ASP72D-ARG61E and ASP72A-ARG61B in both non-

palmitoylated E protein pentamer and palmitoylated E protein pentamer. (Technically, ASP72A-ARG61B

59 is not a salt bridge).

60

61

without Palm. The stages 1, 2, 3, 4 represent the simulations between 0-25ns, 25-50ns, 50-75ns, 75100ns.

65

Table S1: The rotation of the PCA for non-palmitoylated and palmitoylated E protein pentamer (FigureS13).

	PC1	PC2	PC3	PC1	PC2	PC3
Х	0.192947	0.979483	0.058182	-0.67637	0.159331	-0.71913
Y	0.697639	-0.09525	-0.71009	0.652164	-0.32426	-0.68523
Z	0.68998	-0.1776	0.701702	0.342363	0.932453	-0.11541

68

Principal component analysis of the TMD mass center in E protein pentamer with Palm (Repeated simulation)

- Figure S14: The PCA of the mass center of the transmembrane domain of E-protein pentamer with and
- without Palm in the repeated simulations. The stages 1, 2, 3, 4 represent the simulations between 0-25ns, 25, 50, -50, 75, -75, 100
- 73 25-50ns, 50-75ns, 75-100ns.