Science Advances

Supplementary Materials for

Shigella induces epigenetic reprogramming of zebrafish neutrophils

Margarida C. Gomes et al.

Corresponding author: Margarida C. Gomes, margarida.castro-gomes@lshtm.ac.uk; Serge Mostowy, serge.mostowy@lshtm.ac.uk

Sci. Adv. **9**, eadf9706 (2023) DOI: 10.1126/sciadv.adf9706

The PDF file includes:

Table S1 Figs. S1 to S6 Legends for data files S1 to S3

Other Supplementary Material for this manuscript includes the following:

Data files S1 to S3

SUPPLEMENTAL TABLES

Table S1. Bacterial strains, qPCR primers and primers for ospF mutation in S. flexneri used in this study

Bacterial strains								
Species		Genotype Re		porter	Resistance	Reference		
Shigella flexneri M90T		WT	VT GF		Carbenicillin	(96)		
Shigella flexneri M90T		WT	mCherry		Carbenicillin	(45)		
Shigella flexneri M90T		WT	Ruby		Carbenicillin	(97)		
Shigella flexneri M90T		∆mxiD	GFP		Carbenicillin	This study		
Shigella flexneri M90T		∆rfaC	GFP		Carbenicillin	(56)		
Shigella flexneri M90T		∆mxiE	Ruby		Carbenicillin	(97)		
Shigella flexneri M90T		∆ospF			Kanamycin	This study		
Pseudomonas aeruginosa PA14		WT	GFP (chromosomal)		Gentamycin	(98)		
Staphylococcus aureus RN6390		WТ	GFP (chromosomal)			(99)		
Mycobacterium bovis BCG (Russia)		wт	GFP Ka		Kanamycin	(100)		
qPCR primers								
Name GeneID			Sequence (5'-3')		Reference			
eef1a1aFW	ef1a1aFW ENSDARG00000039502			AAGCTTGAAGACAACCCCA AGAGC		(101)		
eef1a1aRV	ENSDARG00000039502)2	ACTCCTTTAATCACTCCCAC CGCA		(101)		
cxcl8aFW ENSDARG00000104795		95	TGTGTTATTGTTTTCCTGGC ATTTC		(102)			
cxcl8aRV	ENSDARG00000104795			GCGACAGCGTGGATCTACA G		(102)		
cxcl18bFW	ENSDARG00000075045			TCTTCTGCTGCTGCTTGCG GT		(103)		
cxcl18bRV ENSDARG00000075045			GGTGTCCCTGCGAGCACGA T		(103)			
<i>il1b</i> FW	W ENSDARG0000098700			GAACAGAATGAAGCACATC AAACC		(103)		
il1bRV	illbRV ENSDARG00000098700			ACGGCACTGAATCCACCAC		(103)		
<i>il6</i> FW	ENSDARG00000102318			TCAACTTCTCCAGCGTGATG		(104)		
<i>il6</i> RV	6RV ENSDARG00000102318			TCTTTCCCTCTTTTCCTCCT G		(104)		
<i>il10</i> FW	ENSDARG00000078147			CATAACATAAACAGTCCCTA TG		(105)		
<i>il10</i> RV	110RV ENSDARG00000078147		7	GTACCTCTTG CATTTCACCA		(105)		
tnfaFW	ENSDARG0000009511			AGACCTTAGACTGGAGAGA TGAC		(102)		
tnfaRV	ENSDARG0000009511			CAAAGACACCTGGCTGTAG AC		(102)		

gscfaFW	ENSDARG00000102211	GCTTTTTGATTGGTGTTGCT ATAATG	(29)				
gcsfaRV	ENSDARG00000102211	CAACGATCCCCACTAATGT GAA	(29)				
mmp9FW	ENSDARG00000042816	CATTAAAGATGCCCTGATGT ATCCC	(102)				
mmp9RV	ENSDARG00000042816	AGTGGTGGTCCGTGGTTGA G	(102)				
Primers for <i>ospF</i> mutation in <i>S. flexneri</i>							
Name	Sequence (5'-3')		Notes				
Name OspFMutFw	Sequence (5'-3') GAAGCAGCTCCAGCCT GGCATAGAAAACGTCC	ACACAACAGGGCTTTTTTATG TCTATAAAATAGATATA	Notes Deletion <i>ospF</i>				
Name OspFMutFw OspFMutRv	Sequence (5'-3') GAAGCAGCTCCAGCCT GGCATAGAAAACGTCC CTAAGGAGAGATATTCAT GTAGAGAAGATGCCAG	ACACAACAGGGCTTTTTTATG TCTATAAAATAGATATA TATGTATCGTTTGATGATAGA CTACACCACCTTGTAGC	NotesDeletion ospFDeletion ospF				
Name OspFMutFw OspFMutRv OspF_Conf5	Sequence (5'-3') GAAGCAGCTCCAGCCT GGCATAGAAAACGTCC CTAAGGAGGATATTCAT GTAGAGAAGATGCCAG AAAAGATGAAGGCCTG	ACACAACAGGGCTTTTTTATG TCTATAAAATAGATATA FATGTATCGTTTGATGATAGA CTACACCACCTTGTAGC ATGGGAGCATTAAC	Notes Deletion ospF Deletion ospF Confirmation of ospF deletion				

SUPPLEMENTAL FIGURES

Figure S1, related to Figure 1 – Expression of *il6* and *tnfa* during training and reinfection.

(A) Fold change in the expression of *il6* and *tnfa* in larvae injected with non-lethal dose of *S*. *flexneri* M90T (green full bars, $1.3 \times 10^3 \pm 5.5 \times 10^2$ CFUs) as compared to PBS control (naïve-black full bars). Data pooled from 3 experiments with n>5 larvae per time point per condition per experiment (mean ± SD, *p < 0.05, 2-way ANOVA with Sidak's multiple comparisons test).

(B) Log₁₀-transformed CFU counts *Shigella*-trained larvae injected with a non-lethal dose of *S. flexneri* M90T ($1.3x10^3 \pm 5.5x10^2$ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean ± SD, ***p < 0.001, ****p < 0.0001, 1-way ANOVA with Dunnett's multiple comparisons test).

(C) Fold change in the expression of *il6* and *tnfa* following lethal dose injection of *S. flexneri* M90T in naïve (black full bars, $2.5 \times 10^4 \pm 1 \times 10^4$ CFUs) and *Shigella*-trained (green full bars, $2.7 \times 10^4 \pm 4.5 \times 10^3$ CFUs) as compared to PBS injected controls (grey bars). Data pooled from 3 experiments with n>5 larvae per time point per condition per experiment (mean \pm SD, **p < 0.01, 2-way ANOVA with Sidak's multiple comparisons test).

Figure S2, related to Figure 2 – Bacterial burden during reinfection with *P. aeruginosa* and *S. aureus*, and after 5 dp1i.

(A) Log₁₀-transformed CFU counts of naïve and *Shigella*-trained (in green section: $2.2x10^3 \pm 3.8x10^2$ CFUs) larvae injected with a lethal dose of *P. aeruginosa* (in orange section: PBS – $2.6x10^3 \pm 7.4x10^2$ CFUs, *Shigella* – $2.3x10^3 \pm 5.5x10^2$ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean ± SD, ****p < 0.0001, 1-way ANOVA with Tukey's multiple comparisons test).

(B) Log₁₀-transformed CFU counts of naïve and *Shigella*-trained (in green section: $1.4 \times 10^3 \pm 8.6 \times 10^2$ CFUs) larvae injected with a non-lethal dose of *S. aureus* (PBS – $3.4 \times 10^4 \pm 1.1 \times 10^4$ CFUs, *Shigella* – $3.4 \times 10^4 \pm 6 \times 10^3$ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean ± SD, 1-way ANOVA with Tukey's multiple comparisons test).

(C) Log₁₀-transformed CFU counts of naïve and *Shigella*-trained (in green section: $1.7 \times 10^3 \pm 5.7 \times 10^2$ CFUs) larvae injected with a lethal dose of *S. flexneri* M90T (in red section: PBS - $2.7 \times 10^4 \pm 4.5 \times 10^3$ CFUs, *Shigella* - $2.5 \times 10^4 \pm 1 \times 10^4$ CFUs). Data pooled from 3 independent experiments using n>2 larvae per condition per experiment (mean ± SD, 1-way ANOVA with Tukey's multiple comparisons test).

Figure S3, related to Figure 3 – Leukocyte recruitment to BCG infected HBV, testing different β -glucan concentrations, and granulopoiesis in β -glucan training.

(A) Quantification of recruited neutrophils (Tg(lyz::dsRed)) to the HBV in naïve (black full circles) and BCG-trained (purple full circles, $4x10^2 \pm 1.5x10^2$ CFUs) larvae. Data pooled from 3 experiments with n>4 larvae per time point per condition per experiment (mean ± SD, 2-way ANOVA with Sidak's multiple comparisons test).

(B) Quantification of recruited macrophages (Tg(*mpeg*::mCherry)) to the HBV in naïve (black full circles) and BCG-trained (purple full circles, $4x10^2 \pm 1.5x10^2$ CFUs) larvae. Data pooled from 3 experiments with n>4 larvae per time point per condition per experiment (mean \pm SD, 2-way ANOVA with Sidak's multiple comparisons test).

(C) Survival curves from naïve (black full circles) and β -glucan-trained (light blue full circles: 5 ng, dark blue full circles: 10 ng) larvae infected with a lethal dose of *S. flexneri* M90T. Data pooled from 3 independent experiments using n>18 larvae per condition per experiment (**p < 0.01, Log-rank (Mantel-Cox) test).

(D) Log₁₀-transformed CFU counts of naïve and β -glucan-trained larvae injected with a lethal dose of *S. flexneri* M90T (PBS – 2.5x10⁴ ± 7.3x10³ CFUs, β -glucan 5 ng – 2.7x10⁴ ± 3.2x10³ CFUs, β -glucan 10 ng– 2.7x10⁴ ± 5.1x10³ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean ± SD, 2-way ANOVA with Sidak's multiple comparisons test).

(E) Quantification of neutrophils (Tg(*lyz*::dsRed)) at 0, 24 and 48 hp1i injected with PBS (naïve- black full circles) and a non-lethal dose of β -glucan (light blue full circles: 5 ng, dark blue full circles: 10 ng). Data pooled from 3 experiments with n>8 larvae per time point per condition per experiment (mean ± SD, *p < 0.05, 2-way ANOVA with Sidak's multiple comparisons test).

(F) Fold change in the expression of *gcsfa* following non-lethal dose injection of β -glucan (blue bars, 20 ng) as compared to PBS injected controls (black bars). Data pooled from 3

experiments with n=10 larvae per time point per condition per experiment (mean \pm SD, **p < 0.01, unpaired Student's *t*-test).

(G) Quantification of neutrophils (Tg(*lyz*::dsRed)) in the AGM at 48 hp1i injected with PBS (naïve- black full circles) and a non-lethal dose of β -glucan (blue full circles, 20 ng). Data pooled from 3 experiments with n>8 larvae per time point per condition per experiment (mean ± SD, unpaired Student's *t*-test).

Figure S4, related to Figure 4 – Bacterial burden during reinfection upon stimulation of inflammatory pathways and virulence assays with *Shigella* mutants.

(A) Log_{10} -transformed CFU counts from E2 (embryo media control, black full circles) and nigericin (blue full circles, 0.1 µM) treated larvae infected with a lethal dose of *S. flexneri* M90T (PBS – 2.7x10⁴ ± 8.5x10³ CFUs, nigericin – 2.6x10⁴ ± 4.1x10³ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean ± SD, 2-way ANOVA with Sidak's multiple comparisons test).

(B) Log₁₀-transformed CFU counts from E2 (embryo media control, black full circles) and glucose (blue full circles, 1%) treated larvae infected with a lethal dose of *S. flexneri* M90T (PBS $- 2.7 \times 10^4 \pm 8.5 \times 10^3$ CFUs, glucose $- 2.7 \times 10^4 \pm 1 \times 10^4$ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean \pm SD, 2-way ANOVA with Sidak's multiple comparisons test).

(C) Log₁₀-transformed CFU counts from naïve (black full circles), live *Shigella*-trained (green full circles, $1.3x10^3 \pm 6.6x10^2$ CFUs), heat-killed (HK) *Shigella*-trained (dark green/white squares) and PFA-killed *Shigella*-trained (dark green/white triangles) larvae infected with a lethal dose of *S. flexneri* M90T (PBS – $2.7x10^4 \pm 6.1x10^3$ CFUs, *Shigella* – $2.7x10^4 \pm 1x10^4$ CFUs, *Shigella* HK – $3.2x10^4 \pm 3.3x10^4$ CFUs, *Shigella* PFA – $3.2x10^4 \pm 1.7x10^4$ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean \pm SD, **p < 0.01, ****p < 0.0001, 2-way ANOVA with Sidak's multiple comparisons test).

(D) Log₁₀-transformed CFU counts from naïve (black full circles), *Shigella*-trained (green full circles, $1.6 \times 10^3 \pm 6.5 \times 10^2$ CFUs) and LPS-primed (moss green full circles, 0.125 ng) larvae infected with a lethal dose of *S. flexneri* M90T (PBS – $1.9 \times 10^4 \pm 6.3 \times 10^3$ CFUs, *Shigella* – $2.8 \times 10^4 \pm 4.7 \times 10^3$ CFUs, LPS – $1.9 \times 10^4 \pm 9.1 \times 10^3$ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean ± SD, 2-way ANOVA with Sidak's multiple comparisons test).

(E) Survival curves from naïve (black full circles), *Shigella*-trained (green full circles, $1.7 \times 10^3 \pm 5.5 \times 10^2$ CFUs) and LPS-primed (moss green full circles, 0.5 ng) larvae infected with a lethal dose of *S. flexneri* M90T (PBS – $2 \times 10^4 \pm 4.6 \times 10^3$ CFUs, *Shigella* – $2.7 \times 10^4 \pm 8.2 \times 10^3$ CFUs, LPS – $2.3 \times 10^4 \pm 1.2 \times 10^4$ CFUs). Data pooled from 3 independent experiments using n>8 larvae per condition per experiment. (****p < 0.0001, Log-rank (Mantel-Cox) test).

(F) Log₁₀-transformed CFU counts from naïve (black full circles), *Shigella*-trained (green full circles, $1.7 \times 10^3 \pm 5.5 \times 10^2$ CFUs) and LPS-primed (moss green full circles, 0.5 ng) larvae infected with a lethal dose of *S. flexneri* M90T (PBS – $2 \times 10^4 \pm 4.6 \times 10^3$ CFUs, *Shigella* – $2.7 \times 10^4 \pm 8.2 \times 10^3$ CFUs, LPS – $2.3 \times 10^4 \pm 1.2 \times 10^4$ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean ± SD, **p < 0.01, 2-way ANOVA with Sidak's multiple comparisons test).

(G) Log₁₀-transformed CFU counts from naïve (black full circles), *Shigella*-trained (green full circles, $1.6x10^3 \pm 6.5x10^2$ CFUs) and Shigella $\Delta rfaC$ -trained (moss green full circles, $8.5x10^2 \pm 7.5x10^2$ CFUs) larvae infected with a lethal dose of *S. flexneri* M90T (PBS – $1.9x10^4 \pm 6.3x10^3$ CFUs, *Shigella* – $2.8x10^4 \pm 4.7x10^3$ CFUs, $\Delta rfaC - 2.4x10^4 \pm 8.4x10^3$ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean \pm SD, **p < 0.01, 2-way ANOVA with Sidak's multiple comparisons test).

(H) Survival curves from virulence assay of 3 dpf larvae infected with *Shigella* (green full circles, $9.6 \times 10^3 \pm 2.5 \times 10^3$ CFUs) and *Shigella* $\Delta rfaC$ (moss green full circles, $9.1 \times 10^3 \pm 3.2 \times 10^2$ CFUs). Data pooled from 3 independent experiments using n>8 larvae per condition per experiment. (****p < 0.0001, Log-rank (Mantel-Cox) test).

(I) Log₁₀-transformed CFU counts from virulence assay of 3 dpf larvae infected with *Shigella* (green full circles, $9.6 \times 10^3 \pm 2.5 \times 10^3$ CFUs) and *Shigella* $\Delta rfaC$ (moss green full circles,

 $9.1 \times 10^3 \pm 3.2 \times 10^2$ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean ± SD, 1-way ANOVA with Tukey's multiple comparisons test).

(J) Fold change in the expression of *il1b, cxcl18b* and *mmp9* following injection of PBS (black full bars), *Shigella* (green full bars, $9.6 \times 10^3 \pm 2.5 \times 10^3$ CFUs) and *Shigella* $\Delta rfaC$ (moss green full bars, $9.1 \times 10^3 \pm 3.2 \times 10^2$ CFUs). Data pooled from 3 experiments with n>5 larvae per time point per condition per experiment (mean ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001, 2-way ANOVA with Sidak's multiple comparisons test).

(K) Log₁₀-transformed CFU counts from naïve (black full circles), *Shigella*-trained (green full circles, $7.9x10^2 \pm 5.5x10^2$ CFUs) and Shigella $\Delta mxiE$ -trained (moss green full circles, $8.8x10^2 \pm 5.8x10^2$ CFUs) larvae infected with a lethal dose of *S. flexneri* M90T (PBS – $1.9x10^4 \pm 7.5x10^3$ CFUs, *Shigella* – $2.5x10^4 \pm 4.6x10^3$ CFUs, $\Delta mxiE$ – $2.2x10^4 \pm 7.6x10^3$ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean \pm SD, 2-way ANOVA with Sidak's multiple comparisons test).

(L) Survival curves from naïve (black full circles), *Shigella*-trained (green full circles, $3.4\times10^3 \pm 2.2\times10^3$ CFUs) and *Shigella* $\triangle ospF$ -trained (moss green full circles, $2.9\times10^3 \pm 1.1\times10^3$ CFUs) larvae infected with a lethal dose of *S. flexneri* M90T (PBS – $2.4\times10^4 \pm 8.5\times10^3$ CFUs, *Shigella* – $2.7\times10^4 \pm 1.5\times10^3$ CFUs, $\triangle ospF - 2.8\times10^4 \pm 8.9\times10^3$ CFUs). Data pooled from 3 independent experiments using n>10 larvae per condition per experiment. (****p < 0.0001, Log-rank (Mantel-Cox) test).

(M) Log₁₀-transformed CFU counts from naïve (black full circles), *Shigella*-trained (green full circles, $3.4 \times 10^3 \pm 2.2 \times 10^3$ CFUs) and *Shigella* $\Delta ospF$ -trained (moss green full circles, $2.9 \times 10^3 \pm 1.1 \times 10^3$ CFUs) larvae infected with a lethal dose of *S. flexneri* M90T (PBS – $2.4 \times 10^4 \pm 8.5 \times 10^3$ CFUs, *Shigella* – $2.7 \times 10^4 \pm 1.5 \times 10^3$ CFUs, $\Delta ospF$ – $2.8 \times 10^4 \pm 8.9 \times 10^3$ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean \pm SD, *p < 0.05, 2-way ANOVA with Sidak's multiple comparisons test).

(N) Survival curves from virulence assay of 3 dpf larvae infected with *Shigella* (green full circles, $2.3 \times 10^4 \pm 9.6 \times 10^3$ CFUs) and *Shigella* $\Delta mxiE$ (moss green full circles, $2.2 \times 10^4 \pm 9.8 \times 10^3$ CFUs). Data pooled from 3 independent experiments using n=20 larvae per condition per experiment. (*p < 0.05, Log-rank (Mantel-Cox) test).

(O) Log₁₀-transformed CFU counts from virulence assay of 3 dpf larvae infected with *Shigella* (green full circles, $2.3 \times 10^4 \pm 9.6 \times 10^3$ CFUs) and *Shigella* $\Delta mxiE$ (moss green full circles, $2.2 \times 10^4 \pm 9.8 \times 10^3$ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean ± SD, 1-way ANOVA with Tukey's multiple comparisons test).

(P) Survival curves from virulence assay of 3 dpf larvae infected with *Shigella* (green full circles, $2.3 \times 10^4 \pm 1.1 \times 10^3$ CFUs) and *Shigella* $\triangle ospF$ (moss green full circles, $2.1 \times 10^4 \pm 1.3 \times 10^4$ CFUs). Data pooled from 2 independent experiments using n>15 larvae per condition per experiment. (*p < 0.05, Log-rank (Mantel-Cox) test).

(Q) Log₁₀-transformed CFU counts from virulence assay of 3 dpf larvae infected with *Shigella* (green full circles, $2.3 \times 10^4 \pm 1.1 \times 10^3$ CFUs) and *Shigella* $\Delta ospF$ (moss green full circles, $2.1 \times 10^4 \pm 1.3 \times 10^4$ CFUs). Data pooled from 2 independent experiments using n=3 larvae per condition per experiment (mean ± SD, 1-way ANOVA with Tukey's multiple comparisons test).

Figure S5, related to Figure 5 – ChIP-seq analysis of PBS, Shigella- and Shigella Δ T3SS-trained neutrophils.

(A) Gating strategy for FACS sorting neutrophils from Tg(*lyz*::dsRed) larvae. Post cell identification, duplet exclusion and determination of live and dead cells (LIVE/DEAD[™] Fixable Near IR Stain), neutrophils were identified by dsRed expression, followed by single cell sorting.

(B) Venn diagram showing number of genes marked by H3K4me3 peaks in their promoter regions (±3kb from TSS) of PBS treated larvae.

(C) Enriched KEGG-pathways (p-value < 0.01) associated with the 1049 genes marked by a H3K4me3 peak in their promoter regions (±3kb from TSS) in PBS treated larvae.

(D) Venn diagram showing number of common and unique genes marked by H3K4me3 peaks in their promoter regions (±3kb from TSS) of PBS, *Shigella* WT and *Shigella* Δ T3SS trained larvae.

(E) Enriched KEGG-pathways (*p*-value < 0.01) associated with the 854 genes marked by a H3K4me3 peak in their promoter regions (±3kb from TSS) common to *Shigella* WT and *Shigella* Δ T3SS trained larvae.

Figure S6, related to Figure 6 – Quantifying ROS in trained neutrophils.

(A) Gating strategy for flow cytometry of neutrophils from Tg(*mpx*::GFP) larvae. Neutrophils were identified by *mpx-gfp* expression. Neutrophils were analysed for their mitochondrial ROS production by fluorescence intensity detection of MitoTracker Red CM-H2Xros.

(B) Normalised fluorescence of MitoTracker Red CM-H₂XRos dye neutrophils treated with CsA from naïve (black outlines) and *Shigella*-trained (green outlines, $1.2 \times 10^3 \pm 5.3 \times 10^2$ CFUs) larvae (Tg(*mpx*::GFP)) unstimulated (grey fills) or infected with a lethal dose of *S. flexneri* M90T (PBS – black fill, $2.6 \times 10^4 \pm 9.3 \times 10^3$ CFUs, *Shigella* – green fill, $3 \times 10^4 \pm 6.6 \times 10^3$ CFUs)

at 6 hp2i. Data pooled from 3 experiments with n>10 larvae per condition per experiment (mean \pm SD, ****p < 0.0001, 1-way ANOVA with Tukey's multiple comparisons test). a.u.: arbitrary units.

(C) Log₁₀-transformed CFU counts of naïve and *Shigella*-trained $(1.2x10^3 \pm 5.3x10^2 \text{ CFUs})$ larvae injected with a lethal dose of *S. flexneri* M90T (PBS – black fill, $2.6x10^4 \pm 9.3x10^3 \text{ CFUs}$, *Shigella* – green fill, $3x10^4 \pm 6.6x10^3 \text{ CFUs}$) and treated with CsA. Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean ± SD, 2-way ANOVA with Sidak's multiple comparisons test).

(D) Log₁₀-transformed CFU counts of naïve and *Shigella*-trained $(1.8 \times 10^3 \pm 1 \times 10^3 \text{ CFUs})$ larvae injected with a lethal dose of *S. flexneri* M90T (PBS – black fill, $2.1 \times 10^4 \pm 1.1 \times 10^4$ CFUs, *Shigella* – green fill, $1.9 \times 10^4 \pm 8.3 \times 10^3$ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean ± SD, 1-way ANOVA with Tukey's multiple comparisons test).

(E) Gating strategy for flow cytometry of neutrophils from Tg(mpx::GFP) larvae. Neutrophils were identified by mpx-gfp expression, followed by duplet exclusion and determination of live and dead cells (LIVE/DEADTM Fixable Violet Stain). Live neutrophils were analysed for their total ROS production by fluorescence intensity detection of CellROX Deep Red.

(F) Normalised fluorescence of CellROX Deep Red dye neutrophils treated with DPI from naïve (black outlines) and *Shigella*-trained (green outlines, $1.4 \times 10^3 \pm 6.7 \times 10^2$ CFUs) larvae (Tg(*mpx*::GFP)) unstimulated (grey fills) or infected with a lethal dose of *S. flexneri* M90T (PBS – black fill, $2.6 \times 10^4 \pm 1 \times 10^4$ CFUs, *Shigella* – green fill, $2.6 \times 10^4 \pm 1 \times 10^4$ CFUs) at 6 hp2i. Data pooled from 3 experiments with n>10 larvae per condition per experiment (mean ± SD, ****p < 0.0001, 1-way ANOVA with Tukey's multiple comparisons test). a.u.: arbitrary units.

(G) Log₁₀-transformed CFU counts of naïve and *Shigella*-trained $(1.4x10^3 \pm 6.7x10^2 \text{ CFUs})$ larvae injected with a lethal dose of *S. flexneri* M90T (PBS – black fill, $2.6x10^4 \pm 1x10^4$ CFUs, Shigella – green fill, $2.6x10^4 \pm 1x10^4$ CFUs) and treated with DPI. Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean ± SD, 1-way ANOVA with Tukey's multiple comparisons test).

(H) Log₁₀-transformed CFU counts of naïve and β -glucan-trained larvae injected with a lethal dose of *S. flexneri* M90T (PBS – 2x10⁴ ± 1.3x10⁴ CFUs, β -glucan – 2.7x10⁴ ± 9.8x10³ CFUs). Data pooled from 3 independent experiments using n=3 larvae per condition per experiment (mean ± SD, 1-way ANOVA with Tukey's multiple comparisons test).

(I) Normalised fluorescence of GFP driven from *mpx* expression in neutrophils from naïve and *Shigella*-trained larvae (Tg(*mpx*::GFP)) infected with a lethal dose of *S. flexneri* M90T at 6 hp2i. Data pooled from 5 experiments with n>10 larvae per condition per experiment (mean \pm SD, ****p < 0.0001, 1-way ANOVA with Tukey's multiple comparisons test). a.u.: arbitrary units.

Data file S1, related to Figure 5 – Gene annotation from ChIP-seq analysis of PBS treated larvae.

Data file S2, related to Figure 5 – Gene annotation from ChIP-seq analysis of Shigella Δ T3SS-trained neutrophils.

Data file S3, related to Figure 5 – Gene annotation from ChIP-seq analysis of *Shigella*-trained neutrophils.