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1. New data generation and quality assessment 

 
Six mountain gorilla samples from the Bwindi national park were obtained from 
deceased individuals as part of the Mountain Gorilla Veterinary Project. Katungi and 
Kahungye died as infants. Semehe, Nyamunwa, Nkuhene and Bwiruka died as 
adults. A male Mount Tshiaberimu individual, Mukokya, was sampled under 
anaesthetic, an intervention as part of a study on the long-term survivability of the 
small group of Mount Tshiaberimu gorillas (numbering six at the time of sampling). 
All these samples were imported into the UK in compliance with the legislation for 
endangered species (CITES).  
 
DNA was extracted from these samples and sequenced on Illumina Hiseq X to 90Gb 
per sample using non-PCR libraries. After mapping, we performed quality controls 
and dropped the sample Nkuhene due to very low quality, with 80% of read 
duplicates and 2X average coverage. The rest of the samples performed similarly to 
previous mountain gorilla and eastern lowland gorilla samples included in this study.  
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2. Exploratory phylogenomic analyses 

 
Numerous possible ghost introgression scenarios exist in the context of a two clade 
topology, such as that of the gorillas. To explore the demographic history of gorillas 
we performed initial exploratory phylogenomic analyses, f-statistics and the 
admixturegraphs method as implemented in admixtools271. Briefly, we converted the 
genotypes of the autosomes after quality filtering (Methods) to the eigenstrat format, 
adding one Pongo pygmaeus individual (SRS396836) as an outgroup7, and retaining 
only positions where more than 25 individuals had high-quality genotypes. We then 
calculated pairwise f2-statistics (blgsize=500000) for the four gorilla subspecies and 
the orangutan individual. Then, we used the find_graphs function to determine the 
best fitting graphs with an increasing number of admixture edges from 0 to 5 
(Supplementary Fig. 1), defining the orangutan individual as outgroup. The best 
graph without admixture correctly separates the two gorilla species. The best graph 
with one admixture edge likely represents substructure in western lowland gorillas, 
although with an admixture proportion of 0%. Still, this graph fits significantly better 
(bootstrap p-value 0.0002) than the graph without admixture edges. Further edges 
increase complexity first in western, then also eastern gorillas, but do not significantly 
differ from less complex graphs (bootstrap p-value >0.05). We caution that with 
increasing complexity and in the absence of a hypothesis, the reliability of this 
method is limited, as discussed extensively by the authors of the method71. 
Furthermore, with the large space of possible graphs when involving many recent 
and ancestral populations, different graphs are inferred when repeating the 
inference72. We also explicitly tested a graph with ghost admixture into the ancestor 
of eastern gorillas (Supplementary Fig. 2). This graph provides a better fit than one 
without admixture edges (p=0.002), but worse than the best graph with one edge 
(p=0.002). 
A more general constraint is that if there had been ghost admixture into any of the 
four terminal populations (mountain gorillas, eastern lowland gorillas, western 
lowlands gorillas, Cross River gorillas), these statistics could be informative, as 
asymmetries between the clades would be introduced. Still, these could be 
confounded by gene flow between the terminal clades. When explicitly testing such 
asymmetries D(EG, EG; WG, Orang) or D(WG,WG;EG,Orang), we find no such 
signature for the eastern gorilla populations, and a weak signature (z score <4) of 
allele sharing between either Cross River gorillas and eastern gorillas or western 
lowland gorillas and the outgroup, as shown below (Supplementary Table A). 
 

pop1 pop2 pop3 pop4 f4 score Z 
MG ELG WLG Orang 0.000002 0.07 
MG ELG CRG Orang -0.00004 -1.5 
WLG CRG MG Orang -0.00008 -2.33 
WLG CRG ELG Orang -0.0001 -3.67 

  
Supplementary Table A: f4-statistics of the population configuration 
f4(pop1,pop2;pop3,pop4), with corresponding z-scores. 
 
As such, we focus on exploring possible ghost introgression events into the common 
ancestor of either eastern or western gorillas. These represent biologically plausible 
scenarios, which f4-statistics and the admixture graphs method are not able to 
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detect. Instead, we can apply statistical methods developed to detect introgressed 
fragments in individual genomes from an unsampled or ‘ghost’ population (S* and 
hmmix), see Methods. We note that these methods require an ingroup population, 
which experienced introgression and an outgroup population, which did not. Hence a 
scenario of ghost introgression into the common ancestor of all extant gorillas would 
be undetectable under current approaches. 
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Supplementary Figure 1: Best fitting admixture graphs for up to five admixture 
edges for the four gorilla subspecies. 
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Supplementary Figure 2: Admixture graph with a ghost population contributing to 
the ancestor of eastern gorillas. 
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3. ABC modelling 

The workflow of the main analyses regarding demographic modelling and putative 
introgressed fragments is shown in Extended Data Fig 1. 
 
 
 

3.1 Initial demographic modelling based on the literature 

Exploring the question of archaic introgression with the S* statistic19,20 requires a 
window-based demographic model, to test for outliers of the statistic. However, no 
previous demographic model had yet included all four known subspecies of gorilla. 
Moreover, due to the use of disparate data and methodologies previous demographic 
analyses of gorillas had resulted in widely divergent estimates for key parameters, 
including the estimated divergence time of the eastern and western gorilla 
species9,13,14,28. 
 
In an initial approach, we merged the parameters from the two most recent studies 
estimating gorilla demographic parameters, namely McManus et al.13 and Xue et al.8, 
see Supplementary Table 6. McManus et al.13 applied a G-PhoCS approach to 
estimate current and ancestral population sizes, divergence times and gene flow 
between 9 western lowlands, 2 eastern lowlands and 1 Cross River gorilla in the 
model. We used parameters estimated by McManus et al.13 under a human-gorilla 
divergence time of 12 mya, since this was the closest to the 13 mya human-gorilla 
divergence time more recently inferred by Besenbacher et al.36. Xue et al.8 newly 
sequenced mountain gorillas from the Virunga subpopulation and inferred effective 
population sizes and divergence times from PSMC analysis.  
 
We simulated this merged model in msprime57 then in ms55 in order to sample the 
mutation and recombination rates from a normal distribution and a negative binomial 
distribution respectively. We note that for the gorilla species split time we simulated 
using a ‘low divergence’ value of 261,000 years ago from McManus et al.13, and a 
‘high divergence’ value of 429,000 years ago estimated by Scally et al.28 which is 
consistent with Mailund et al.14. The resulting distributions of segregating sites under 
both simulated models deviated substantially from those obtained using the empirical 
data (Supplementary Fig. 3). Under both models, we observe a similar, but larger 
number of segregating sites compared to the empirical data. As such we embarked 
on inferring a novel population-level demographic model for the extant gorillas using 
an ABC approach, as detailed in Methods. We note that both the McManus et al.13 
and Scally et al.28 values for the gorilla species split time are substantially lower than 
that inferred in our ABC parameter inference at a weighted median posterior value of 
965,481 years ago. Our estimate of a gorilla species divergence time is within the 
range of previous estimates, but at the upper end, for example Thalmann et al. 
similarly inferred a range of 0.9-1.6 mya9. Conceptually, a large divergence time is 
conservative for applying the S* statistic, as the expected values increase with 
divergence time22. As such, we are conservative in our detection of putative 
introgressed fragments. 
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Supplementary Figure 3: Segregating site distributions in the empirical data, low 
divergence simulations and high divergence simulations under an initial merged 
model for A mountain gorillas and for B eastern lowland gorillas.  
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3.2 Summary statistic decorrelation 

 
We assessed possible correlations between the summary statistics used in the ABC 
analysis. This could arise, as many of the summary statistics incorporated are related 
to the SFS. As such, we see substantial correlations between the highly related 
measures of fixed sites per individual, population-wise fixed sites and population-
wise segregating sites (Supplementary Fig 4A). Correlated summary statistics in the 
ABC analysis could have two outcomes, it could introduce bias in the posteriors, or 
alternately, the redundancy simply captures the same information at the expense of 
adding additional statistics. In principle the neural network method we use to perform 
the ABC should be robust to any such correlations. Nonetheless we explored the 
impact of decorrelating the summary statistics on the posteriors obtained. 
 
First, we simplified the correlated summary statistics using an ad hoc approach. We 
summed the correlated statistics (mean and standard deviations of fixed sites per 
individual, population-wise fixed sites and population-wise segregating sites), and 
used this one value as an input statistic, alongside the non-correlated statistics. 
Using this set of ‘ad hoc’ decorrelated summary statistics we performed the ABC 
analysis of parameter inference for the null model. The resulting posteriors did not 
differ greatly from those arising when using the correlated summary statistics as 
input. 
 
Next we performed a formal decorrelation of the summary statistics. Wegmann et 
al.73 recommend a partial least-squares (PLS) approach to obtain uncorrelated 
summary statistics. PLS aims to maximise the covariance between summary 
statistics and parameters in an approach which is conceptually similar to principal 
components analysis. Following 73 we applied a Box-Cox transformation on each 
summary statistic separately, to transform the data to be normally distributed. To 
perform the Box-Cox transformation and PLS analysis we followed the procedure 
detailed in the findPLS.R script provided by the ABCtoolbox package74. We 
performed a first pass of the PLS analysis defining 36 components, equal to the 
number of retained summary statistics after applying the Box-Cox transformation. 
The resulting root mean square error of prediction (RMSEP) plots indicated that the 
optimum number of PLS components was 10, which explained 95.6% of the variance 
(Supplementary Fig. 4B). As a confirmatory step we re-performed the PLS analysis 
with the optimum number of components (10) (Supplementary Fig 4C), following 75. 
We then performed ABC parameter inference for the null model, using the 10 optimal 
PLS components as input for the summary statistics. We also performed ABC 
parameter inference for the subsequently 17 PLS components which explain 98.9% 
of the variance. In both cases the weighted median posteriors obtained were similar 
to those obtained using the original summary statistics (which include correlations). 
As such, we proceed with the original set of summary statistics for ABC analysis in 
the main text, but we introduce a logit transformation to ensure the posteriors would 
be within the distribution of the priors (Supplementary Fig 4D). 
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Supplementary Figure 4: A Summary statistic correlations. RMSEP plots with B 36 
PLS components and with C the optimal 10 PLS components. D Posterior 
distributions under the final ABC protocol (teal, ‘logit-ABC’), under the PLS-ABC 
protocol (red) which takes the 10 PLS components rather than the summary statistics 
as input and under the initial ABC protocol (purple) which used correlated summary 
statistics without a logit transformation. The black vertical line represents the prior 
distribution for each parameter. In panel D data are presented in violin plots with 
overlaid boxplots, which represent the median and interquartile range (25th and 75th 
percentiles). For the 3 models we generated n=35543 simulations, from which we 
accepted n=178 simulations under tol=0.005 for the final and initial ABC protocols 
and n=356 simulations under tol=0.01 for the PLS-ABC. 
 

3.3 Adjusted demographic modelling 

We inferred demographic parameters under a model without admixture from an 
unsampled lineage (Extended Data Fig 2A), as well as a model with such an 
admixture event into the ancestral western gorilla population (Extended Data Fig 2B), 
as described in Methods. We fixed parameters which were inferred well after 
inspecting the posterior distributions of the null model (with only the extant gorilla 
lineages) (Supplementary Fig. 5, Supplementary Table 2), and inferred a set of 
parameters including ghost admixture into the common ancestor of eastern 
(Extended Data Fig 3, Supplementary Table 2) or western (Supplementary Fig. 6, 
Supplementary Table 2) gorillas, respectively.  
 
In the null model (without admixture from an unsampled lineage) we fix the 
parameters t1-t3 at the midpoint of their prior ranges, since these are very recent 
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events, with narrow priors. In initial iterations of ABC-based modelling, we observed 
that parameters t1-t3 were contributing noise, but would contribute little information 
to the question of deeper demographic history, which is the main focus of the current 
study.  
 
 
We also fix the parameter t6 (time of extant admixture between western lowland 
gorillas and the common eastern ancestor) at 34 kya. This was the result of 
converting continuous migration implemented by McManus et al.13 to define 
migration pulses, using the midpoint between the western subspecies split time 
inferred by 13 and the present. All other parameters were allowed to vary in the null 
model, sampling from priors informed by previous literature (as detailed in Methods). 
 
We provide a yaml file in the demes format76, as drawn in Supplementary Fig. 7, for 
the best supported demographic model for gorillas, which includes a component of 
ghost admixture into the common ancestor of eastern gorillas. 
 
We explored the impact of fixing well-inferred parameters from the null model on 
subsequent parameter inference in the ghost models in the section 3.4 Revised 
simulation approach. 
 
 
 

 

 
Supplementary Figure 5: Parameter distributions for all parameters inferred under 
the ABC null model. Red indicates the posterior distribution inferred with neural 
networks. Black indicates the posterior distribution inferred under a rejection method. 
The dotted grey line indicates the prior distribution. 
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Supplementary Figure 6: Parameter distributions for all parameters inferred under 
the ABC model allowing gene flow from a ghost lineage into the common ancestor of 
western gorillas. Red indicates the posterior distribution inferred with neural 
networks. Black indicates the posterior distribution inferred under a rejection method. 
The dotted grey line indicates the prior distribution. We note under a model of ghost 
gene flow to the western common ancestor, the posteriors indicate a small 
contribution to the common ancestor of all gorillas (consistent with ancestral 
substructure), rather than a defined pulse to the western common ancestor. 
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Supplementary Figure 7: Final demographic model with ghost admixture into 
eastern gorillas, implemented in demes (times in log-scale). The Python package 
demesdraw was used to generate this figure 
(https://github.com/grahamgower/demesdraw). 
 

3.4 Revised demographic modelling 

 
In our original ghost models, we fixed parameters with narrow CIs under the null 
model, in order to reduce the complexity of these models. To explore the ghost 
parameter space more fully we undertook a revised demographic inference approach 
for the ghost models, in which we sampled all parameters from priors 
(Supplementary Table 2). Again we allowed gene flow from a ghost lineage into the 
common ancestor of eastern gorillas or western gorillas respectively.   
 
We note that sampling all parameters from priors considerably increases model 
complexity. Nonetheless, we obtain largely coherent results with those of our original 
ghost models (in which we fixed parameters well inferred under the null model), 
albeit with wider confidence intervals inferred (Supplementary Table 2, 
Supplementary Fig. 8-10). 
 
Under the revised modelling, we infer 1.93% of ghost gene flow into the common 
ancestor of eastern gorillas, (0.33-2.45%, 95% CI) from a ghost population which 
diverged from extant gorillas ~3.1 Mya (1.43-3.77 Mya, 95% CI). We estimate the 
timing of ghost gene flow to have occurred 819 kya (146 kya-1.07Mya). 
 
Whereas, for the revised model of ghost gene flow to the ancestral western 
population, the posterior distribution for the proportion of ghost gene flow tends to 0 
(weighted median=0.43%; 0.01-1.98%, 95% CI), which is expected where there is no 
clear signal of introgression. Moreover, the timing of introgression in this scenario 
(weighted median=462 kya; 457-472 kya, 95% CI) tends towards the estimate for the 
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extant gorilla species divergence time (weighted median=466 kya; 295-864 kya, 95% 
CI). 
 
To compare the five demographic models A) null demography, B) original model of 
ghost gene flow into the eastern common ancestor, C) original model of ghost gene 
flow into the western common ancestor, D) revised model of ghost gene flow into the 
eastern common ancestor and E) revised model of ghost gene flow into the western 
common ancestor, we simulated 10,000 replicates of 250 windows of 40kbp length, 
fixing the parameters as the weighted median posteriors for each model. We 
calculated the posterior probabilities of each demographic model using the function 
postpr (tol=0.1, method="neuralnet"). Model B was overwhelmingly preferred, with 
the highest proportion of accepted simulations at 0.9988 and the highest Bayes 
factor at 823. In this model comparison, only simulations from models A and B were 
accepted. In cross-validation analysis the five models could be differentiated from 
each other (Supplementary Table 4). 
 
We note that the weighted medians inferred under the original and revised 
demographic models for gene flow into the common ancestors of eastern and 
western gorillas respectively, are highly correlated, as expected (B a 
nd D: rho=0.8531903, p=1.075e-06; C and E rho=0.8870695, p=2.913e-06).  
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Supplementary Figure 8: Posterior distributions for the archaic introgression 
proportion, time of archaic introgression, and gorilla-ghost split time, for the revised 
models of ghost gene flow to A the common ancestor of eastern gorillas and B the 
common ancestor of western gorillas, sampling all parameters from priors. We note 
these are equivalent to Fig 2C, but for the revised ghost models (models D and E). 
The dotted line indicates the prior distribution. The black line indicates the posterior 
inferred with a simple ‘rejection’ algorithm. The red line represents the posterior 
inferred with neural networks. Distributions are plotted in ms units.  
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Supplementary Figure 9: Posterior distributions for all parameters inferred under 
the revised model of ghost gene flow to the common ancestor of eastern gorillas 
sampling all parameters from priors. Red indicates the posterior distribution inferred 



17 

 

with neural networks. Black indicates the posterior distribution inferred under a 
rejection method. The dotted grey line indicates the prior distribution. 
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Supplementary Figure 10: Posterior distributions for all parameters inferred under 
the revised model of ghost gene flow to the common ancestor of western gorillas 
sampling all parameters from priors. Red indicates the posterior distribution inferred 
with neural networks. Black indicates the posterior distribution inferred under a 
rejection method. The dotted grey line indicates the prior distribution. 
 

3.5 Parameters from hmmix 

 
We inferred parameters from the HMM model in hmmix, as shown in Supplementary 
Table 10. The coalescence times between the two gorilla species are inferred at 
~256 kya, which is more recent than the estimates from the ABC modelling. 
However, reversing ingroup and outgroup (i.e. using western lowland gorillas as 
potential ingroup and eastern gorillas as potential outgroup) yields a larger 
coalescence time of ~572 kya due to the larger effective population size. This 
relationship between population size and coalescence time makes it difficult to 
compare to the divergence times of the ABC modelling. Furthermore, we infer a 
coalescence time of gorilla and ghost segments in eastern gorillas at 1,520 Mya. 
However, the archaic percentage is inferred at 17.7%, which then represents a larger 
archaic proportion at a shallower coalescence. The calculated admixture time is ~69 
kya, hence older than the one inferred in the demographic model as well. A thorough 
filtering for decoding the introgressed fragments with hmmix (Methods) leads to a 
largely overlapping set of candidate regions. 

 

3.6 Validation of method performance  

 
To assess the performance of the S* statistic and hmmix and their robustness to 
demographic model misspecifications we performed validation analyses, following 
the approach of Huang et al.29. This is particularly pertinent for the S* statistic, which 
requires a null demographic model (without ghost introgression) to determine outliers 
of the statistic.    
 
We generated simulations using msprime56,57 under different null demographic 
models and assessed the performance of the S* statistic and hmmix using precision-
recall curves (Extended Data Fig 4). We define precision as the number of true 
introgressed fragments of all introgressed fragments inferred, and recall as the 
number of inferred true introgressed fragments of all true introgressed fragments (ie 
recall represents the detection rate of true introgressed fragments) 29. 
 
We simulated data and generated general linear models of the expected distribution 
of S* scores under 1) the ABC-based null demographic model (Extended Data Fig 
2A) which is the ‘main model’ here and 2) the ‘worst null model’, where we take the 
maximum value of the 95% credible interval for all ancestral Ne parameters (rather 
than the weighted median posteriors), this hence increases the number of highly 
divergent haplotypes present due to incomplete lineage sorting (ILS) (rather than 
introgression) (Supplementary Table 2). 
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We then simulated data under the model of archaic introgression into the eastern 
ancestor (model B), as well as a modified model of archaic introgression with the 
maximum values of the 95% credible interval for all ancestral Ne parameters (“worst” 
model B). We subsequently run S* and hmmix, with a range of values for the quantile 
(threshold to define outliers of the statistic) of 0-0.999 for S* and the posterior 
probability of 0-0.9999 for hmmix, following 29 (Supplementary Tables 7-8). For each 
model we simulated 200 Mb with 100 replicates and sampled 1 individual for the 
target population (eastern lowland or mountain gorillas) and 10 individuals for the 
outgroup population (western lowland gorillas).  
 
Additionally, for the S* statistic we explore a ‘worst mis-specified’ scenario, where we 
generate simulated data under the ‘worst model’ (with high ILS) but run the S* 
analysis using the outlier values inferred for model A (expecting less ILS) (Extended 
Data Fig. 4).  
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4. Characterising introgressed fragments 

4.1 General features 

S* scores are correlated with the numbers of segregating sites, as expected 
(Supplementary Fig. 11); putatively introgressed windows are observed for high S* 
scores across this distribution, depending on the demographic model. 
 

 
Supplementary Figure 11: Genome-wide distributions of S* scores calculated in 
40kb windows for A mountain gorillas as ingroup, western lowland gorillas as 
outgroup, B eastern lowland gorillas as ingroup, western lowland gorillas as 
outgroup. Red indicates the genome-wide distribution, blue the predicted S* values 
under the general linear model (Methods) and green the outlier windows inferred 
under the 99% confidence interval. 
 
We do not observe a significant difference in introgressed fragment length 
distributions between the eastern subspecies, as inferred under hmmix (p>0.01, 
Wilcoxon unpaired test for both 0.9 and 0.95 threshold) (Supplementary Fig 12). 
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Supplementary Figure 12: Distribution of hmmix fragment lengths for mountain 
gorillas (blue) and eastern lowland gorillas (green) at a threshold of A 0.9 and B 0.95. 
 
 
When we compare a PCA of putative introgressed regions against a PCA of random 
regions of equivalent length distribution, we see in the introgressed regions that PCs 
1 and 2 explain a greater percentage of the variance (Supplementary Fig. 13). For 
introgressed regions PC1 exhibits increased separation of eastern from western 
gorillas, as expected under archaic introgression specifically into eastern gorillas 
(Kuhlwilm et al., 2019). While PC2 separates out the eastern subspecies to a greater 
extent than in random regions. We note that in PC1 the target individual carrying the 
introgressed material tends to fall outside the variation of its subspecies, but this is 
not always the case, indicative of the population frequency of the introgressed 
regions. Likewise in phylogenetic trees the target individual carrying the introgressed 
material has a longer branch, rather than falling basal to the other sequences 
(Supplementary Fig 14). Haplotype networks of putatively introgressed regions often 
show expected patterns (Supplementary Fig. 15), where the putatively introgressed 
haplotype shows an unusually large divergence to the variation observed among 
gorillas. Among the 20 longest introgressed regions, 90% of the resulting haplotype 
networks look archaic in origin. 
 

 
Supplementary Figure 13: A PCA of SNPs in the putative introgressed regions of 
eastern lowland individual 1 (Gorilla_beringei_graueri-9732_Mkubwa) and of random 
genomic regions of equivalent length distribution. PCs 1-4 are shown. B Equivalent 
PCA analysis for putative introgressed regions of mountain gorilla individual 1 
(Gorilla_beringei_beringei-Bwiruka). 
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Supplementary Figure 14: A NJ tree of SNPs in all putative introgressed regions of 
mountain gorilla individual 1 (Gorilla_beringei_beringei-Bwiruka) and of random 
genomic regions of equivalent length distribution. B NJ tree of SNPs in putative 
introgressed regions unique to mountain gorilla individual 1 (so-called ‘private 
introgressed regions’) and equivalent random genomic regions. The target individual 
is indicated by a red star. 
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Supplementary Figure 15: Haplotype network of one of the putative introgressed 
regions (chr13: 79839000-80119000), which looks characteristic of archaic 
introgression, where haplotype II carried by mountain gorillas is far outside the 
diversity of other gorillas. 
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4.2 Introgression and selection 

 
We find no depletion in the proportion of protein-coding base pairs (bp) in the 
introgressed regions compared to random regions of the genome (Supplementary 
Fig. 16). Putative deserts of introgression of more than 5 Mbp are rare 
(Supplementary Fig. 17). In Supplementary Fig. 18, we show the likelihood scores for 
candidate genes for adaptive introgression, using VolcanoFinder. 
 

 
Supplementary Figure 16: A Proportion of protein coding base pairs in putative 
introgressed regions (lines) and in random genomic regions (violin plots) per 
individual for both eastern gorilla populations. B Proportion of protein coding base 
pairs in putative introgressed regions of length >= 40kb (lines) and in equivalent 
random genomic regions (violin plots) per individual. Data for n=100 iterations of 
random genomic regions are presented in violin plots with means +/- standard 
deviation. 
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Supplementary Figure 17: Distribution of regions depleted of archaic introgression 
A regions of length >=5Mb B regions of length >=8Mb. 
 
  



26 

 

 

 
 
Supplementary Figure 18: Likelihood ratio scores for the seven candidate genes of 
adaptive introgression, estimated with VolcanoFinder. Red line indicates the 95% 
threshold for the VolcanoFinder likelihood ratio score. 
 
 
 

4.3 Functional consequences: mutational tolerance 

 
To address the question of mutational tolerance, specifically whether more 
deleterious mutations are observed in introgressed rather than random genomic 
regions, we assessed different measures of deleteriousness, using: genomic 
evolutionary rate profiling (GERP), sorting intolerant from tolerant (SIFT), 
polymorphism phenotyping (PolyPhen-2) and LINSIGHT scores 58,59,60,61. We 
downloaded the pre-computed base-wise GERP scores for hg1958 and considered 
sites (>4) as having high functional impact and sites (-2<x<2) as having low or likely 
neutral impact. SIFT and PolyPhen-2 scores were extracted from VEP annotation for 
missense variants. We consider sites annotated with (SIFT=‘deleterious’ or 
‘deleterious_low_confidence’; PolyPhen-2=‘probably_damaging’ or 
‘possibly_damaging’) as high impact and (SIFT=‘tolerated’ or 
‘tolerated_low_confidence’; PolyPhen-2=’benign’) as low impact. LINSIGHT scores 
incorporate epigenomic information, including chromatin accessibility and 
transcription factor binding61. We downloaded the pre-calculated LINSIGHT scores 
for hg1961. 
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For GERP, SIFT and PolyPhen-2 scores we calculated the proportion of high impact 
sites within putative introgressed regions and random regions of equal length 
distribution and sufficient callable sites (high / high and low impact sites). We 
calculated the mean LINSIGHT score across regions, since few high impact sites 
(>0.8) were identified in our dataset. We find a higher proportion of high impact 
GERP sites in introgressed regions of eastern lowland gorillas compared to mountain 
gorillas (Fig. 3E). However, for SIFT, PolyPhen-2 and LINSIGHT scores the 
introgressed regions of both eastern lowland and mountain gorillas follow random 
expectation (Supplementary Fig. 19). 
 

 
Supplementary Figure 19: Mutational conservation in introgressed fragments. 
Proportion of high impact sites in introgressed regions (red lines) and random 
regions (violin plots) for A SIFT scores and B PolyPhen-2 scores. High impact sites 
are those annotated as ‘deleterious’ and ‘deleterious low confidence’ for SIFT, and 
‘probably damaging’ and ‘possibly damaging’ for PolyPhen-2. C Mean LINSIGHT 
score across introgressed regions (red lines) and random regions (violin plots). In 
panels A-C MG = mountain gorillas, EL = eastern lowlands. Data for n=100 iterations 
of random genomic regions are presented in violin plots with overlaid boxplots, which 
represent the median and interquartile range (25th and 75th percentiles). 
 

4.4 Functional consequences: regulatory elements 

 

 

We undertook an investigation of regulatory elements in introgressed fragments. We 
assessed the proportion of regulatory base pairs within putative introgressed and 
random regions of equivalent length and callability, using the gorilla-defined 
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regulatory element annotations of García-Pérez et al.34. We assess this both from a 
global perspective and per regulatory element type (poised, strong, weak, enhancers 
and promoters). To do this, we performed a sequential liftover of the coordinates 
from gorGor4 to hg38 to hg19, to match the genomic coordinates used for the rest of 
our analyses. We filtered out entries corresponding to non-regulatory elements in at 
least one of the two replicates of gorilla lymphoblastoid cells (Non-re, E/Non-re and 
P/Non-re). We also filtered out entries annotated as ambiguous (aE, aP, P/E).  
 
We note that this data derives from gorilla lymphoblastoid cells (LCLs), which means 
that the patterns of expression may be cell-type dependent and specific regulatory 
effects, for example during brain development, would not be recovered. This is an 
inherent limitation of this kind of analysis in a non-human context. Moreover, the two 
gorilla LCL replicates belonged to the western species, hence are equidistant to both 
eastern subspecies. 
 
We assessed the gene regulatory architecture of strong enhancers (sE) in mountain 
gorilla introgressed regions and equivalent random genomic regions, using the 
definitions of García-Pérez et al.34. We considered enhancer-interacting enhancers, 
intragenic enhancers, enhancers within promoters (genic promoters), promoter-
interacting enhancers and proximal enhancers (EiE, gE, gP, PiE, prE). This analysis 
is restricted to sE associated with genes. 
 
We find no difference in the overall proportion of regulatory base pairs in putative 
introgressed regions compared to random genomic regions for either eastern gorilla 
population (Supplementary Fig. 20A). However, when we consider the proportion of 
regulatory base pairs per regulatory element we see an excess of sE in mountain 
gorilla introgressed regions, compared to random regions (Supplementary Fig. 20B). 
These sE are largely intragenic enhancers (Supplementary Fig. 21), which agrees 
with patterns of regulatory architecture observed in primate sE more generally by 34. 
 
Furthermore, García-Pérez et al.34 had annotated which genes are associated with 
each regulatory element. Taking these annotations and filtering to genes with one-to-
one orthologs across the primates considered by García-Pérez et al.34 (humans, 
chimpanzees, gorillas, orangutans and macaques) we define two sets of candidate 
genes: 1) genes regulated by sE in mountain gorilla introgressed regions (235 
genes), and 2) genes regulated by sE in mountain gorilla adaptively introgressed 
regions (45 genes) (Supplementary Tables 16-17). We performed an over-
representation analysis of our candidate genes for gene ontology terms using the 
WebGestaltR package and default settings77. Our background set consisted of genes 
regulated by gorilla sE (again taking those genes with one-to-one orthologs in 
primates) (Supplementary Table 18). No gene ontology category reached the 
significance threshold of FDR=0.05 with Benjamini-Hochberg correction 
(Supplementary Fig. 22). The top gene ontology categories detected relate to the 
LCL cell type, namely ‘establishment of lymphocyte polarity’ (p-value=0.00018256, 
FDR=0.38985) and ‘establishment of T cell polarity’ (p-value=0.00018256, 
FDR=0.38985) for candidate gene set 1) and ‘forebrain generation of neurons’ (p-
value=0.000066791, FDR=0.14263) for candidate gene set 2). 
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Supplementary Figure 20: Proportion of regulatory base pairs in introgressed 
regions (red lines) and random regions (violin plots) population wide in A and per 
regulatory element type for B mountain gorillas and C eastern lowland gorillas. 
Abbreviations represent: pE=poised enhancer, pP=poised promoter, sE=strong 
enhancer, sP=strong promoter, wE=weak enhancer, wP=weak promoter. In panel A 
MG = mountain gorillas, EL = eastern lowlands. Data for n=100 iterations of random 
genomic regions are presented in violin plots with overlaid boxplots, which represent 
the median and interquartile range (25th and 75th percentiles). 
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Supplementary Figure 21: Gene regulatory architecture of strong enhancers in 
mountain gorilla introgressed regions (red points) and random genomic regions of 
equivalent length and callability (violin plots). Abbreviations represent: 
EiE=enhancer-interacting enhancer, gE=intragenic enhancer, gP=genic promoter, 
PiE=promoter-interacting enhancer, prE=proximal enhancer. This analysis only 
considers those strong enhancers which could be annotated to genes by 34. Data for 
n=100 iterations of random genomic regions are presented in violin plots with 
overlaid boxplots, which represent the median and interquartile range (25th and 75th 
percentiles). 
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Supplementary Figure 22: Over-representation in gene ontology categories for A 
genes regulated by sE in mountain gorilla introgressed regions and B genes 
regulated by sE in mountain gorilla adaptively introgressed regions. No category 
reaches significance at FDR=0.05 with Benjamini-Hochberg correction.  
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