1	Bacteroides Fragilis in the gut microbiomes of Alzheimer's Disease activates microglia and
2	triggers pathogenesis in neuronal C/EBPβ transgenic mice
3	Supplementary Information files
4	By
5	Yiyuan Xia † ^{1, 2} , Yifan Xiao † ² , Zhihao Wang ¹ , Xia Liu ¹ , Ashfaqul M. Alam ³ , John P.
6	Haran ^{4, 5, 6} , Beth A. McCormick ^{5, 6} , Xiji Shu ^{2, *} , Xiaochuan Wang ^{7, 8, *} , and Keqiang Ye ^{1, 9, *}
7	
8	
9	
10	This file contains Supplementary figures 1-16.

0-

WT+HC WT+AD Tg+HC Tg+AD

0

WT+HC-WT+AD-

Tg+HC-Tg+AD-

1	Figure S1. AD humanized Abx-treated mice display increased aggregated proteins and
2	apoptotic neurons compared with HC humanized Abx-treated mice in WT and C/EBP β Tg
3	mice.

- 4 (A-B) In vitro cultures of bacteria from fecal pallets with/without Abx treated 3-month-old mice,
- 5 showed that antibiotics treatment was effective in killing the bacteria. (n = 5 biologically)
- 6 independent samples in each group, data are shown as mean \pm SEM, two-tailed Student's t test).
- 7 (C) Silver staining in the cortex and the hippocampus. Scale bar: 50 μm. (D) Quantitative
- 8 analysis of Silver staining. Aggregated proteins were significantly increased in AD humanized
- 9 Abx-treated mice. (n = 8 biologically independent samples in each group, data are shown as
- 10 mean \pm SEM, one-way ANOVA and Bonferroni's multiple comparison test).

1	Figure S2. AD humanized Abx-treated mice display increased cytokines in microglia
2	compared with HC humanized Abx-treated mice in WT and C/EBP β Tg mice.
3	(A) Immunofluorescent staining of Iba-1 (red) and CD86 (green) in the cortex region of the
4	brains from AD or HC humanized Abx-treated 6-month-old mice. Scale bar: 30 μ m. (B)
5	Immunofluorescent staining of Iba-1 (red) and IL-1 β (green) in the cortex region of the brains
6	from AD or HC humanized Abx-treated 6-month-old mice. Scale bar: 30 μ m. (C)
7	Immunofluorescent staining of Iba-1 (red) and IL-6 (green) in the cortex region of the brains
8	from AD or HC humanized Abx-treated 6-month-old mice. Scale bar: 30 μ m. (D) Quantitative
9	analysis of Iba-1 ⁺ and CD86 ⁺ /IL-1 β ⁺ /IL-6 ⁺ percentage in Iba-1 ⁺ microglia, and branches of Iba-1 ⁺
10	1^+ microglia (n = 3 biologically independent samples in each group, data are shown as mean \pm

11 SEM, one-way ANOVA and Bonferroni's multiple comparison test).

Figure S3. AD humanized Abx-treated mouse primary microglia display better ability to engulf Aβ than HC.

3 The primary cultures of microglia cells from AD or HC humanized Abx-treated 6-month-old

4 mice, then treated with human A β_{42} fibrils for 24 hours. (A) Immunofluorescent staining of

5 human A β (red) and Iba-1 (green) in the primary cultured microglia cells. Phagocytozed

6 microglia cells with engulfed A β_{42} was designed with white arrows. Scale bar: 20 μ m. (B)

7 Quantitative analysis A β IOD (Integrated optical density) in Iba-1⁺ microglia (n = 3 biologically

8 independent samples in each group, data are shown as mean \pm SEM, two-tailed Student's t test).

- 9 (C) Human A β_{42} concentration in the medium were detected with ELISA (n = 3 biologically
- 10 independent samples in each group, data are shown as mean \pm SEM, two-tailed Student's t test).

Rat primary microglia treated with Mice serum

В

1 Figure S4. AD humanized Abx-treated mouse serum strongly activated rat primary

2 microglia compared with HC humanized Abx-treated mouse serum.

- 3 (A) Rat primary microglia treated with HC or AD humanized Abx-treated 6-month-old mice
- 4 serum (20 μg/ml), 24 h later, the microglia were fixed and staining with C/EBPβ (green) and Iba-
- 5 1 (red). Scale bar: 10 μm. (B) Quantitative analysis of diameter, number of branch points, and
- 6 total branch length in Iba-1 (red) positive microglia. (n = 10 biologically independent samples in
- 7 each group, data are shown as mean \pm SEM, one-way ANOVA and Bonferroni's multiple
- 8 comparison test).

Rat primary microglia treated with Mice serum

- Figure S5. Protein depletion from AD humanized Abx-treated mouse serum did not affect
 rat primary microglia activation.
- 3 (A) Rat primary microglia treated with HC or AD humanized Abx-treated 6-month-old C/EBPβ
- 4 Tg mice serum (20 µg/ml) or TCA treated protein removal serum, 24 h later, the microglia were
- 5 fixed and staining with C/EBP β (green) and Iba-1 (red). Scale bar: 10 μ m. (B) Quantitative
- 6 analysis of diameter, number of branch points, and total branch length in Iba-1 (red) positive
- 7 microglia. (n = 10 biologically independent samples in each group, data are shown as mean \pm
- 8 SEM, one-way ANOVA and Bonferroni's multiple comparison test).

Figure S6. AD humanized Abx-treated mouse brain lysates activated rat primary microglia more robust than HC.

3 (A) Rat primary microglia treated with HC or AD humanized Abx-treated 6-month-old mice

4 brain lysis (20 μ g/ml), 24 h later, the microglia were fixed and staining with C/EBP β (green) and

5 Iba-1 (red). Scale bar: 10 μm. (B) Quantitative analysis of diameter, number of branch points,

- 6 and total branch length in Iba-1 (red) positive microglia. n=10 biologically independent samples
- 7 in each group, data are shown as mean \pm SEM, one-way ANOVA and Bonferroni's multiple

8 comparison test.

C/EBPβ Merge/DAP 0.006 10 8 6 4 2 0 <u>0.007</u> Diameter (µm) Tg+HC Ŧ : Total branch length (μ m) No. of branch points 0 10 0 12 0 10 0 Tg+AD <<u>0.00</u>1 <<u>0.00</u>1 Ť * Protein removal-Tg+ADProtein removal-Tg+HC <<u>0.00</u>1 <<u>0.00</u>1 , , , , = Tg+AD Tg+AD Tg+HC -Tg+HC Protein removal

1 Figure S7. Protein depletion from AD humanized Abx-treated mice brain lysates did not

2 affect rat primary microglia.

- 3 (A) Rat primary microglia treated with HC or AD humanized Abx-treated 6-month-old C/EBPβ
- 4 Tg mice brain lysis (20 µg/ml) or TCA treated protein removal brain lysis, 24 h later, the
- 5 microglia were fixed and staining with C/EBP β (green) and Iba-1 (red). Scale bar: 10 μ m. (B)
- 6 Quantitative analysis of diameter, number of branch points, and total branch length in Iba-1 (red)
- 7 positive microglia. (n = 10 biologically independent samples in each group, data are shown as
- 8 mean \pm SEM, one-way ANOVA and Bonferroni's multiple comparison test).

Figure S8. AD humanized Abx-treated mice brain lysates/serum activated Tg mice primary microglia more robust than HC.

3 The primary cultured microglia from C/EBPβ Tg mice, treated with HC/AD humanized Abx-

- 4 treated 6-month-old mice brain lysis or serum for 24 h. (A) The microglia were fixed and
- 5 staining with C/EBPβ (red) and Iba-1 (green). Scale bar: 100 μm. (B) Quantitative analysis of
- 6 C/EBP β mean IOD and Iba-1⁺ microglia soma mean diameter (n = 3 biologically independent
- samples in each group, data were shown as mean \pm SEM, two-tailed Student's t test). (C) The
- 8 microglia were fixed and staining with CD86 (red) and Iba-1 (green). Scale bar: 100 μm. (D)
- 9 Quantitative analysis of CD86 mean IOD (n = 3 biologically independent samples in each group,
- 10 data were shown as mean \pm SEM, two-tailed Student's t test).

1 Figure S9. AD humanized Abx-treated mice display increased arachidonic acid, 12-

2 HHTrE, and PGE2 compared with HC.

(A) TCA treated protein removal from HC or AD humanized Abx-treated 6-month-old C/EBPß 3 Tg mice brain lysates were separated into 30 fractions with HPLC. 96-well planted rat primary 4 5 microglia were treated with each fraction for 10 ul/well. 24 h later, the number of branch points 6 was counted for the activity of microglia. Only AD humanized Abx-treated C/EBPß Tg mice showed changes in the activity, including fractions 12-20, 22-25. (B) After LC-MS analysis of 7 fractions 15-24, PGE2 was found increased in AD humanized Abx-treated mice compared with 8 9 HC humanized Abx-treated 6-month-old mice. Source data are provided as a Source Data file. (C-E) HPLC analysis the concentrations of arachidonic acid (AA) and its metabolites in HC or 10 AD humanized Abx-treated 6-month-old WT or C/EBPß Tg mice brain lysis (C), serum (D), and 11 12 feces samples (E). (n=3 biologically independent samples in each group, data are shown as mean ± SEM, one-way ANOVA and Bonferroni's multiple comparison test). 13

А

Primary cultured Tg mice microglia

В

Primary cultured Tg mice neuron

С

Figure S10. 12-HHTrE and PGE2 enhanced the activation of microglia and neuronal Aβ₄₂ deposition.

- 3 In vitro cultured microglia and neurons from Tg mice were employed for the analysis of
- 4 microglia activation and Aβ₄₂ deposition. (A) The primary cultured microglia from C/EBPβ Tg
- 5 mice, treated with 12-HHTrE or PGE2 (20 ug/ml) for 24 h. Then fixed for immunofluorescent
- 6 staining of CD86 (red) and Iba-1 (green). (B) The primary cultured neuron from C/EBPβ Tg
- 7 mice, treated with 12-HHTrE or PGE2 (20 ug/ml) for 24 h. Then fixed for immunofluorescent
- staining of NeuN (red) and A β (4G8, green). (C-D) Quantitative analysis of CD86/A β mean IOD
- 9 $(n = 3 biologically independent samples in each group, data were shown as mean <math>\pm$ SEM, one-
- 10 way ANOVA and Bonferroni's multiple comparison test).

Figure S11. Deletion of C/EBPβ from primary neuronal cultures or microglia alleviate the detrimental effect of *B. Fragilis* metabolites.

The primary cultured neurons and neurons + microglia mixture from WT mice, followed w/wo 3 AAV-sh-C/EBPß knockdown, then treated with PGE2 (20 ug/ml) for 24 h. (A) Immunofluorescent 4 5 staining of AT8 (green) and NeuN (red) in the primary cultured neurons or neurons + microglia 6 mixture. Scale bar: 50 µm. Quantitative analysis showed AT8 intensity was significantly decreased after C/EBPβ knockdown (n=3 biologically independent samples in each group, data were shown 7 8 as mean \pm SEM, one-way ANOVA and Bonferroni's multiple comparison test). (B) 9 Immunofluorescent staining of NeuN (green) and TUNEL (red) in the primary cultured neuron or neurons + microglia mixture. Scale bar: 50 µm. Quantitative analysis showed TUNEL intensity 10 was significantly decreased after C/EBP β knockdown (n = 3 biologically independent samples in 11 12 each group, data were shown as mean \pm SEM, one-way ANOVA and Bonferroni's multiple comparison test). (C) Immunofluorescent staining of Iba-1 (green) and CD86 (red) in the primary 13 14 cultured microglia. Scale bar: 50 µm. Quantitative analysis showed CD86 intensity was significantly decreased after C/EBP β knockdown (n = 3 biologically independent samples in each 15 group, data were shown as mean \pm SEM, two-tailed Student's t test). 16

Neuron Neuron+Microglia

1 Figure S12. Mixed cultures of neurons and microglia showed higher inflammatory

2 cytokines, $A\beta_{42}$, AT8 levels, and apoptosis than neurons alone.

The primary cultured neurons, mixed cultures of neurons + microglia from Thy1- C/EBPβ Tg mice. 3 Treated w/wo PGE2. (A) WB detecting the protein levels of Aβ, AT8, APP N585, and Tau N368. 4 5 Quantitative analysis the protein fold changes between neurons, and mixed cultured neurons + 6 microglia (n = 3 biologically independent samples in each group, data were shown as mean \pm SEM, 7 one-way ANOVA and Bonferroni's multiple comparison test). (B) inflammatory cytokines including IL-1 β , IL-6, and TNF- α were tested by ELISA (n = 3 biologically independent samples 8 in each group, data were shown as mean ± SEM, one-way ANOVA and Bonferroni's multiple 9 comparison test). (C) Immunofluorescent staining of NeuN (green) and TUNEL (red) in the 10 11 primary cultured neurons or neurons + microglia mixture. Scale bar: 100 µm. Arrows showed the NeuN positive TUNEL deposited. (D) Quantitative analysis showed TUNEL intensity was 12 significantly increased after PGE2 treatment or microglia addition (n = 3 biologically independent 13 samples in each group, data were shown as mean \pm SEM, one-way ANOVA and Bonferroni's 14 15 multiple comparison test).

1	Figure S13. Microbiome analysis of humanized Abx-treated WT and C/EBP β Tg mice fecal
2	samples, revealing Bacteroides elevation in the feces from human AD fecal inoculated Abx-
3 1	treated mice.

- 4 (A) Relative abundance of bacterial phyla determined by high throughput sequencing analysis.
- 5 (B) Principal coordinate plot (PcoA) of microbial community structure. (C) Mean frequency of
- 6 bacterial species. (n = 9-10 biologically independent samples in each group, data represent the
- 7 means \pm SEM, two-tailed Student's t test). (D) KEGG arachidonic acid metabolism pathway of
- 8 Bacteroides fragilis (1.11.1.9). (E) Concentrations of arachidonic acid (AA) and its metabolites
- 9 in culture medium from *in vitro* cultures of *Bacteroides fragilis* (n = 3 biologically independent
- 10 samples in each group, data were shown as mean \pm SEM, two-tailed Student's t test).

1 Figure S14. The enteric neuronal Aβ₄₂ and AT8 signals were increased after human AD

2 fecal or live *B. fragilis* treatment.

3 (A-B) Immunofluorescent staining of AT8 (green) and active C/EBPβ pT235 (red) in the

- 4 intestine region of gut from human AD fecal or *B. Fragilis* treated C/EBPβ Tg mice
- 5 (representative of 3 mice). Scale bar: 30 µm. Arrows showed the AT8 and pT235 positive
- 6 neurons. (C-D) Immunofluorescent staining of Aβ 4G8 (green) and C/EBPβ pT235 (red) in the
- 7 intestine region of gut from human AD fecal or *B. Fragilis* treated C/EBPβ Tg mice
- 8 (representative of 3 mice). Scale bar: 30 µm. Arrows showed the 4G8 and pT235 positive
- 9 neurons.

Lipid Metabolism

		Welch's Two	o-sample t-Test	
	[AD-C	EBP& Tg	
1	Feces	Colored by:		
Sub Pathway	Biochem Ical Name	statistics	Fold of Change	
	myristate (14:0)	1.60	1.60	
Long Chain	palmitate (16:0)	1.74	1.74	
Saturated Earthy Acid	stearate (18:0)	1.59	1.59	
any rich	arachidate (20:0)	1.64	1.64	
	paimioleate (16:1n7)	1.79	1.79	
Long Chain	oleate/vaccenate (18:1)	2.04	2.00	
Monoursaturated Fatty Acid	eicasenaate (20:1)	2.74	2.74	
runy run	erucate (22: 1n9)	2.02	2.02	
	he xadec atrien gate (16:3n3)	1.58	1.58	
	stearidonate (18:4n3)	1.52	1.52	
	eicosapentaenoate (EPA; 20:5n3)	2.17	2.17	
Long Onin Polyunsalurated Fatty Acid (rG and r6)	heneic asapentaen oate (21:5n3)	1.77	1.77	
	do cosapentae noate (n3 DPA; 22:5n3)	2.31	2.31	
	do cosahexaen oate (DHA; 22.6n3)	2.23	2.23	
	nisinate (24:6n3)	3.51	3.51	
	hexadecadencate (16:2n6)	1.57	1.57	
	linoleate (18:2n6)	1.76	1.76	
	linolenate (alpha or gamma; (18:3n3 or	1.75	1.75	
	dihamo-linale ate (20:2n6)	1.45	1.45	
	dihama-linakenate (20:3n3 or n6)	1.61	1.61	
	arachidonate (20:4n6)	2.27	2.27	
	docasatirienoate (22:3n6)*	0.65	0.65	
	adrenate (22:4n6)	1.72	1.72	
	do casap entae naate (n6 DPA; 22:5n6)	1.44	1.44	
	docasadienoate (22:2n6)	1.72	1.72	

	L		Welch's Two-Sample t-Test		
		AD-O	EBP& Tg EBP& Tg		
	Feces	Colored by:			
Sub Pathway	Biochemical Name	statistics	Fold of Change		
	1-myristay/glyceral (14:0)	1.68	1.68		
	1-painitayigiyoeral (16:0)	2.58	2.58		
	1-paimitaleoy(glyceral (16:1)*	1.89	1.89		
	1-aleayigty ceral (18:1)	2.43	2.43		
	1-linaleaylglyceral (18:2)	2.07	2.07		
	1-linalenayigiyoeral (18:3)	1.92	1.92		
Mana-	1-dihama-linalenyigiyaeral (20:3)	2.58	2.58		
acylgiycerol	1-docasahexaenayigiyoerol (22:6)	1.91	1.91		
	2-myristaylglycerol (14:0)	1.35	1.35		
	2-paintoyigiyoerol (16:0)	1.39	1,39		
	2-aleayigly ceral (18:1)	2.72	2.72		
	2-linaleaylglyceral (18:2)	1.47	1.47		
	2-docasahexaenoyigiycerol (22:6)*	1.61	1.61		
	1-heptadecenoyiglycerol (17:1)*	1.62	1.62		
	diacylglycerol (16:1/18:2 [2], 16:0/18:3	0.68	0.68		
	palmitay i aleayi giyoeral (16:0/18:1) [2	0.62	0.62		
	palmitay Hindeoyi-glycerol (16.0/18.2)	0.74	0.74		
	palmitay Hindeoyi-glycerol (16.0/18.2)	0.64	0.64		
	aleayi-linaleayi-giyoaral (18:1/18:2) [2]	0.72	0.72		
D	linaleayl-linaleayl-glyceral (18:2/18:2)	0.78	0.78		
an 14 long of	linaleayl-linaleayl-giyceral (18:2/18:2)	0.67	0.67		
	linaleayl-linalenayl-glyceral (18:2/18:3)	0.72	0.72		
	linaleayl-linalenayl-giyceral (18:2/18:3)	0.62	0.62		
	linalenay Hinalenayl-glycerol (18:3/18:3	0.51	0.51		
	linaleoyl-docas ahexa enoyl-glyc erol (1	0.86	0.86		

В

	Г		Welch's Two-\$	am pie t-Test		
	ī	<u>C/E</u>	BPS Tg WT	AD-O	EBP& Tg EBP& Tg	
Brain		Colored by:		Colored by:		
Sub Pathway	Biochemical Name	Statis tics	Fold of Change	Statistics	Fold of Change	
	myristate (14:0)	0.98	0.98	1.61	1.61	
	paimitate (16:0)	1.14	1.14	1.77	1.77	
Long Chain	margarate (17:0)	1.19	1.19	2.00	2.00	
Saturated Faith Acid	stearate (18:0)	1.16	1.16	1.86	1.86	
any rich	norsadec anoate (19:0)	1.17	1.17	2.25	2.25	
	arachidate (20:0)	1.26	1.26	2.10	2.10	
	palmitoleate (16:1n7)	0.92	0.92	2.00	2.00	
	10-heptadecenoate (17:1n7)	1.02	1.02	2.36	2.36	Ma
Long Chain	oleate/vaccenate (18:1)	1.15	1.15	2.12	2.12	
Monounsaturated	10-monade cenoate (19:1n9)	1.09	1.09	2.74	2.74	
rauy Acu	eicasenaate (20:1)	1.20	1.20	2.52	2.52	
	erucate (22:1n9)	1.27	1.27	3.13	3.13	
	te tradecadienoate (14:2)*	0.93	0.93	1.50	1.50	
	he xadec atrieno ate (16:3n3)	1.11	1.11	1.62	1.62	
	stearidonate (18:4n3)	1.11	1.11	1.58	1.58	_
	eicosapentaenoate (EPA; 20:5n3)	1.13	1.13	2.10	2.90	
	docasapentaenaate (n3 DPA; 22:5n3)	1.03	1.03	2.68	2.66	
	docasahexaenaate (DHA; 22:6n3)	1.18	1.18	2.30	2.30	
	docasatrienoate (22:3n3)	1.76	1.76	1.04	1.04	
	nisinate (24/6n3)	1.27	1.27	2.67	2.67	
Long Chain	hexadecadenoate (16:2n6)	1.17	1,17	1.59	1.59	
Polyunsaturated	(incleate (18:2n6)	1.34	1.34	1.99	1.99	
(n3 and n6)	linolenate (alpha or gamma; (18:3n3 or	1.08	1.06	2.00	2.00	
	dihama-linaleate (20.2n6)	1.50	1.50	2.37	2.37	
	dihomo-linolenate (20:3n3 or n6)	1.32	1.32	2.10	2.10	
	arachidonate (20:4n6)	0.99	0.99	1.01	1.01	
	docasatrienoate (22:3n6)*	0.82	0.82	3.32	3.12	
	adremate (22:4n6)	1.12	1.12	2.28	2.28	
	do casap entaen case (n6 DPA; 22:5n6)	1.21	1.21	2.35	2.35	
	docasadienoate (22:2:n6)	1.46	1.46	3.01	3.01	
	mead acid (20:3n9)	0.84	0.84	2.21	2.21	

	1	Weich's Two-Sample t-Test			
		C/E	BP <u>8 Tg</u> WT	AD-C	EBP& Tg EBP& Tg
Brain		Colored by:		Colored by:	
ub Pathway	Biochemical Name	Statistics	Fold of Change	Statis tics	Fold of Change
	1-myristoyigiycerol (14:0)	0.92	0.92	1.42	1.42
	1-palmitoyigiy.cerol (16:0)	1.06	1.06	2.06	2.06
	1-palmitoleoyiglycerol (16:1)*	88.0	0.88	2.37	2.37
	1-aleayigiyceral (18:1)	1.04	1.04	1.87	1.87
	1-linaleaylgly ceral (18.2)	1.34	1.34	2.53	2.53
	1-dihamo-linalenyigiyoerol (20:3)	0.85	0.85	2.78	2.78
	1-arachidonylglycerol (20:4)	0.96	0.96	2.10	2.10
loacyglycardi	1-docasahexaenay/glycerol (22:6)	1.00	1.00	1.97	1.97
	2-palmitoy(glycerol (16:0)	1.03	1.03	2.23	2.23
	2-palmitoleoylglycerol (16:1)*	0.83	0.83	2.46	2.46
	2-aleaylglyceral (18:1)	0.90	0.90	2.62	2.62
	2-linaleaylgly ceral (18:2)	1.32	1.32	2.47	2.47
	2-arachidonoy(glycerol (20:4)	0.97	0.97	1.93	1.93
	2-docasahexaenayigiycerol (22:6)*	0.93	0.93	1.84	1.84

1 Figure S15. Metabolomics analysis of the brains, serum and feces samples from HC or AD humanized Abx-treated C/EBP_β Tg mice and the brains from WT and C/EBP_β Tg mice. 2 (A-B) The differences in microbiomes related metabolites from feces samples (A) and brain 3 lysates (B). Red and green shaded cells indicate $p \le 0.05$ (red indicates the fold change values are 4 5 significantly higher for that comparison; green values significantly lower). Light red and light green shaded cells indicate 0.05 (light red indicates the fold change values trend higher6 7 for that comparison; light green values trend lower). Source data are provided as Supplementary Data 1. 8

- 1 Figure S16. Deletion of microglia attenuated PGE2-induced AD pathologies in Thy1-
- **2 C/EBPβ Tg mice.**
- 3 3-month-old Thy1-C/EBPβ Tg mice feed w/wo PLX3397 (600 ppm in chow, 7 days), followed by
- 4 bacteria/PGE2 treatment (Tg + B.F (Dead), Tg + B.F (Live), Tg + Vehicle, Tg + PGE2) for 8
- 5 weeks, n = 3/group. (A) Immunofluorescent staining of CD86 (green) and Iba-1 (red) in the
- 6 hippocampus region of the brain from *B. fragilis* or PGE2 treated C/EBPβ Tg mice. Scale bar: 20
- 7 μm. (B) Immunofluorescent staining of pT235 (green) and AT8 (red) in the hippocampus region
- 8 of the brain from *B. fragilis* or PGE2 treated C/EBPβ Tg mice. Scale bar: 20 μm. (C)
- 9 Immunofluorescent staining of pT235 (green) and 4G8 (red) in the hippocampus region of the
- 10 brain from *B. fragilis* or PGE2 treated C/EBPβ Tg mice. Scale bar: 20 μm.