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Frequent Temporal Patterns of Physiological and Biological Biomarkers and Their Evolution in Sepsis

A Organ Systems’ Components

Table 1: Physiological and biological biomarkers recorded as individual features, and the criteria resulting
in the corresponding organ dysfunction

Organ Dysfunction Response Abbreviation Failure criteria
Cardiovascular Systolic blood pressure (SBP) Sb <90 mmHg

SBPmax* - Systolic BP Sd >40 mmHg within an 8-hour period
Mean arterial pressure (MAP) Mp <65 mmHg

Renal Creatinine Cr >1.2 mg/dL
(Creatinine - Cbase**)/(Cbase) Cd >50% from initial creatinine
Blood Urea Nitrogen (BUN) Bu >20 mg/dL

Hematopoietic WBC W <4,000 cells/mL
Platelet Pl <100,000 cells/mL

Metabolic Lactate La >2.0 mmol/L
Gastrointestinal Bilirubin Bi >2 mg/dL
Respiratory Fraction of inspired oxygen (FiO2) Fi >21%

Pulse oximetry (SpO2) Px <90%
SpO2/FiO2 Or <421
Oxygen (O2) Source Os Mechanical ventilation required (bilevel

positive airway pressure (BiPAP) or continu-
ous positive airway pressure (CPAP) or ven-
tilator)

Central Nervous Glasgow Comma Score Gc <14
Glasgow Best Verbal Response Gv <5

Biomarkers Procalcitonin pc >0.15 ng/mL
C-Reactive Protein cr >8 mg/L
Erythrocyte Sedimentation Rate sr >20 mm/hr

*: Maximum systolic blood pressure for each observation within 8-hour windows.
**: Initial creatinine value observed in each visit.
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Table 2: The performance [mean (standard deviation)] of algorithms adopted for identification of sepsis
patients in the four data sets of the study. The features used are statistics of individual responses (Ind) and
their combinations with age, gender, and medical history of patients (Ind+). ADA: AdaBoost, DT: Decision
tree, NB: Naïve Bayes, LG: Logistic regression, kNN: k-nearest neighbors, RF: Random forest, SVM: Support
vector machine, SVMp: Support vector machine with polynomial kernel function.

Algorithm gap (hours) Features Accuracy Recall Precision

ADA

3 Ind 0.71 (0.02) 0.68 (0.03) 0.69 (0.03)
Ind+ 0.75 (0.02) 0.73 (0.02) 0.72 (0.03)

6 Ind 0.70 (0.02) 0.67 (0.03) 0.68 (0.03)
Ind+ 0.73 (0.02) 0.72 (0.02) 0.70 (0.03)

12 Ind 0.69 (0.02) 0.66 (0.03) 0.69 (0.03)
Ind+ 0.73 (0.02) 0.71 (0.03) 0.72 (0.03)

24 Ind 0.67 (0.02) 0.64 (0.03) 0.67 (0.04)
Ind+ 0.71 (0.02) 0.69 (0.04) 0.71 (0.03)

DT

3 Ind 0.65 (0.02) 0.65 (0.03) 0.60 (0.02)
Ind+ 0.67 (0.02) 0.66 (0.03) 0.63 (0.03)

6 Ind 0.63 (0.02) 0.63 (0.03) 0.60 (0.03)
Ind+ 0.65 (0.02) 0.65 (0.03) 0.62 (0.03)

12 Ind 0.63 (0.03) 0.63 (0.04) 0.61 (0.03)
Ind+ 0.64 (0.02) 0.64 (0.04) 0.62 (0.03)

24 Ind 0.60 (0.02) 0.60 (0.04) 0.59 (0.04)
Ind+ 0.63 (0.02) 0.63 (0.03) 0.62 (0.03)

NB

3 Ind 0.66 (0.02) 0.42 (0.03) 0.72 (0.03)
Ind+ 0.69 (0.02) 0.53 (0.03) 0.72 (0.03)

6 Ind 0.64 (0.02) 0.38 (0.03) 0.72 (0.04)
Ind+ 0.67 (0.02) 0.51 (0.07) 0.72 (0.04)

12 Ind 0.61 (0.02) 0.33 (0.05) 0.72 (0.04)
Ind+ 0.66 (0.03) 0.45 (0.05) 0.73 (0.05)

24 Ind 0.61 (0.02) 0.37 (0.04) 0.69 (0.05)
Ind+ 0.65 (0.03) 0.49 (0.03) 0.70 (0.04)

kNN

3 Ind 0.67 (0.02) 0.60 (0.03) 0.65 (0.03)
Ind+ 0.70 (0.02) 0.58 (0.03) 0.71 (0.02)

6 Ind 0.66 (0.02) 0.61 (0.03) 0.64 (0.03)
Ind+ 0.68 (0.02) 0.59 (0.03) 0.69 (0.03)

12 Ind 0.65 (0.02) 0.60 (0.04) 0.65 (0.03)
Ind+ 0.68 (0.02) 0.56 (0.03) 0.70 (0.03)

24 Ind 0.62 (0.03) 0.57 (0.04) 0.62 (0.04)
Ind+ 0.65 (0.02) 0.54 (0.03) 0.68 (0.03)

LG

3 Ind 0.72 (0.02) 0.66 (0.03) 0.70 (0.03)
Ind+ 0.75 (0.02) 0.73 (0.02) 0.72 (0.03)

6 Ind 0.70 (0.02) 0.65 (0.03) 0.68 (0.03)
Ind+ 0.74 (0.02) 0.72 (0.02) 0.72 (0.03)

12 Ind 0.70 (0.02) 0.65 (0.03) 0.70 (0.03)
Ind+ 0.74 (0.02) 0.72 (0.02) 0.73 (0.03)

24 Ind 0.67 (0.02) 0.61 (0.03) 0.68 (0.03)
Ind+ 0.72 (0.02) 0.70 (0.03) 0.71 (0.03)

RF

3 Ind 0.73 (0.02) 0.72 (0.03) 0.69 (0.03)
Ind+ 0.76 (0.02) 0.78 (0.03) 0.71 (0.03)

6 Ind 0.71 (0.01) 0.71 (0.03) 0.69 (0.02)
Ind+ 0.74 (0.02) 0.76 (0.02) 0.71 (0.03)

12 Ind 0.72 (0.02) 0.71 (0.03) 0.71 (0.03)
Ind+ 0.75 (0.02) 0.76 (0.03) 0.72 (0.03)

24 Ind 0.69 (0.02) 0.68 (0.03) 0.69 (0.04)
Ind+ 0.73 (0.03) 0.74 (0.04) 0.71 (0.03)

SVM

3 Ind 0.72 (0.02) 0.69 (0.03) 0.70 (0.03)
Ind+ 0.76 (0.02) 0.77 (0.02) 0.72 (0.02)

6 Ind 0.71 (0.02) 0.68 (0.03) 0.69 (0.03)
Ind+ 0.75 (0.02) 0.76 (0.02) 0.71 (0.03)

12 Ind 0.71 (0.02) 0.69 (0.03) 0.70 (0.03)
Ind+ 0.75 (0.02) 0.76 (0.02) 0.72 (0.03)

24 Ind 0.68 (0.02) 0.65 (0.03) 0.68 (0.04)
Ind+ 0.73 (0.02) 0.74 (0.04) 0.71 (0.03)

SVMp

3 Ind 0.66 (0.02) 0.41 (0.03) 0.74 (0.04)
Ind+ 0.71 (0.02) 0.52 (0.03) 0.77 (0.03)

6 Ind 0.65 (0.02) 0.41 (0.03) 0.74 (0.04)
Ind+ 0.70 (0.02) 0.53 (0.03) 0.77 (0.04)

12 Ind 0.64 (0.02) 0.39 (0.03) 0.74 (0.04)
Ind+ 0.68 (0.02) 0.48 (0.03) 0.77 (0.04)

24 Ind 0.62 (0.02) 0.37 (0.03) 0.72 (0.05)
Ind+ 0.66 (0.02) 0.47 (0.04) 0.75 (0.04)
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Figure 1: The performance of algorithms adopted for identification of sepsis patients in the four data sets
of the study. The features used are statistics of individual responses, patients’ age, gender, and medical
history, frequent temporal patterns, and frequent evolving patterns. ADA: AdaBoost, DT: Decision tree, NB:
Naïve Bayes, LG: Logistic regression, kNN: k-nearest neighbors, RF: Random forest, SVM: Support vector
machine, SVMp: Support vector machine with polynomial kernel function.
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B Methods - Further Details
B.1 Frequent Temporal Patterns
It is very well-known that mining frequent patterns in a data set of networks requires verification of graph
and subgraph isomorphism. Two networks N1 = (V1,E1) and N2 = (V2,E2) are isomorphic if there is a
bijective function I such that:

{vi, v j} ∈ E1 ⇐⇒ {I(vi),I(v j)} ∈ E2 (2)
Also, for a given N1 = (V1,E1), N2 = (V1,E1) would be a subgraph of N1 if and only if:

N2 ⊆ N1 ⇐⇒ V2 ⊆ V1 ∧ E2 ⊆ E1 (3)
The subgraph isomorphism test or verification is defined as given two networks or CIGs, e.g., C1 = (V1,E1)

and C2 = (V2,E2), whether we can find a subgraph of C1 isomorphic to C2. Both graph and subgraph
isomorphism problems are computationally expensive. We use the lexicographic ordering approach proposed
in [34] to minimize the negative impact of the graph isomorphism problem. Also, the occurrence lists are
used to avoid the direct evaluation of the subgraph isomorphism problem by only investigating the CIGs
supporting one candidate’s parent. The pseudocode of mining frequent temporal patterns is provided in
Algorithm 1. Note that in this algorithm, first, a data set of CIGs, DS∗, associated with temporal networks
in DS is created. Then, DS∗ is sent to Algorithm 2 in which the frequent temporal patterns are detected
and returned.

B.2 Frequent Evolving Patterns
The fundamental events considered in this study are defined as follows:

• Birth (�): A birth event is defined as the appearance of a pattern of physiological and biological
biomarkers. The responses contributing to the birth events should all appear in the user-defined
connectivity radius τ from one another.

• Expansion (≺): An expansion event is defined as the continuous growth of the pattern of physiological
and biological biomarkers. The number of responses contributing to an expansion event be more than
the user-defined size threshold σ. Also, expansion should happen gradually, defined by both the σ
and a user-defined continuity radius parameter δ. In other words, the growth should happen in a
window larger than continuity radius δ. Over the expansion window, the size of the pattern increases
monotonically.

• Merge (⊢): A merge event is characterized by joining two connected patterns (each with a size more
than σ) to form one connected component. The patterns contributing to the merge event are initially
disconnected.

• Contraction (≻): A contraction is a continuous reduction in the size of the pattern. Similar to the
expansion event, the number of responses removed from the pattern should be more than a user-
defined size threshold σ. Their removal should be continuous, spanning over a window longer than a
user-defined continuity radius parameter δ. In the window over which the contraction event happens,
no growth is observed.

• Split (⊣): A split event is defined as transforming one connected component into two or more connected
components. Each connected component should be larger than the user-defined size threshold σ and
become disconnected after the split event.

• Death (⊸): A death event is defined as the disappearance of physiological and biological biomarkers’
measurements from a patient’s record. The responses contributing to the death event are all in a
user-defined connectivity radius τ from one another.

B.3 Missing-Data Imputation
Due to missingness in available data, some responses may not be observed for patients in sepsis and
non-sepsis subpopulations. Therefore, in prediction models including statistics of individual responses,
some of the values might be missing. As most machine learning algorithms assume that the input data is
complete, we must impute the missing values. For this purpose, we use a similarity-based missing data
imputation method similar to the one proposed in [48]. For any patient with a missing value, we find
the most similar patient with a known value for the corresponding response to the patient of interest and
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impute the missing value with the known value of the other patient. The patients’ similarities are computed
based on the cosine similarity of each pair of patients’ known values.
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C Results - Further Discussion
The number of frequent patterns, |s|, detected for the other two isomorphism definitions and their sizes, |E|,
for different values of frequency thresholds of f are shown in Figure 2 for the four data sets. Also, Figure 3
shows the number of frequent patterns detected for the four different noise tolerance duration considered
for the two different definitions of isomorphism for DS3.
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Figure 2: The number |s| and size |E| of frequent temporal patterns detected from the four data sets DS3,
DS6, DS12, and DS24 for two isomorphism definitions at different support threshold.
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Figure 3: The number |s| and size |E| of frequent temporal patterns detected from the data sets with 3-hour
window, DS3, for different temporal noise tolerance thresholds and two isomorphism definitions at different
support threshold.

The vertices corresponding to 17 numeric responses are labeled with ℓ = (µ,M, σ,R). However, considering
that some of these responses are precisely measured by sensors, we also add some noise tolerance in
the labeling approach. For this purpose, we discretize each of µ, M, R, and σ measurements at different
intervals and then create the labels. The number of intervals considered for statistics discretization is 2,
5, 10, and 20. In other words, for example, for a response r and a discretization parameter d = 5, using
the values of r for all the patients in the data set, five equal-width intervals are created. The intervals are
ordered and labeled from 1 to 5. Then, we replace the r for each patient and interaction window with the
corresponding interval’s label instead of using the exact value of r. The same approach is applied to the M,
R, and σ. Please note, as the number of intervals goes to ∞, the labels close to the actual measurements.
However, for large values of labeling discretization parameters, the frequent patterns become rare due to
the sensor-based measurement precision. The results of the implementation of frequent temporal mining
over patients’ networks for different values of labeling categories for DS3 are shown in Figure 4.

For the two inexact-time (i) and inexact-time sequence-preserved (is) versions of the isomorphism, the
algorithm could find many frequent patterns with a significantly large number of patterns for the latter
definition. Figure 2 shows the number of frequent temporal patterns identified for the four data sets
for different frequency thresholds and the two inexact-time (i) and inexact-time sequence-preserved (is)

Page 22 of 24



Jo
ur

na
l P

re
-p

ro
of

Frequent Temporal Patterns of Physiological and Biological Biomarkers and Their Evolution in Sepsis

2 5 10 20

in
ex

ac
t-t

im
e

in
ex

ac
t-t

im
e

se
qu

en
ce

-p
re

se
rv

ed

|E|

|s|

|E| |E| |E|

|s|

50
100
200
500

No. of lbl. cat.:

Figure 4: The number |s| and size |E| of frequent temporal patterns detected from the data sets with 3-hour
window, DS3, for different numbers of labeling categories and two isomorphism definitions at different
support threshold.

versions of the isomorphism. This figure shows that the number of patterns is higher for lower gap values
(e.g., 3 hours before sepsis onset). It can be attributed to two facts. First, the number of patients in DS3 is
higher, and it decreases as the length of the window before sepsis onset increases. Secondly, as we reduce
the gap before the sepsis onset, we have a wider window of hospitalization records of patients. Therefore,
it is more probable that the patterns infrequent in, for example, DS12 become frequent in the same set of
patients in DS3. Also, as we increase the frequency threshold, the number of frequent patterns consistently
decreases. Note that frequent patterns composed only of vertices are shown with edges of size zero in this
figure.
For both i and is isomorphism definitions, we needed to determine a noise tolerance threshold. This

threshold is used to consider two responses equal if they have identical response values but close enough
unequal duration. We consider four different thresholds, from 1 hour to 4 hours. Figure 3 shows that
for both i and is isomorphism definitions increasing this threshold consistently increases the number of
patterns detected.

Similar to the temporal duration of measurements that it would be rare to identify patients with identical
duration for the same responses, the results showed that it is also rare to find a group of responses, all
with the same values, to be in common in many patients. However, when we categorized the responses’
measurements into multiple categories, we could identify larger frequent patterns as shown in Figure 4.
Note that a larger number of categories implies values closer to the actual values, while a smaller number
of labeling categories allows for more noise tolerance in the responses’ measurements.
The evolving patterns characterize evolution events for different temporal patterns over time. Figure 5

shows that for wider gaps before sepsis onset, in general, we have a larger number of frequent evolving
patterns (with some exceptions between DS6 and DS12). Increasing the min f req threshold consistently
reduces the number of evolving patterns. Also, we observed that the increase of size parameter σ reduces
the number of evolving patterns. However, the connectivity and continuity radii might impact the num-
bers of frequent evolving patterns differently. The impacts of these two parameters on the number of
patterns depend on the topological structure of physiological and biological biomarkers and their temporal
relationships with one another.
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Figure 5: The number of frequent evolving patterns identified in the four data sets of the study for different
values of parameters σ, τ, δ, and min f req.
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