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Supporting Information Text 

1. Biomass contribution from Lingulodinium polyedra 

Biovolume and cell carbon were determined for each plankton target in IFCB images (Methods in 
the main text). Carbon concentration in each sample was determined by summing up contributions 
from all plankton targets with equivalent spherical diameter ≥ 5 μm and dividing by the volume of 
seawater imaged. Results are shown in Fig. S1. 

2. Precipitation  

Precipitation data were downloaded from: https://www.weather.gov/wrh/climate?wfo=sgx. 20 years 
of monthly mean precipitation (from 2000 to 2019) and 2020 precipitation in San Diego are shown 
in Fig. S2. 

3. Nitrate data quality control 

The nitrate data quality control process for data acquired from the Wirewalker (WW) SUNA V2 
combination (Fig. S3 and text below) builds on previous quality control procedures for SUNA 
measurements (e.g., 1, 2): 

• Step 1: The SUNA was configured to have a duty cycle of 20 minutes per hour with a 
sampling frequency of ca. 1 Hz. Raw nitrate data (unit: μM; 1 μM = 1 mmol m-3) was 
recorded as a function of time. The 95% confidence interval of raw nitrate data (determined 
by calculating the probability density function of nitrate data within a 0.5 oC range) was 1 
mmol m-3 (about 2 standard deviations). This value was used in subsequent error 
calculations.  

• Step 2: The raw nitrate data contained outliers, such as unexpected zeros or extreme 
values (about 5% of the total amount of the data). These points were removed. 

• Step 3: The SUNA V2 pump stream was oriented with the intake facing in an upwards 
direction. For this reason, only measurements collected during the upward, free-ascent 
travel of the Wirewalker were used in this analysis.  

• Step 4: The nitrate data exhibited a temporal drift – increasing by ca. 3 mmol m-3 over 8 
days consistently across all depths (Fig. S3a). This consistency indicates this temporal drift 
is an instrument error and thus needs to be accounted for. The minimum nitrate value within 
each duty cycle was identified. Then a low-pass filter with a cut-off frequency of 0.5 cpd 
was applied to the time series formed by these points to obtain a smoothed baseline. 
Assuming that the actual minimum nitrate concentration was consistently 0 over the course 
of the deployment, this baseline was subtracted from the upcast data to bring the minimum 
values back to 0, as shown in Fig. S3b. 

• Step 5: The nitrate-temperature relationship using the temporal-drift-corrected nitrate data 
showed a positive relationship between nitrate and temperature above 12 oC (Fig. S3d, 
also appearing as an unrealistic non-monotonic vertical nitrate gradient near the ocean 
surface in Fig. S3b). Previous literature (e.g., 3) has also shown a temperature-dependent 
response of the nitrate sensor. This temperature effect was corrected by first fitting a linear 
function to the temperature and nitrate data in the temperature range where nitrate is 
expected to be 0 (here above 12 oC), and then subtracting this linear function from the data. 
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The result is shown in Fig. S3c-d, where nitrate is consistently 0 above a particular 
temperature threshold, as expected from previous data (e.g., 4).  

• Step 6: Given the ca. 1 Hz sampling rate of SUNA, and an average vertical speed of 0.3 m 
s-1 for WW, nitrate data for each WW profile were gridded into uniform 1-m depth bins from 
the surface down to 100 m depth.  

4. ChlorophyII fluorescence (ChlF) data analysis 

Non-photochemical quenching (NPQ) is a photoprotective mechanism that suppresses 
fluorescence under high irradiance. Hence, in situ fluorescence data need to be corrected as NPQ-
induced fluctuations do not represent real changes in biomass. Adapted from other NPQ correction 
methods applied to a diversity of profiling platforms, including the Wirewalker (e.g., 5-7), we 
estimated NPQ by first calculating the correlation coefficient between ChlF and PAR using all the 
data between the surface and 4 m in a two-day window. If the correlation coefficient was less than 
-0.1, the NPQ value for the full water column would be calculated as a linear function of PAR with 
the transfer function coefficients estimated from the linear fit of ChlF and PAR in the upper 4 m. 
The same process was applied incrementally to the whole data set using a 0.1-day offset. The final 
NPQ value was the average across all the increments that contained that time point. The NPQ-
corrected ChlF data was obtained by adding the NPQ correction to the raw ChlF data. 

ChlF was initially recorded in units of relative fluorescence units (RFU). To convert ChlF into the 
more common chlorophyII-a (Chl-a) concentrations (units: mg m-3), a linear fit was calculated 
between the WW 31-33 m depth-averaged ChlF time series (RFU) and the nearby Del Mar Mooring 
32 m calibrated Chl-a time series (mg m-3) (correlation coefficient of 0.91, plot not shown here). 
This regression was used to estimate a conversion function for Chl-a from RFU to mg m-3: 

𝑪𝒉𝒍𝒂	 = 	𝟎. 𝟎𝟓 ∗ (𝑪𝒉𝒍𝑭 − 𝟒𝟒. 𝟗𝟓)                                                       [1] 

where 𝑪𝒉𝒍𝒂 represents Chl-a in units of mg m-3 and 𝑪𝒉𝒍𝑭 represents ChlF in RFU. Eq.1 was 
applied to all the NPQ-corrected ChlF measurements.  

5. The light field, with optical backscatter 

The photosynthetically available radiation (PAR) was estimated by integrating the observed 
irradiance at wavelengths of 380 nm, 412 nm, 490 nm, and 532 nm and then 
interpolating/extrapolating to the range between 400 nm to 700 nm (i.e., the full PAR range). The 
equation is: 

𝑷𝑨𝑹(𝒛, 𝒕) = 	∑ 𝑰𝒏(𝒛, 𝒕)𝜟𝝀𝟒
𝒏#𝟏 × 𝟕𝟎𝟎'𝟒𝟎𝟎

𝟓𝟑𝟐'𝟑𝟖𝟎
× 𝟎. 𝟎𝟒𝟔                                           [2] 

where 𝑰 is the measured irradiance in units of 𝝁𝑾	𝒄𝒎'𝟐	𝒏𝒎'𝟏, 𝒏 represents each wavelength, 𝜟𝝀 
is the wavelength interval size, and 0.046 is for conversion from 𝝁𝑾	𝒄𝒎'𝟐	 to 𝝁𝒎𝒐𝒍	𝒎'𝟐	𝒔'𝟏. Fig. 
S4a shows that even though the surface PAR had some spikes, the shortwave radiation (measured 
independently at the Scripps Pier) was about two to ten times larger than surface PAR –- 
suggesting that about 50%-90% of the input solar energy was absorbed in the surface 3 m. Below 
the ocean surface, PAR was modeled as decaying exponentially in depth: 

𝑰(𝒛) 	= 𝑰𝟎𝒆'𝒌𝒛,                                                                     [3] 

where 𝑰𝟎 is the PAR value at the ocean surface, 𝒌 is the diffuse attenuation coefficient of irradiance, 
and 𝒛 is depth. For each WW profile, 𝒌 can be estimated from linear fits of 𝒍𝒏[𝑰(𝒛)] vs. depth, giving 
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values between 0.08 m-1 and 0.6 m-1. The euphotic depth (𝒁𝒆𝒖), defined as the depth where PAR 
is 1% of its surface value, was estimated from: 

𝒁𝒆𝒖 =
'𝒍𝒏(𝟎.𝟎𝟏)

𝒌
.                                                                 [4] 

A larger absolute 𝒁𝒆𝒖 means that the water is clearer, with deeper penetration of light. A negative 
correlation between 𝒁𝒆𝒖 and upper ocean (0-30 m) phytoplankton biomass (or particle load) (Fig. 
S4b) demonstrates that the subsurface light field was strongly modulated by upper ocean biological 
properties during the red tide: that is, the irradiance was attenuated (and the euphotic zone shoaled) 
by the dense phytoplankton community in addition to the expected decay of light in clear water.  

Turbidity (suspended particle load) was estimated from the optical backscatter data using the 
instrument’s factory calibration: 

𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚	 = 	𝟎. 𝟎𝟎𝟔𝟏 ∗ (𝑶𝑩𝑺 − 𝟓𝟎),                                              [5] 

where 𝑻𝒖𝒓𝒃𝒊𝒅𝒊𝒕𝒚 is in NTU (Nephelometric Turbidity Units), and 𝑶𝑩𝑺 is the measured optical 
backscatter at 532 nm. Fig. S4d showed similar spatial-temporal patterns as Chl-a (Fig. 1e), 
indicating that the suspended particles in the upper ocean were dominated by phytoplankton during 
the observational period. Note that we use turbidity as a relative measure, and the sensor is 
assumed to be stable in time. 

6. Depth-to-isopycnal coordinate transformation 
 
Raw data were recorded as a function of depth (pressure) and time, as seen in Fig. 1c-f. Within a 
depth range, raw measurements have variations both along and cross the isopycnals as a function 
of time. An example of nitrate concentrations in T/S space (Fig. S5) shows both a general trend of 
decreasing nitrate with decreasing density (i.e., cross-isopycnal variability), and variations of nitrate 
over time at the same density value (i.e., along-isopycnal variability). When internal waves were 
present, cross-isopycnal variability appears as temporal changes of nitrate (and other variables like 
temperature and salinity) in the depth coordinate system due to the vertical heaving of isopycnals. 
This complicates calculations of temporal changes at any depth, especially for dynamically passive 
but biologically active tracers such as nitrate. Transforming from depth coordinates to isopycnal 
coordinates removes the vertical displacements created by internal waves, decoupling the 
fluctuations induced by vertical displacements of isopycnals from those caused by biological uptake 
and horizontal (along-isopycnal) gradients.      
  
The depth-to-isopycnal coordinate transformation was executed by interpolating raw physical and 
biogeochemical variables from each individual WW profile onto uniformly gridded density bins 
(here, the density interval was set to be 0.02 kg m-3). Similarly, raw pressure measurements were 
also interpolated to give the instantaneous depths of each density bin for each profile. The mean 
isopycnal depth was calculated as the time-averaged interpolated depth for each gridded density 
bin over the course of the study period. As the mean isopycnal depth accounts for the different 
vertical spacings between different density layers, it provides a more realistic representation of the 
vertical distribution of density layers than using density as the y axis.  
 
This different spacing of density bins in depth also leads to different numbers of raw measurement 
points in each gridded density bin, which results in different errors associated with the transformed 
values. To estimate the errors, the standard error of the mean (SEM; the standard deviation of the 
mean of multiple samples means) was calculated for each density bin:  
 

𝑺𝑬𝑴 = 𝝈
√𝒏

,                                                                [6] 
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where 𝝈 is the standard deviation of the raw measurements, and 𝒏 is the number of points within 
each density bin. An example of the coordinate transformation result is shown in Fig. S6, where 
vertical displacements of the isopycnals disappear after applying the depth-to-isopycnal 
transformation. While temperature and salinity are relatively constant along isopycnals (Fig. S6b,d), 
the along-isopycnal nitrate displays considerable variability (Fig. S6f). 

7. Along-isopycnal velocities 

As Eulerian measurements (fixed point mooring), the along-isopycnal WW time series for each 
variable contains temporal gradients driven by horizontal advection of existing spatial gradients. As 
seen in Fig. S7c, from noon 05/06 to 05/08, the along-isopycnal nitrate and horizontal velocities 
(southeast-ward current corresponding to decreasing of nitrate) were correlated, suggesting that 
changes in the along-isopycnal nitrate were partially driven by horizontal advection. Crucially, the 
advective signal will confound estimates of biologically driven nitrate rates of change, and thus 
must be accounted for. The detailed procedures are shown below. 

8. Temperature/Salinity (T/S) binning 

To separate the effects of horizontal advection from biological activities in the along-isopycnal 
nitrate time series, we applied a Temperature/Salinity binning method, which utilized spiciness as 
a tracer to follow the same water parcel (defined by the conservative tracers temperature and 
salinity) in time. Spiciness is a quantity related to Temperature/Salinity co-variability on a density 
layer: more positive means warmer and saltier water (spicier), while less positive means cooler and 
fresher water (mintier) (8). Thus, temporal changes in nitrate concentration driven only by biological 
processes can be estimated by calculating changes in nitrate concentration within each water 
mass. An example of how this method was performed is shown in Fig. S8. Along each isopycnal, 
data points were rearranged into evenly spaced spiciness bins (interval of 0.005 kg m-3). Points in 
the same spiciness bin were assumed to represent the same water mass. Note that the number of 
data points in each spiciness bin will vary. 

9. Estimation of Nitrate rate of change 
 
Rates of change of nitrate, 𝝆𝑵𝑶𝟑 (units: mmol N m-3 day-1), quantify how fast nitrate changes over 
time, and are estimated from the specific nitrate rate of change, 𝒓 (unit: day-1), following the 
procedures described below.  

 
After the T/S binning, within each water parcel, nitrate can be modeled as changing exponentially 
over time (similar to (9)). The equation for the temporal evolution of nitrate can be expressed as: 
 

𝑵(𝒕) 	= 	𝑵𝟎𝒆𝒓𝒕,                                                                [7] 
 
where 𝑵𝟎 is the initial nitrate concentration, 𝒓 is the nitrate-specific rate of change of nitrate (days-
1), and 𝒕 is time (days). Using consecutive time points in each spiciness bin (i.e., each water mass), 
𝒓 was estimated as: 
 

𝒓(𝒊) 	= 𝟏
𝒕(𝒊9𝟏)'𝒕(𝒊)

∗ 𝒍𝒏	(𝑵(𝒊9𝟏)
𝑵(𝒊)

),                                                [8] 
 
where 𝑵 is the measured nitrate concentration, and 𝒊 represents the time index of the data. The 
error for 𝒓 was calculated as: 
 

𝒓𝑬(𝒊) 	=
𝟏

𝒕(𝒊9𝟏)'𝒕(𝒊)
∗ W(𝑺𝑬𝑴(𝒊)𝑵(𝒊)

)𝟐 + (𝑺𝑬𝑴(𝒊9𝟏)
𝑵(𝒊9𝟏)

)𝟐.                                   [9] 
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An example is shown in Fig. S9a. Note that this exponential fitting was only applied when the 
absolute difference between two points was larger than 2 mmol m-3 (2 times raw nitrate data’s 
confidence limit) — ensuring a statistically significant estimate of 𝑟 that can be further interpreted 
as biological processes. Due to this criterion, some estimates of 𝑟 were undefined. Overall, the 
probability density functions (PDFs) of the estimated 𝒓 (Fig. S9d) show a clear distribution of the 
majority of the data being negative, consistent with the observations of nitrate loss over time. 
Furthermore, estimates of 𝒓 give a distinct mode value of -1 day-1 (Fig. S9d), indicating that the 
biologically driven loss rate of nitrate is relatively constant among different water parcels, across 
different isopycnals, and over time. Although experiments were done under different conditions (lab 
vs. nature), and with different species (Heterocapsa niei vs. Lingulodinium polyedra), our estimated 
𝒓 is consistent with the values reported in (9). 

 
A temporal integration of the estimated 𝒓(𝒛, 𝒕) was performed to estimate the changes in the nitrate 
field driven only by biological activities – that is, without the effects of advection. Due to the fact 
that estimates of 𝑟 had uneven time intervals along each isopycnal (primarily due to the inconsistent 
presence of different water masses at the WW), a rebinning in time was executed by setting a 
uniform time bin of 4 hours, and choosing the median 𝒓 value within each 4-hour window to be the 
rebinned 𝒓, denoted as 𝒓𝒃𝒊𝒏. Its error is:  
 

𝒓𝒃𝒊𝒏,𝑬 =
𝟏
𝒎
∗ Z∑ (𝒓𝑬(𝒊))𝟐𝒎

𝒊#𝟏 ,                                                  [10] 
 
where 𝒎 is the number of estimates of 𝒓 in each time bin. Even though the time resolution of the 
nitrate estimates decreased after this rebinning process, there were two distinct advantages: 1) the 
process generated a uniform time interval for further nitrate calculations; 2) the process 
compensated for non-significant values previously excluded in the estimates of 𝒓.  

 
The predicted biologically mediated nitrate concentration, 𝑵𝒑𝒓𝒆𝒅 was calculated using the estimates 
of 𝒓 along each isopycnal as: 
 

𝑵𝒑𝒓𝒆𝒅(𝒊 + 𝟏) 	= 	𝑵𝒑𝒓𝒆𝒅(𝒊)𝒆𝒓𝒃𝒊𝒏(𝒊)∗𝜟𝒕	,                                          [11] 
 
where 𝜟𝒕 is the time interval between estimates of 𝒓 (4 hours), 𝒊 represents the index of the data, 
and the initial value is taken from the first profile shown in Fig. 2c from the observations. The error 
associated with the predicted nitrate is estimated as: 
 

𝑵𝒑𝒓𝒆𝒅,𝑬(𝒊 + 𝟏) 	= W(𝒆𝒓𝒃𝒊𝒏(𝒊)∗𝜟𝒕	 ∗ 𝑵𝒑𝒓𝒆𝒅,𝑬(𝒊))𝟐 + (𝑵𝒑𝒓𝒆𝒅(𝒊) ∗ 𝜟𝒕 ∗ 𝒆𝒓𝒃𝒊𝒏(𝒊)∗𝜟𝒕	 ∗ 𝒓𝒃𝒊𝒏,𝑬(𝒊))𝟐	.         [12] 

 
𝑵𝒑𝒓𝒆𝒅 is shown in Fig. S9b, with signatures of clear deepening of nitrate contours in time, and also 
decreasing of nitrate along isopycnals in time between 20 m and 33 m. These patterns are 
consistent with the observations (Fig. 2c), but have had advection-associated fluctuations removed. 
 
To estimate the rate of change of nitrate, 𝝆𝑵𝑶𝟑, a linear differentiation in time was applied to the 
predicted nitrate concentrations (Fig. S9b) along each isopycnal: 
 

𝝆𝑵𝑶𝟑(𝒊) = 	
𝒅	𝑵𝒑𝒓𝒆𝒅(𝒊)

𝒅𝒕
= 𝑵𝒑𝒓𝒆𝒅(𝒊)∗[𝒆𝒓𝒃𝒊𝒏(𝒊)∗𝜟𝒕'𝟏]

𝜟𝒕
.                                       [13] 

 
The associated error was estimated by: 
 

𝝆𝑵𝑶𝟑,𝑬 = W([𝒆
𝒓𝒃𝒊𝒏∗𝜟𝒕'𝟏]

𝜟𝒕
∗ 𝑵𝒑𝒓𝒆𝒅,𝑬)𝟐 + (𝑵𝒑𝒓𝒆𝒅 ∗ 𝒆𝒓𝒃𝒊𝒏∗𝜟𝒕 ∗ 𝒓𝒃𝒊𝒏,𝑬)𝟐.                           [14] 

 
A modal value of -6 mmol m-3 day-1 was obtained from the PDF of 𝝆𝑵𝑶𝟑  (Fig. S9e), which is 
consistent with previous literature (1 - 4 mmol m-3 day-1, with L. polyedra concentrations of 105 cells 
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per liter, 10, 11). The estimated nitrate loss (𝑵𝒍𝒐𝒔𝒔) was simply obtained by integrating 𝝆𝑵𝑶𝟑 in time 
with a zero initial value, and had the same error bars as 𝑵𝒑𝒓𝒆𝒅,𝑬. Generally, the error bars for depth 
integrals, 𝑬𝑫, can be expressed as: 
 

𝑬𝑫 = W∑ (𝒅𝒛(𝒊) ∗ 𝒆𝒓𝒓(𝒊))𝟐𝑸
𝒊#𝟏 	,                                                 [15] 

 
where 𝑸 is the number of density layers, 𝒅𝒛 is the depth difference between each layer, and 𝒆𝒓𝒓 
is the error bar of the integrated variable.  

 
In all, these approaches allow us to accurately decouple vertical and horizontal advection signals 
from biologically driven changes of the nitrate field — even though we had only a single mooring 
and so could not directly estimate horizontal spatial gradients. The results produce features in the 
data that are consistent with other independent data (PAR, Chl-a, turbidity, etc.), further supporting 
the feasibility of this T/S binning method; this method could potentially be applied to other research 
problems in similar situations.   

 
Finally, to emphasize how important it is to remove horizontal advection when estimating nitrate 
uptake rate, we compare the depth-integrated nitrate loss calculated from the raw observational 
nitrate data to the “de-advected” nitrate data (𝑵𝒑𝒓𝒆𝒅) (Fig. S10). This comparison shows clearly that 
there are large excursions in nitrate concentration in the raw nitrate data (the blue curve), which 
are not seen in the “de-advected” data (red line). Our calculations show that these fluctuations were 
driven by horizontal advection of horizontal, along-isopycnal gradients of nitrate.  
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Supporting figures 

Fig. S1 

 
Figure S1. IFCB-estimated carbon biomass over the entire bloom. a) carbon biomass of L. polyedra 
(red) and all plankton that were ≥5 μm but within IFCB’s upper size limit (blue). b) carbon biomass 
of L. polyedra as a fraction of the carbon biomass of all imaged plankton ≥5 μm. The grey vertical 
bars indicate nighttime. The dashed black box represents our study period. 
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Fig. S2 

 
Figure S2. Monthly mean precipitation (from 2000 to 2019) vs. 2020 precipitation in San Diego. 
The error bars are one standard deviation. Data from the National Weather Service. 
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Fig. S3  

Figure S3. Nitrate data quality control procedures. Text on the left outlines the steps for nitrate data 
quality control. a-c) The results after specific step(s) have been applied to the nitrate data, with 
nitrate plotted in color as a function of depth and time. The two black lines are two isopycnals 
plotted for reference. Note that the colorbar range is different in a, compared to b and c, but the 
colormap is the same from 0-25 mmol m-3 for all panels. d) The nitrate-temperature relationship 
based on data before (blue stars) and after (red dots) implementing the temperature correction. 
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Fig. S4 

Figure S4. Irradiance and turbidity. a) Shortwave radiation (400 nm - 700 nm range) measured at 
the Scripps Pier (blue line) and surface 3 m depth-averaged PAR estimated from the irradiance 
measurements from the Wirewalker (black line). b) Estimated euphotic depth (black stars), and 0-
30 m depth-integrated Chl-a and turbidity in blue and red respectively. Note that the Chl-a and 
turbidity time series have been filtered a 24-h running mean to smooth out short-time-scale 
variability. c-d) PAR and turbidity from the WW as a function of time and depth, respectively. Note 
that only the upper 60 m of data are shown here.  
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Fig. S5 

Figure S5. Temperature and salinity characteristics of data (T/S diagram) from the Wirewalker 
acquired during a 2-day window between 22 and 35 m depth. Data points are colored by time, and 
point size is proportional to nitrate concentration. The black lines are five isopycnals, with their 
corresponding mean isopycnal depths denoted at the right-hand end of the curve. Note that there 
is a variation of T, S, and nitrate along some isopycnals. 

 
  



 
 

13 
 

Fig. S6 

 

Figure S6. Examples of the depth-to-isopycnal coordinate transformation. a/c/e) Observed 
temperature, salinity, and nitrate as a function of depth and time. Black lines show isopycnals with 
values of 1025.5, 1025.58, 1025.62, 1025.68, and 1025.72 kg m-3 respectively. b/d/f) Temperature, 
salinity, and nitrate as a function of gridded density bin (plotted as their mean depths) and time, 
with black lines representing the same densities as the upper panels.  
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Fig. S7 

Figure S7. a-b) Along-isopycnal East-West velocity and North-South velocity respectively. c) 20-35 
m depth-averaged nitrate in magenta, with black arrows showing the direction and the magnitude 
of the velocity, with up and right indicating the northward and eastward direction, respectively. Note 
the correlations of nitrate fluctuations with velocity fluctuations, consistent with horizontal advection 
of existing horizontal (along-isopycnal) gradients of nitrate. 
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Fig. S8 

Figure S8. An example of T/S binning by spiciness on the 1025.5 kg m-3 isopycnal. Color represents 
time, and symbol size represents nitrate concentration. The grey line shows the isopycnal. The 
black dashed lines are spiciness anomaly contours (spiciness minus the spiciness calculated from 
the mean T/S on this isopycnal) with an interval of 0.005 kg m-3. 
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Fig. S9 

 

Figure S9. Estimation of the nitrate rates of change. a) To estimate 𝒓, exponential curves were fit 
to the data points for each water parcel on an isopycnal determined by the T/S binning. b,c) The 
predicted nitrate field, and estimated nitrate rate of change 𝝆𝑵𝑶𝟑, respectively. d,e) The probability 
density functions of 𝒓, and 𝝆𝑵𝑶𝟑, respectively. 
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Fig. S10 

 

Figure S10. Comparison between depth-integrated nitrate loss based on the raw observed nitrate 
data (blue line), and the de-advected nitrate data (red line). Grey areas represent periods when the 
blue line is less than the red line, indicating times when nitrate decreased due to advection, not 
biological uptake.  
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