
Biometrics 000, 000–000 DOI: 000

March 2022

Supporting Information for

“Instrumented Difference-in-Differences”

Ting Ye1,∗, Ashkan Ertefaie2, James Flory3, Sean Hennessy4 and Dylan S. Small5

1Department of Biostatistics, University of Washington.

2Department of Biostatistics and Computational Biology, University of Rochester.

3Department of Subspecialty Medicine, Memorial Sloan Kettering Cancer Center.

4Department of Biostatistics, Epidemiology, and Informatics,

Perelman School of Medicine, University of Pennsylvania.

1Department of Statistics and Data Science, The Wharton School, University of Pennsylvania.

*email: tingye1@uw.edu

Summary: Section S1 contains a review of the standard IV and DID; Section S2 includes additional results for the

instrumented DID; Section S3 contains technical proofs; Section S4 contains additional details on the application.

This paper has been submitted for consideration for publication in Biometrics



Instrumented DID 1

S1. Review of standard IV and DID

S1.1 Review: standard IV

The standard IV method (except for the calendar time IV) does not have a time component

and is most commonly applied to cross-sectional studies (Hernan and Robins, 2020). This

is probably why many studies using the standard IV such as Neuman et al. (2014) simply

ignore the longitudinal structure that is intrinsic in the dataset. To better understand the

assumptions and make connections to the instrumented DID method proposed in Section

2, we embed the standard IV method into our potential outcomes framework with the time

component made explicit.

Identification of the ATE β0 using Z as a standard IV assumes that the following conditions

hold with probability 1:

Assumption S1 (Standard IV): (a) (Relevance) E(D | Z = 1,X) 6= E(D | Z = 0,X);

(b) (Independence & exclusion restriction) Z ⊥ (T,D
(z)
t , Y

(d)
t , t = 0, 1, z = 0, 1, d = 0, 1) |X;

(c) (No unmeasured common effect modifier) Cov(D
(1)
t −D

(0)
t , Y

(1)
t −Y

(0)
t |X) = 0 for t = 0, 1.

Assumptions S1(a)-(b) formalize the three core IV assumptions discussed in Section 1.

Assumption S1(a) says that Z is related to D. Assumption S1(b) says that Z is as good as

random and has no direct effect on the outcome. In particular, Z ⊥ T is required to guarantee

that (D
(z)
T , Y

(d)
T , z = 0, 1, d = 0, 1), the customarily defined potential exposures and outcomes

when ignoring the longitudinal structure, are independent of Z. We refer interested readers

to Richardson and Robins (2014) and Wang and Tchetgen Tchetgen (2018) for discussions on

different statements of IV assumptions. Compared with the instrumented DID assumptions

in Assumption 2, Assumption S1(a) is distinct from Assumption 2(a), Assumption S1(b) is

stronger than Assumption 2(b), and Assumption S1(c) is the same as Assumption 2(c).

Under Assumption 1 and Assumption S1, we show in Section S3.1 that the conditional
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Wald ratio identifies a weighted average of the time-specific CATE

E(Y | Z = 1,X)− E(Y | Z = 0,X)

E(D | Z = 1,X)− E(D | Z = 0,X)
(S1)

=
w1(X)E(Y

(1)
1 − Y (0)

1 |X)

w1(X) + w0(X)
+
w0(X)E(Y

(1)
0 − Y (0)

0 |X)

w1(X) + w0(X)
,

where wt(X) = P (T = t | X)E(D
(1)
t −D

(0)
t | X), t = 0, 1. This result indicates that if the

treatment effect is expected to vary over time and the target estimand is the conditional or

unconditional ATE, one should adjust for time indicator as an additional confounder.

S1.2 Review: DID

The basic DID framework considers a population observed in a pre-exposure period t = 0

and a post-exposure period t = 1. All individuals are unexposed at t = 0. Some individuals

become exposed at t = 1. The parameter of interest is the average treatment effect for the

treated in the post-exposure period E(Y
(1)

1 − Y (0)
1 | D1 = 1), or the conditional counterpart

E(Y
(1)

1 − Y (0)
1 | D1 = 1,X).

The method of DID relies on a crucial parallel trends assumption E(Y
(0)

1 −Y (0)
0 |X, D1 =

1) = E(Y
(0)

1 −Y
(0)

0 |X, D1 = 0), which states that conditional on the covariates, the exposed

and unexposed individuals would have exhibited parallel trends in the potential outcomes

in the absence of treatment (Abadie, 2005). In other words, there is no unmeasured time-

varying difference between the exposed and unexposed individuals. With this assumption,

the effect of the treatment on the treated conditional on X is identified from

E(Y
(1)

1 − Y (0)
1 | D1 = 1,X) = E(Y1 − Y0 | D1 = 1,X)− E(Y1 − Y0 | D1 = 0,X).
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S2. Additional Results for Instrumented DID

S2.1 Instrumented DID when treatment effect may change over time

Consider the case without observed covariates. If Assumption 1 and Assumption 2(a)-(c)

hold, then

δY
δD

=
E(D

(1)
1 −D

(0)
1 )

δD
E(Y

(1)
1 − Y (0)

1 )− E(D
(1)
0 −D

(0)
0 )

δD
E(Y

(1)
0 − Y (0)

0 ). (S2)

When the treatment effect may vary over time, δY /δD still has a nice interpretation under

some special scenarios: (i) when either E(D
(1)
0 −D

(0)
0 ) or E(D

(1)
1 −D

(0)
1 ) is zero, then δY /δD

is the average treatment effect at the time point t in which E(D
(1)
t − D

(0)
t ) 6= 0; (ii) when

E(D
(1)
0 − D

(0)
0 ) and E(D

(1)
1 − D

(0)
1 ) are both non-zero and of opposite sign, then E(D

(1)
0 −

D
(0)
0 )/δD ∈ (−1, 0) and δY /δD is a weighted average of E(Y

(1)
1 − Y (0)

1 ) and E(Y
(1)

0 − Y (0)
0 )

with non-negative weights. Otherwise, although δY /δD is still a weighted average of the

treatment effects at the two time points, the weights can be negative and δY /δD no longer

has a clear causal interpretation. For instance, if E(Y
(1)

1 − Y
(0)

1 ) > E(Y
(1)

0 − Y
(0)

0 ) and

E(D
(1)
1 −D

(0)
1 ) > E(D

(1)
0 −D

(0)
0 ) > 0, then δY /δD > E(Y

(1)
1 − Y (0)

1 ) > E(Y
(1)

0 − Y (0)
0 ), i.e.,

δY /δD is larger than any time-specific average treatment effect.

S2.2 One-sample and two-sample Wald estimators

Let
d−→ denote convergence in distribution. Theorem S1 establishes the asymptotic property

for the one-sample instrumented DID Wald estimator β̂wald.

Theorem S1: Under Assumptions 1 and 2, and assume the second moments are finite,

as n→∞, the Wald estimator β̂wald in (2) is consistent and asymptotically normal, i.e.,

|δD|
√
n(β̂wald − β0)

d−→ N

(
0,
∑
t=0,1

∑
z=0,1

Var(Y − β0D|T = t, Z = z)

P (T = t, Z = z)

)
. (S3)

For statistical inference, we can use a consistent plug-in variance estimator

1

n(δ̂D)2

∑
t=0,1

∑
z=0,1

V̂ar(Y − β̂waldD|T = t, Z = z)

P̂ (T = t, Z = z)
, (S4)
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where δ̂D is defined in (2), P̂ (T = t, Z = z) = PnI(T=t,Z=z), V̂ar(Y − β̂waldD|T = t, Z = z) is

the sample variance of Yi − β̂waldDi within the stratum with Ti = t, Zi = z.

The next theorem establishes the asymptotic property for the two-sample instrumented

DID Wald estimator β̂TSwald.

Theorem S2: Suppose that Assumptions 1 and 2 hold for both (Ta, Za, Da, Ya) and

(Tb, Zb, Db, Yb), and E(Ya|Ta, Za) = E(Yb|Tb, Zb), E(Da|Ta, Za) = E(Db|Tb, Zb). Also assume

that limna,nb→∞min(na, nb)/nc = αc > 0 for c ∈ {a, b}, and the second moments are finite.

As min(na, nb)→∞, the two-sample Wald estimator β̂TSwald is consistent and asymptotically

normal, i.e.,

|δDb|
√

min(na, nb)(β̂TSwald − β0)
d−→

N

(
0,
∑
t=0,1

∑
z=0,1

αa
Var(Ya|Ta = t, Za = z)

P (Ta = t, Za = z)
+ αbβ

2
0

Var(Db|Tb = t, Zb = z)

P (Tb = t, Zb = z)

)
. (S5)

For statistical inference, a consistent plug-in variance estimator for β̂TSwald is

1

(δ̂Db)2

∑
t=0,1

∑
z=0,1

[
V̂ar{µ̂Y a(t, z)}+ β̂2

TSwaldV̂ar{µ̂Db(t, z)}
]
, (S6)

where µ̂Y a(t, z) and µ̂Db(t, z) are as defined in (2) but evaluated respectively at the outcome

dataset and the exposure dataset, V̂ar{µ̂Y a(t, z)} and V̂ar{µ̂Db(t, z)} are their consistent

variance estimators. In fact, β̂TSwald and its variance estimator can be calculated provided

that these summary statistics are available.

S2.3 Sensitivity analysis

We develop sensitivity analysis methods to evaluate how sensitive the conclusion is to

violations of Assumption 2(d) for both the one-sample and two-sample designs when there

are no observed covariates. There is a large and growing literature on sensitivity analysis,

e.g., Rosenbaum (1987); Imbens (2003); VanderWeele and Ding (2017) and Fogarty (2020).

Consider first the one-sample design. When Assumption 2(d) does not hold, i.e., E(Y
(1)

1 −
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Y
(0)

1 ) 6= E(Y
(1)

0 − Y (0)
0 ). We use two sensitivity parameters γL, γU to quantify deviate from

Assumption 2(d): Γ := E(Y
(1)

1 −Y (0)
1 )−E(Y

(1)
0 −Y (0)

0 ) ∈ [γL, γU ], where γL 6 0 6 γU . When

γL = γU , it is the same as the case under Assumption 2(d). Next, we construct a confidence

interval for β∗ = E(Y
(1)

0 − Y (0)
0 ) when Γ ∈ [γL, γU ]; similar approach can be developed for

E(Y
(1)

1 − Y (0)
1 ).

From (S2), we know that β∗ = δY /δD−Γ{µD(1, 1)−µD(1, 0)}/δD, whose sample analogue

is defined as β̂SA(Γ) = δ̂Y /δ̂D − Γ{µ̂D(1, 1)− µ̂D(1, 0)}/δ̂D. Similar to the proof of Theorem

S1, the asymptotic distribution of β̂SA(Γ) is

|δD|
√
n(β̂SA(Γ)− β∗) d−→ N

(
0,
∑
t=0,1

∑
z=0,1

Var(Y − (β∗ + tΓ)D|T = t, Z = z)

P (T = t, Z = z)

)
.

Denote a consistent variance estimator of β̂SA(Γ) as V̂SA(Γ), let CL(Γ) = β̂SA(Γ)−1.96V̂SA(Γ)1/2

and CU(Γ) = β̂SA(Γ) + 1.96V̂SA(Γ)1/2, then [CL(Γ), CU(Γ)] is an asymptotic 95% confidence

interval for β∗ at any given value of Γ. By applying the union method (Zhao et al., 2019), we

have that
[

infΓ∈[γL,γU ] CL(Γ), supΓ∈[γL,γU ] CU(Γ)
]

is an asymptotic confidence interval with at

least 95% coverage for any Γ ∈ [γL, γU ].

The sensitivity analysis for the two-sample setting is analogous. Define β̂SA,TS(Γ) = δ̂Y a/δ̂Db−

Γ{µ̂Db(1, 1)−µ̂Db(1, 0)}/δ̂Db. Similar to the proof of Theorem S2, the asymptotic distribution

of β̂SA,TS(Γ) is

|δDb|
√

min(na, nb)(β̂SA,TS(Γ)− β∗) d−→

N

(
0,
∑
t=0,1

∑
z=0,1

αa
Var(Ya|Ta = t, Za = z)

P (Ta = t, Za = z)
+ αb(β

∗ + tΓ)2 Var(Db|Tb = t, Zb = z)

P (Tb = t, Zb = z)

)
.

The construction of the confidence interval follows from the same steps as the one-sample

design.
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S2.4 Bounded, efficient and multiply robust estimation

In this section, motivated from Wang and Tchetgen Tchetgen (2018), we propose bounded

versions of the semiparametric estimators that are guaranteed to fall within the parameter

space with a binary outcome.

Note that for a binary Y , the nuisance parameters inM1,M2,M3 are no longer variation

independent. For example, because δ(x)δD(x) + bY (x) +mY T (x) +mY Z(x) = µY (1, 1,x) ∈

[0, 1], the values taken by the other nuisance parameters will restrict the values that δ(x) can

take. To make sure that the nuisance parameters are variation independent of each other,

our choice of the nuisance parameters is

π(t, z,x;γ), δ(x;α), δD(x;θ),

OPD1(x; ξ1),OPD2(x; ξ2),OPD3(x; ξ3),OPY 1(x;ϑ1),OPY 2(x;ϑ2),OPY 3(x;ϑ3),

(S7)

where for C ∈ {Y,D} (recall the definition µC(t, z,X) = E(C | T = t, Z = z,X)),

OPC1(x) =
µC(0, 1,x)µC(0, 0,x)

{1− µC(0, 1,x)}{1− µC(0, 0,x)}
,

OPC2(x) =
µC(1, 1,x)µC(1, 0,x)

{1− µC(1, 1,x)}{1− µC(1, 0,x)}
,

OPC3(x) =
{1 + µC(1, 1,x)− µC(1, 0,x)}{1 + µC(0, 1,x)− µC(0, 0,x)}
{1− µC(1, 1,x) + µC(1, 0,x)}{1− µC(0, 1,x) + µC(0, 0,x)}

.

Proposition S1 shows that our models provide a variation-independent parameterization of

the likelihood (P (Y = 1 | T, Z,X = x), P (D = 1 | T, Z,X = x)). Also because P (T, Z |

X = x) is variation-independent of (P (Y = 1 | T, Z,X = x), P (D = 1 | T, Z,X = x)), the

parameter space of (γ,α,θ, ξ1, ξ2, ξ3,ϑ1,ϑ2,ϑ3) is unconstrained.

Proposition S1: For binary D, Y and for any x, the mapping

(δ(x), δD(x),OPD1(x),OPD2(x),OPD3(x),OPY 1(x),OPY 2(x),OPY 3(x))

→ (µD(t, z,x), µY (t, z,x), t = 0, 1, z = 0, 1)

is a diffeomorphism between the interiors of their domains, which are (−1, 1) × (−2, 2) ×

(0,∞)6 and (0, 1)8 respectively.
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Proof. We proceed with the proof in the following four steps:

(i) δY (x) = δD(x)δ(x) ∈ (−2, 2);

(ii) The mapping (δD(x),OPD1(x),OPD2(x),OPD3(x)) → (µD(t, z,x), t = 0, 1, z = 0, 1) is a

diffeomorphism from (−2, 2)× (0,∞)3 to (0, 1)4;

(iii) The mapping (δY (x),OPY 1(x),OPY 2(x),OPY 3(x)) → (µY (t, z,x), t = 0, 1, z = 0, 1) is a

diffeomorphism from (−2, 2)× (0,∞)3 to (0, 1)4;

(iv) P (Y = 1 | T, Z,X) is variation independent of P (D = 1 | T, Z,X).

In the following, we show the second step. The third step can be shown in the same way. Note

first that following a similar argument as in Richardson et al. (2017), (δD(x),OPD3(x)) →

(µD(0, 1,x)−µD(0, 0,x), µD(1, 1,x)−µD(1, 0,x)) is a diffeomorphism from (−2, 2)× (0,∞)

to (−1, 1)2. Moreover, from Richardson et al. (2017), we have that (OPD1(x), µD(0, 1,x) −

µD(0, 0,x))→ (µD(0, 1,x), µD(0, 0,x)) is a diffeomorphism from (0,∞)× (−1, 1) to (0, 1)2,

and (OPD2(x), µD(1, 1,x)−µD(1, 0,x))→ (µD(1, 1,x), µD(1, 0,x)) is a diffeomorphism from

(0,∞)× (−1, 1) to (0, 1)2. The result then follows from noting that P (D = 1 | Z, T = 0,X)

is variation independent of P (D = 1 | Z, T = 1,X).

With the new set of nuisance parameters, we define ∆b
C(x) = (OPC1(x),OPC2(x),OPC3(x)),

for C ∈ {Y,D}. Parallel to the development in Section 3.2, consider three sets of model

assumptions:

M1 : models for δ(x), δD(x),∆b
D(x),∆b

Y (x) are correct.

M2 : models for π(t, z,x), δD(x) are correct.

M3 : models for π(t, z,x), δ(x) are correct.

In what follows, we first present estimators of ψ0 under each of the three models. Im-

portantly, we consider a working model β(v;ψ) that falls within the parameter space of

E(Y (1) − Y (0) | V = v).
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We first discuss regression-based estimation of ψ0 under model M1. For binary Y , we

impose a model δ(x;α) which guarantees that δ(x;α) ∈ [−1, 1], e.g.,

δ(x;α) = tanh(αTx) =
exp(2αTx)− 1

exp(2αTx) + 1
(S8)

as in Wang and Tchetgen Tchetgen (2018). For implementation, we first obtain the maximum

likelihood estimators (θ̂, ξ̂1, ξ̂2, ξ̂3) from solving the score function

PnS(D | Z, T,X;θ, ξ1, ξ2, ξ3) = 0

corresponding to the likelihood of D conditional on Z, T,X, then we obtain the maximum

likelihood estimators (α̂, ϑ̂1, ϑ̂2, ϑ̂3) from solving the score function

PnS(Y | Z, T,X; θ̂,α,ϑ1,ϑ2,ϑ3) = 0

corresponding to the likelihood of Y conditional on Z, T,X. The bounded regression-based

estimator of ψ is the solution to

Pnq(V ;ψ){δ(X; α̂)− β(V ;ψ)} = 0.

Under M2, the inverse probability weighting estimator is the same as that introduced in

the main text, with the only difference of using a bounded working model β(v;ψ).

Under M3, the estimator based on g-estimation is also the same as that introduced in

the main text, with the only difference of using a bounded working model β(v;ψ) and a

bounded model for δ(x) as in (S8).

A bounded, efficient and multiply robust estimator can also be obtained from speci-

fying nuisance models listed in (S7). As shown in Proposition S1, these models imply

bD(x),mDZ(x), mDT (x), bY (x),mY Z(x),mY T (x). Hence, a multiply robust estimator of ψ

can be obtained in the same way introduced in main text, with OPD1(x),OPD2(x),OPD3(x),

OPY 1(x),OPY 2(x), OPY 3(x) in place of bD(x),mDZ(x), mDT (x), bY (x),mY Z(x),mY T (x).
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S3. Technical Proofs

S3.1 Proof of (S1)

Note that from the property of conditional independence (Dawid, 1979, Lemma 4.3), As-

sumption 1(c) and Assumption S1(b) imply that T ⊥ {D(z)
t , Y

(d)
t , t = 0, 1, z = 0, 1, d = 0, 1} |

X. Thus, the denominator in the Wald ratio in (S1) equals

E[D
(1)
T | Z = 1,X]− E[D

(0)
T | Z = 0,X]

= E[TD
(1)
1 + (1− T )D

(1)
0 | Z = 1,X]− E[TD

(0)
1 + (1− T )D

(0)
0 | Z = 0,X]

= E(T |X)E[D
(1)
1 |X] + E(1− T |X)E[D

(1)
0 |X]

− E(T |X)E[D
(0)
1 |X]− E(1− T |X)E[D

(0)
0 |X]

= E(T |X)E[D
(1)
1 −D

(0)
1 |X] + E(1− T |X)E[D

(1)
0 −D

(0)
0 |X]

= E[T (D
(1)
1 −D

(0)
1 ) |X] + E[(1− T )(D

(1)
0 −D

(0)
0 ) |X].

Similarly, the numerator in the Wald ratio in (S1) equals

E[Y
(D)
T |Z = 1,X]− E[Y

(D)
T |Z = 0,X]

= E[D
(1)
T Y

(1)
T + (1−D(1)

T )Y
(0)
T |Z = 1,X]− E[D

(0)
T Y

(1)
T + (1−D(0)

T )Y
(0)
T |Z = 0,X]

= E[D
(1)
T Y

(1)
T + (1−D(1)

T )Y
(0)
T |X]− E[D

(0)
T Y

(1)
T + (1−D(0)

T )Y
(0)
T |X]

= E[(D
(1)
T −D

(0)
T )Y

(1)
T − (D

(1)
T −D

(0)
T )Y

(0)
T |X]

= E[(D
(1)
T −D

(0)
T )(Y

(1)
T − Y (0)

T ) |X]

= E[T (D
(1)
1 −D

(0)
1 )(Y

(1)
1 − Y (0)

1 ) |X] + E[(1− T )(D
(1)
0 −D

(0)
0 )(Y

(1)
0 − Y (0)

0 ) |X]

= E[T (D
(1)
1 −D

(0)
1 ) |X]E[Y

(1)
1 − Y (0)

1 |X] + E[(1− T )(D
(1)
0 −D

(0)
0 ) |X]E[Y

(1)
0 − Y (0)

0 |X].

This completes the proof.

S3.2 Proof of Proposition 1

Proof. First, note that for z = 0, 1,

µY (1, z,X)− µY (0, z,X)
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E(Y |X, T = 1, Z = z)− E(Y |X, T = 0, Z = z)

= E(Y
(D

(z)
1 )

1 |X, T = 1, Z = z)− E(Y
(D

(z)
0 )

0 |X, T = 0, Z = z)

= E(Y
(D

(z)
1 )

1 − Y (D
(z)
0 )

0 |X, Z = z)

= E(D
(z)
1 Y

(1)
1 + (1−D(z)

1 )Y
(0)

1 −D(z)
0 Y

(1)
0 − (1−D(z)

0 )Y
(0)

0 |X, Z = z)

= E(D
(z)
1 (Y

(1)
1 − Y (0)

1 )−D(z)
0 (Y

(1)
0 − Y (0)

0 ) + Y
(0)

1 − Y (0)
0 |X, Z = z)

= E(D
(z)
1 (Y

(1)
1 − Y (0)

1 )−D(z)
0 (Y

(1)
0 − Y (0)

0 )|X) + E(Y
(0)

1 − Y (0)
0 |X)

where the second line is from Assumption 1(a), the third line is from Assumption 1(c), the

last line is from Assumption 2(b). Thus,

δY (X) = E((D
(1)
1 −D

(0)
1 )(Y

(1)
1 − Y (0)

1 )|X)− E((D
(1)
0 −D

(0)
0 )(Y

(1)
0 − Y (0)

0 )|X)

= E(D
(1)
1 −D

(0)
1 |X)E(Y

(1)
1 − Y (0)

1 |X)− E(D
(1)
0 −D

(0)
0 |X)E(Y

(1)
0 − Y (0)

0 |X)

= E(D
(1)
1 −D

(0)
1 −D

(1)
0 +D

(0)
0 |X)β0(X)

= δD(X)β0(X),

where the second line is from Assumption 2(c), the third line is from Assumption 2(d), the

last line again uses Assumption 1(a)-(b).

S3.3 Derivation of δY (X)/δD(X) under the monotonicity assumption

From the proof of Proposition 1 and under the monotonicity assumption stated in the main

article, we have

δY (X) = E((D
(1)
1 −D

(0)
1 )(Y

(1)
1 − Y (0)

1 )|X)− E((D
(1)
0 −D

(0)
0 )(Y

(1)
0 − Y (0)

0 )|X)

= E(Y
(1)

1 − Y (0)
1 | D(1)

1 −D
(0)
1 = 1,X)P (D

(1)
1 −D

(0)
1 = 1|X)

− E(Y
(1)

0 − Y (0)
0 | D(1)

0 −D
(0)
0 = 1|X)P (D

(1)
0 −D

(0)
0 = 1|X)

= E(Y
(1)
t − Y (0)

t | D(1)
t −D

(0)
t = 1)

{
P (D

(1)
1 −D

(0)
1 = 1|X)− P (D

(1)
0 −D

(0)
0 = 1|X)

}
,
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where the last line is from the assumption that E(Y
(1)

1 − Y (0)
1 | D(1)

1 −D
(0)
1 = 1) = E(Y

(1)
0 −

Y
(0)

0 | D(1)
0 −D

(0)
0 = 1). In addition, δD(X) = P (D

(1)
1 −D

(0)
1 = 1|X)−P (D

(1)
0 −D

(0)
0 = 1|X).

This completes the proof.

S3.4 Proof of Theorem S1

From the definition of β̂,

√
n(β̂ − β0) =

√
n(δ̂Y − β0δ̂D)

δ̂D
.

Let F = {Ti, Zi, i = 1, . . . , n} and

Ki =
√
n(Yi − β0Di)

{
I(Ti = 1, Zi = 1)∑n
i=1 I(Ti = 1, Zi = 1)

− I(Ti = 1, Zi = 0)∑n
i=1 I(Ti = 1, Zi = 0)

− I(Ti = 0, Zi = 1)∑n
i=1 I(Ti = 0, Zi = 1)

+
I(Ti = 0, Zi = 0)∑n
i=1 I(Ti = 0, Zi = 0)

}
.

Then, we can write

√
n(δ̂Y − β0δ̂D) =

n∑
i=1

Ki.

First, note that Ki, i = 1, . . . , n are independent conditional on F , and E(
∑n

i=1Ki|F) =

√
n(δY − β0δD) = 0, and

Var(Ki|F) = n
1∑
t=0

1∑
z=0

Var(Y − β0D|T = t, Z = z)
I(Ti = t, Zi = z)

{
∑n

i=1 I(Ti = t, Zi = z)}2
.

We prove that
∑n

i=1Ki is asymptotically normal by verifying Lindeberg’s condition. Let

σ2 =
n∑
i=1

Var(Ki|F) =
1∑
t=0

1∑
z=0

Var(Y − β0D|T = t, Z = z)

n−1
∑n

i=1 I(Ti = t, Zi = z)
,

we have that

maxi Var(Ki|F)

σ2
= max

t′,z′

Var(Y−β0D|T=t′,Z=z′)
{
∑n
i=1 I(Ti=t

′,Zi=z′)}2∑1
z=0

∑1
z=0

Var(Y−β0D|T=t,Z=z)∑n
i=1 I(Ti=t,Zi=z)

6 max
t′,z′

Var(Y−β0D|T=t′,Z=z′)
{
∑n
i=1 I(Ti=t

′,Zi=z′)}2

Var(Y−β0D|T=t′,Z=z′)∑n
i=1 I(Ti=t

′,Zi=z′)

= max
t′,z′

1∑n
i=1 I(Ti = t′, Zi = z′)

= o(1).

Hence, for any ε > 0,
n∑
i=1

E

{
(Ki − E(Ki|F))2

σ2
I (|Ki − E(Ki|F)| > εσ) | F

}
=

n∑
i=1

Var(Ki|F)

σ2
E

{
(Ki − E(Ki|F))2

Var(Ki|F)
I (|Ki − E(Ki|F)| > εσ) | F

}



12 Biometrics, March 2022

6 max
i
E

{
(Ki − E(Ki|F))2

Var(Ki|F)
I

(
|Ki − E(Ki|F)|√

Var(Ki|F)
>

εσ√
Var(Ki|F)

)
| F

}

= o(1),

where the last equality is from dominated convergence theorem and the facts that {Ki −

E(Ki|F)}/
√

Var(Ki|F) has expectation zero and variance 1 conditional on F , and

maxi Var(Ki|F)/σ2 = o(1). Therefore, Lindeberg’s condition holds. Applying Linderberg

Central Limit Theorem, we have that conditional on F ,
√
n(δ̂Y − β0δ̂D)

σ
| F d−→ N(0, 1).

By a dominated convergence argument, we have that the above equation also holds uncon-

ditionally. Then, by weak law of large numbers and Slutsky’s theorem, it is easy to show

that

σ2 =
1∑
t=0

1∑
z=0

Var(Y − β0D|T = t, Z = z)

P (T = t, Z = z)
+ op(1),

and

√
n(δ̂Y − β0δ̂D)

d−→ N

(
0,

1∑
t=0

1∑
z=0

Var(Y − β0D|T = t, Z = z)

P (T = t, Z = z)

)
.

Finally, we can similarly show that
√
n(δ̂D − δD) is asymptotically normal, which implies

that δ̂D
p−→ δD. Again using Slutsky’s theorem, we have proved (S3).

S3.5 Proof of Theorem 1

In this section, we use subscripts to explicitly index quantities that depend on the distribution

P , we use a zero subscript to denote a quantity evaluated at the true distribution P = P0,

we use a ε subscript to denote a quantity evaluated at the parametric submodel P = Pε. We

will show that ϕ(O;ψP ,ηP ) is proportional to the efficient influence function by showing

that it is the canonical gradient of the pathwise derivative of ψP , i.e,

∂ψε

∂ε

∣∣∣∣
ε=0

= C−1
0 E0 {ϕ(O;ψP ,ηP )s0(O)} , (S9)
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where ψε = ψPε , sε(O) = ∂ log dPε(O)/∂ε denotes the parameter submodel score, C0 is

defined later in (S10).

By definition, we have

ψP = arg min
ψ

∫
w(v){βP (v)− β(v;ψ)}2dP (v),

and thus ∫
q(v;ψ){βP (v)− β(v;ψ)}dP (v) = 0,

where q(v;ψ) = w(v)∂β(v;ψ)
∂ψ

. Evaluating the above at P = Pε gives∫
q(v;ψε){βε(v)− β(v;ψε)}dPε(v) = 0,

Differentiating the above with respect to ε using the chain rule and evaluating at the truth

ε = 0 give ∫
∂q(v;ψ)

∂ψ

∣∣∣∣
ψ=ψ0

∂ψε

∂ε

∣∣∣∣
ε=0

{β0(v)− β(v;ψ0)} dP0(v)

+

∫
q(v;ψ0)

{
∂βε(v)

∂ε

∣∣∣∣
ε=0

− ∂β(v;ψ)

∂ψ

∣∣∣∣
ψ=ψ0

∂ψε

∂ε

∣∣∣∣
ε=0

}
dP0(v)

+

∫
q(v;ψ0) {β0(v)− β(v;ψ0)} s0(v)dP0(v) = 0.

Rearranging the above equation, we have

∂ψε

∂ε

∣∣∣∣
ε=0

∫ [
∂q(v;ψ)

∂ψ

∣∣∣∣
ψ=ψ0

{β0(v)− β(v;ψ0)} − q(v;ψ0)
∂β(v;ψ)

∂ψ

∣∣∣∣
ψ=ψ0

]
dP0(v)︸ ︷︷ ︸

−C0

(S10)

+

∫
q(v;ψ0)

{
∂βε(v)

∂ε

∣∣∣∣
ε=0

+ {β0(v)− β(v;ψ0)} s0(v)

}
dP0(v) = 0,

and thus

C0
∂ψε

∂ε

∣∣∣∣
ε=0

=

∫
q(v;ψ0)

{
∂βε(v)

∂ε

∣∣∣∣
ε=0

+ {β0(v)− β(v;ψ0)} s0(v)

}
dP0(v).

Next, we will derive ∂βε(v)
∂ε
|ε=0. Note that

∂βε(v)

∂ε

∣∣∣∣
ε=0

=
∂

∂ε
Eε

[
δY ε(X)

δDε(X)

∣∣∣∣V = v

] ∣∣∣∣
ε=0
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=
∂

∂ε

∫
δY ε(X)

δDε(X)
dPε(X|V = v)

∣∣∣∣
ε=0

=

∫ [ ∂δY ε(X)
∂ε
|ε=0δD0(X)− δY 0(X)∂δDε(X)

∂ε
|ε=0

[δD0(X)]2
+
δY 0(X)

δD0(X)
s0(X|V )

]
dP0(X|V = v),

and

∂δY ε(X)

∂ε

∣∣∣∣
ε=0

= E0[Y s0(Y |T, Z,X)|T = 1, Z = 1,X]− E0[Y s0(Y |T, Z,X)|T = 0, Z = 1,X]

− E0[Y s0(Y |T, Z,X)|T = 1, Z = 0,X] + E0[Y s0(Y |T, Z,X)|T = 0, Z = 0,X]

= E0

[{
TZ

P0(T = 1, Z = 1|X)
− (1− T )Z

P0(T = 0, Z = 1|X)

− T (1− Z)

P0(T = 1, Z = 0|X)
+

(1− T )(1− Z)

P0(T = 0, Z = 0|X)

}
Y s0(Y |T, Z,X)

∣∣∣∣X]
= E0

[
(2Z − 1)(2T − 1)

π0(T, Z,X)
Y s0(Y |T, Z,X)|X

]
,

where π0(t, z,X) = P0(T = t, Z = z|X). Similarly, we can also derive that

∂δDε(X)

∂ε

∣∣∣∣
ε=0

= E0

[
(2Z − 1)(2T − 1)

π0(T, Z,X)
Ds0(D|T, Z,X)|X

]
.

Combining the above derivations, we have

C0
∂ψε

∂ε

∣∣∣∣
ε=0

=

∫
q(v;ψ0)

∂βε(v)

∂ε

∣∣∣∣
ε=0

dP0(v) +

∫
q(v;ψ0) {β0(v)− β(v;ψ0)} s0(v)dP0(v)

=

∫
q(v;ψ0)

[ ∂δY ε(X)
∂ε
|ε=0δD0(X)− δY 0(X)∂δDε(X)

∂ε
|ε=0

[δD0(X)]2

+
δY 0(X)

δD0(X)
s0(X|V )

]
dP0(X|V = v)dP0(v)

+

∫
q(v;ψ0) {β0(v)− β(v;ψ0)} s0(v)dP0(v). (S11)

We now turn to E0 {ϕ(O;ψP ,ηP )s0(O)}. First, note that ϕ(O;ψ,η) can be rewritten as

ϕ(O;ψ,η) = q(V ;ψ)

(
δ(X)− β(V ;ψ) +

(2Z − 1)(2T − 1)

π(T, Z,X)δD(X)[
Y − E(Y | T, Z,X)− δ(X){D − E(D | T, Z,X)}

])
.
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Also note that s0(O) is the parametric submodel score can be decomposed as

s0(O) = s0(Y,D|T, Z,X) + s0(T, Z|X) + s0(X|V ) + s0(V ).

Then, with the scaling factor, the efficient influence function is C−1
0 ϕ(O;ψP ,ηP ), where

ϕ(O;ψP ,ηP ) is defined in Theorem 1. Therefore,

E0{ϕ(O;ψ0,η0)s0(O)}

= E0

{
q(V ;ψ0)

[
δY 0(X)

δD0(X)
− β(V ;ψ0)

]
{s0(X|V ) + s0(V )}

}
+ E0

{
q(V ;ψ0)

(2Z − 1)(2T − 1)

π0(T, Z,X)δD0(X)
[Y − E0(Y |T, Z,X)] s0(Y |T, Z,X)

}
− E0

{
q(V ;ψ0)

(2Z − 1)(2T − 1)

π0(T, Z,X)δD0(X)

δY 0(X)

δD0(X)
[D − E0(D|T, Z,X)]s0(D|T, Z,X)

}
= E0

{
q(V ;ψ0)

δY 0(X)

δD0(X)
s0(X|V )

}
+ E0 {q(V ;ψ0) [β0(V )− β(V ;ψ0)] s0(V )}

+ E0

{
q(V ;ψ0)

(2Z − 1)(2T − 1)

π0(T, Z,X)δD0(X)
Y s0(Y |T, Z,X)

}
− E0

{
q(V ;ψ0)

(2Z − 1)(2T − 1)

π0(T, Z,X)δD0(X)

δY 0(X)

δD0(X)
Ds0(D|T, Z,X)

}
= C0

∂ψε

∂ε

∣∣∣∣
ε=0

,

where the derivations follow from E0(s0(O1|O2)|O2) = 0 for any (O1,O2) ⊂ O and iterated

expectation. Hence, C−1
0 ϕ(O;ψP ,ηP ) is the efficient influence function.

S3.6 Proof of multiple robustness

From the definition of ψ0 in (3), it is true that

E [q(V ;ψ0) {β0(V )− β(V ;ψ0)}] = 0. (S12)

UnderM1, δ(X) = δ0(X), bY (X) = bY 0(X), bD(X) = bD0(X),mY Z(X) = mY Z0(X),mY T (X) =

mY T0(X),mDZ(X) = mDZ0(X),mDT (X) = mDT0(X). Then,

E[ϕ(O;ψ0,η)]

= E [q(V ;ψ0) {δ0(X)− β(V ;ψ0)}]

+ E

[
q(V ;ψ0)

(2Z − 1)(2T − 1)

π(T, Z,X)δD(X)
(Y − bY 0(X)−mY Z0(X)Z −mY T0(X)T )

]
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− E
[
q(V ;ψ0)

(2Z − 1)(2T − 1)

π(T, Z,X)δD(X)
δ0(X)(D − bD0(X)−mDZ0(X)Z −mDT0(X)T )

]
= E [q(V ;ψ0) {δ0(X)− β(V ;ψ0)}] + E

[
q(V ;ψ0)

(2Z − 1)(2T − 1)

π(T, Z,X)δD(X)
δD0(X)δ0(X)TZ

]
− E

[
q(V ;ψ0)

(2Z − 1)(2T − 1)

π(T, Z,X)δD(X)
δD0(X)δ0(X)TZ

]
= E [q(V ;ψ0) {β0(V )− β(V ;ψ0)}] = 0.

Under M2, π(T, Z,X) = π0(T, Z,X) and δD(X) = δD0(X). Then,

E[ϕ(O;ψ0,η)]

= E
[
q(V ;ψ0)

{
δ(X)− β(V ;ψ0)

}]
+ E

[
q(V ;ψ0)

(2Z − 1)(2T − 1)

π0(T, Z,X)δD0(X)
(Y − bY (X)−mY Z(X)Z −mY T (X)T )

]
− E

[
q(V ;ψ0)

(2Z − 1)(2T − 1)

π0(T, Z,X)δD0(X)
δ(X)(D − bD(X)−mDZ(X)Z −mDT (X)T )

]
= E

[
q(V ;ψ0)

{
δ(X)− β(V ;ψ0)

}]
+ E

[
q(V ;ψ0){δ0(X)− δ(X)}

]
= E [q(V ;ψ0) {β0(V )− β(V ;ψ0)}] = 0,

where the third equality uses the facts that E(Y |T, Z,X) = bY 0(X)+mY Z0(X)Z+mY T0(X)T+

δ0(X)δD0(X)TZ, E(D|T, Z,X) = bD0(X) + mDZ0(X)Z + mDT0(X)T + δD0(X)TZ, and

E{(2Z−1)(2T−1)/π0(T, Z,X)|T,X} = E{(2Z−1)(2T−1)/π0(T, Z,X)|Z,X} = 0. Hence,

the efficient influence function ϕ(O;ψ,η) has expectation zero at ψ = ψ0 under M2.

Under M3, π(T, Z,X) = π0(T, Z,X), δ(X) = δ0(X). Then,

E[ϕ(O;ψ0,η)]

= E [q(V ;ψ0) {δ0(X)− β(V ;ψ0)}] + E

[
q(V ;ψ0)

(2Z − 1)(2T − 1)

π0(T, Z,X)δD(X)
δ0(X)δD0(X)TZ

]
− E

[
q(V ;ψ0)

(2Z − 1)(2T − 1)

π0(T, Z,X)δD(X)
δ0(X)δD0(X)TZ

]
= E [q(V ;ψ0) {δ0(V )− β(V ;ψ0)}] = 0.

Hence, the efficient influence function ϕ(O;ψ,η) has expectation zero at ψ = ψ0 underM3.
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S3.7 Proof of Theorem 2

In what follows, we will use P{f(O)} =
∫
f(O)dP to denote expectation treating the

function f as fixed; thus P{f(O)} is random when f is random, and is different from the

fixed quantity E{f(O)} which averages over randomness in both f and O.

Since ψ̂ is a Z-estimator, using Theorem 5.31 of van der Vaart (2000), we have that under

Assumption 3,

√
n(ψ̂ −ψ0) = −M−1

ψ0,η

√
nP{ϕ(O;ψ0, η̂)} −M−1

ψ0,η
n−1/2

n∑
i=1

[ϕ(Oi;ψ0,η)− E{ϕ(O;ψ0,η)}]

+ op(1 +
√
n‖P{ϕ(O;ψ0, η̂)}‖),

Using standard central limit theorem, the second term is asymptotically normal, and is

Op(1). Hence, the consistency and rate of convergence of ψ̂ depends on the property of the

first term. We analyze
√
nP{ϕ(O;ψ0, η̂)} in the following.

For ease of exposition, we will simplify the notations to q, µY , µD, δY , δD, π and keep the

involved random variables implicit. Also let Λ̂Y = b̂Y + m̂Y ZZ + m̂Y TT , Λ̂D = b̂D + m̂DZZ +

m̂DTT , ΛY 0 = bY 0 +mY Z0Z +mY T0T , and ΛD0 = bD0 +mDZ0Z +mDT0T . Note that

P{ϕ(O;ψ0, η̂)}

= P

[
q
{
δ̂ − δ0 +

(2Z − 1)(2T − 1)

π̂δ̂D
{µY 0 − Λ̂Y − δ̂(µD0 − Λ̂D)}

}]
= P{q(δ̂ − δ0)}+ P

[
q

δ̂D

(2Z − 1)(2T − 1)

π̂
{µY 0 − Λ̂Y − δ̂(µD0 − Λ̂D)}

]
= P{q(δ̂ − δ0)}+ P

[
q

δ̂D

(2Z − 1)(2T − 1)

π̂
{ΛY 0 + ZTδ0δD0 − Λ̂Y − δ̂(ΛD0 + ZTδD0 − Λ̂D)}

]
= P{q(δ̂ − δ0)}+ P

[
q

δ̂D

(2Z − 1)(2T − 1)

π̂
{(ΛY 0 − Λ̂Y )− δ̂(ΛD0 − Λ̂D) + ZTδD0(δ0 − δ̂)}

]
− P

[
q

δ̂D

(2Z − 1)(2T − 1)

π0

{(ΛY 0 − Λ̂Y )− δ̂(ΛD0 − Λ̂D)}
]

= P

[
ZTq(δ̂ − δ0){ 1

π0

− δD0

δ̂Dπ̂
}
]

+ P

[
q

δ̂D

(2Z − 1)(2T − 1)

π̂
{(ΛY 0 − Λ̂Y )− δ̂(ΛD0 − Λ̂D)}

]
− P

[
q

δ̂D

(2Z − 1)(2T − 1)

π0

{(ΛY 0 − Λ̂Y )− δ̂(ΛD0 − Λ̂D)}
]
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= P

[
ZTq(δ̂ − δ0)

{ π̂ − π0

π0π̂
+
δ̂D − δD0

δ̂Dπ̂

}]
+ P

[
q

δ̂D
(2Z − 1)(2T − 1)

π0 − π̂
π0π̂

{(ΛY 0 − Λ̂Y )− δ̂(ΛD0 − Λ̂D)}
]

= Op

(
‖δ̂ − δ0‖2(‖π̂ − π0‖2 + ‖δ̂D − δD0‖2) + ‖π̂ − π0‖2(‖Λ̂Y − ΛY 0‖2 + ‖Λ̂D − ΛD0‖2)

)
= Op

(
‖δ̂ − δ0‖2(‖π̂ − π0‖2 + ‖δ̂D − δD0‖2) + ‖π̂ − π0‖2(‖∆̂Y −∆Y 0‖2 + ‖∆̂D −∆D0‖2)

)
where the first equality is from (S12) and iterated expectation, the fourth equality is from

E{(2Z − 1)(2T − 1)/π0 | T,X} = E{(2Z − 1)(2T − 1)/π0 | Z,X} = 0, the second to

the last equality is from the Cauchy-Schwartz inequality that P (XY ) 6 ‖X‖2‖Y ‖2, the

boundedness of q(V ;ψ0), 1/δ̂D, 1/π0, and 1/π̂ (from the trend relevance assumption, the

positivity assumption, and the Donsker condition), and the fact that (2Z−1)2(2T −1)2 = 1,

and the triangle inequality, and the last equality is again from the triangle inequality.

S3.8 Proof of Theorem S2

In this section, denote nmin = min{na, nb}. From the definition of β̂TS, we have

√
nmin(β̂TS − β0) =

√
nmin(δ̂Y a − β0δ̂Db)

δ̂Db
.

From the two-sample design, δ̂Y a is independent of δ̂Db. Then, similar to the proof of Theorem

2, we can show that

√
na(δ̂Y a − δY a)

d−→ N

(
0,

1∑
t=0

1∑
z=0

Var(Ya | Ta = t, Za = z)

P (Ta = t, Za = z)

)
,

√
nb(δ̂Db − δDb)

d−→ N

(
0,

1∑
t=0

1∑
z=0

Var(Db | Tb = t, Zb = z)

P (Tb = t, Zb = z)

)
.

In consequence,

√
nmin

{
(δ̂Y a−β0δ̂Db)− (δY a − β0δDb)

} d−→

N

(
0,

1∑
t=0

1∑
z=0

αa
Var(Ya | Ta = t, Za = z)

P (Ta = t, Za = z)
+ αbβ

2
0

Var(Db | Tb = t, Zb = z)

P (Tb = t, Zb = z)

)
.

Theorem S2 follows from δY a − β0δDb = δY a − β0δDa = 0, δ̂Db = δDb + op(1) and Slutsky’s

theorem.
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S4. Application

R codes for constructing the dataset and reproducing the results are in smoking-lung.R

included in the supplementary materials. In the following, we provide additional details

on the application.

S4.1 Data

The 1970 NHIS data (personsx.rds) were drawn using the R lodown package

at http://asdfree.com. The CDC mortality data were obtained from the CDC compressed

mortality file. The mortality data are also included in the supplementary materials as

Compressed Mortality, 1975.txt, Compressed Mortality, 1985.txt, Compressed Mortality, 1995.txt,

Compressed Mortality, 2005.txt.

Standard errors for the cigarette smoking prevalence are obtained from the survey package

in R to account for the NHIS complex sample design, following the variance estimation proce-

dure available at https://www.cdc.gov/nchs/data/nhis/6372var.pdf and also included

in the supplementary materials as 6372var.pdf. Standard errors for the lung cancer mortality

rates are calculated following https://wonder.cdc.gov/wonder/help/cmf.html#Standard-Errors,

using the formula
√
p/n, where p is the crude mortality rate, n is the sample size for the

population. In Table S1, we include the sample size for each birth cohort in each dataset.

According to Theorem S2 and Equation (S2), these obtained standard errors suffice for

constructing the consistent variance estimator for β̂TS.

[Table 1 about here.]

S4.2 Use of gender as a surrogate for encouragement

It is known that a standard IV does not need to have a causal effect on the exposure (Hernán

and Robins, 2006). It is also the case for the IV for DID; the IV for DID Z does not need to
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have a causal effect on the exposure; it suffices that the IV for DID is associated with the

trend in exposure.

Let Dt be the potential exposure that would be observed at time t if Z takes the value

that naturally occurs. Using Z as a surrogate, we can still establish the identification result

in Proposition 1 under Assumptions S2 - S3 stated as follows.

Assumption S2: (a) (Consistency) D = DT and Y = Y
(D)
T .

(b) (Positivity) 0 < P (T = t, Z = z|X) < 1 for t = 0, 1, z = 0, 1 with probability 1.

(c) (Random sampling) T ⊥ (Dt, Y
(d)
t , t = 0, 1, d = 0, 1) | Z,X.

Assumption S3 (Instrumented DID): With probability 1,

(a) (Trend relevance) δD 6= 0.

(b) (Independence & exclusion restriction) Z ⊥ (Y
(0)

1 − Y (0)
0 , Y

(1)
t − Y (0)

t , t = 0, 1)|X.

(c) (No unmeasured common effect modifier) E(Dt(Y
(1)
t − Y (0)

t )|X, Z = 1) − E(Dt(Y
(1)
t −

Y
(0)
t )|X, Z = 0) = (E(Dt|X, Z = 1)− E(Dt|X, Z = 0))E(Y

(1)
t − Y (0)

t ) for t = 0, 1.

(d) (Stable treatment effect over time) E(Y
(1)

1 − Y (0)
1 |X) = E(Y

(1)
0 − Y (0)

0 |X).

Note that Assumption S3(c) is implied by Assumption 2. To better understand Assumption

S3(c), similar to Wang and Tchetgen Tchetgen (2018), assume in this paragraph only the

existence of an unmeasured confounder Ut such that (Dt, Z) ⊥ (Y
(1)
t − Y

(0)
t ) | Ut,X and

Z ⊥ Ut|X. Then, the same as the discussion of Theorem 2(c) in the main article, Assumption

S3(c) holds if either (i) there is no additive Ut-Z interaction in E(Dt|Z,Ut,X): E(Dt|Z =

1, Ut,X) − E(Dt|Z = 0, Ut,X) = E(Dt|Z = 1,X) − E(Dt|Z = 0,X); or (ii) there is no

additive Ut-d interaction in E(Y (d)|Ut,X): E(Y (1) − Y (0)|Ut,X) = E(Y (1) − Y (0)|X).

S4.3 Sensitivity analysis

As mentioned in the main article, there is still concern about violating the stable treatment

effect over time assumption (Assumption 2(d)), possibly because the cigarette design and
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composition have undergone changes that promote deeper inhalation of smoke (Thun et al.,

2013; Warren et al., 2014). In this section, we apply the sensitivity analysis developed in

Section S2.3.

Because the concern is that the effect of smoking on lung cancer increases over time, we

consider γL = 0 and γU = 0.3%, i.e., we consider every value of Γ ∈ [0, 0.3%]. The constructed

confidence intervals for each two consecutive birth cohorts are in Figure S1, which indicates

that any Γ ∈ [0, 0.3%] cannot explain away the treatment effect. In fact, any positive Γ

cannot explain away the treatment effect. This means that the study conclusion is robust to

possible violation of Assumption 2(d).

[Figure 1 about here.]
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(a) Birth cohorts: 1911-1920.
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(b) Birth cohorts: 1921-1930.
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(c) Birth cohorts: 1931-1940.

Figure S1: Confidence intervals for β∗ when Γ ∈ [0, 0.3%]. The confidence intervals do not
cover zero, which means that the observed treatment effect cannot be explained away by
Γ ∈ [0, 0.3%].
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Table S1: Sample sizes for 1970 NHIS datasets and 1975, 1985, 1995, 2005 CDC WONDER
compressed mortality datasets by birth cohort and gender

Birth Cohorts 1911-1920 1921-1930 1931-1940 1941-1950

NHIS

Men 4,830 5,620 5,343 6,942
Women 6,043 7,024 6,672 8,567

CDC WONDER

Men 9,416,000 10,383,963 10,158,673 14,773,087
Women 10,629,000 11,751,158 11,161,349 15,868,410


