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GENERAL INFORMATION

All air-sensitive manipulations were conducted under an inert atmosphere in a nitrogen-
filled glovebox or by standard Schlenk techniques. Although the cyclometalated iridium-allyl
precatalysts are known to be air-stable and iridium-catalyzed allylic substitution reactions are
themselves only moderately air-sensitive, all iridium-catalyzed allylic substitution reactions were
conducted in a nitrogen-filled glovebox. Unless stated otherwise, reagents and solvents were
purchased from commercial suppliers and used without further purification. Tetrahydrofuran was
purified by passing it through a solvent column composed of activated A-1 alumina and degassed
by the freeze-pump-thaw method.

Nuclear magnetic resonance (NMR) spectra were acquired on commercial instruments
(300, 400, 500 and 600 MHz with respect to *H) at the NMR facility of the University of California,
Berkeley. Chemical shifts are reported relative to residual solvent peaks (CDCls = 7.26 ppm for
'H NMR spectra and 77.16 ppm for 13C NMR spectra). For *°F NMR spectra, chemical shifts are
reported relative to the 6 —113.15 resonance of PhF used as an external reference. The following
abbreviations are used in reporting NMR data: s, singlet; d, doublet; t, triplet; g, quartet; p, pentet;
hept, heptet; AB, AB quartet; m, multiplet.

HPLC analyses were carried out on either an Agilent Infinity Il chiral HPLC system or a
Shimadzu VP series chiral HPLC with Chiralpak columns. High-resolution mass spectra were
recorded on a commercial high-resolution mass spectrometer at the Micro Mass Analytical Facility
operated by the College of Chemistry, University of California, Berkeley, or with an Agilent Time
of Flight (Q-TOF) mass spectrometer in ESI mode. Optical rotations were measured on a Perkin
Elmer 241 Automatic Polarimeter. Given the enantiomeric excess (ee) of each sample, values are
typically provided for both the measured optical rotation and the corrected optical rotation.
Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F254 glass plates
precoated with a 0.25 mm thickness of silica gel. Preparative thin layer chromatography (PTLC)
was performed on Analtech glass plates precoated with a 1.00 mm thickness of silica gel The TLC
plates were visualized with UV light and by staining with KMnQO4. Column chromatography was
generally performed on a Teledyne Isco Combiflash® Ry system with RediSep Gold™ columns.
Iridium catalysts were prepared from the corresponding ligands according to literature procedures,
precipitated from ether, washed with ether, and used without further purification (further details

are provided herein).! Nucleophiles 2a, 2b, 2d, 2f, and 2j were obtained from commercial sources.
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Malonate 2c? and malononitrile 2e3 were prepared according to literature procedures. Silyl ketene
acetals 2g, 2h, and 2i were prepared according to literature procedures.* Allylic electrophiles 1a,
1c, 1d, 1f, and 1g are known and were prepared in one step according to a literature procedure.®
Allylic electrophiles 1b, 1e, and 1j were prepared by an analogous procedure and they are new
compounds; the details of their synthesis is discussed herein. Allylic electrophile 1h was prepared
according to a literature procedure.® Allylic electrophile 1i was prepared by a novel route involving

radical deoxygenation (discussed herein).

PROPOSED MECHANISM

The following mechanism is proposed for the defluorinative alkylation of 3-substituted
3,3-difluoropropenes (Figure S1). The configurations of the products of defluorinative alkylation
are the opposite of those of previous allylic substitution reactions and of allylic fluoroalkylation
reactions with the same enantiomer of the catalyst, implying that the reactive w-allyl intermediate
formed during defluorinative alkylation is the exo-m-allyl, rather than the endo-m-allyl
intermediates of previous iridium-catalyzed allylic substitution reactions. This mechanism is
supported by previous computations, related mechanistic studies of iridium-catalyzed allylic
substitution, our assignment of the absolute configuration of the products, and the investigations

discussed below.2”

We have directly observed the resting state of the catalyst during the current defluorinative
alkylation reactions and assigned the structure as a mixture of diastereomeric Ir(l) olefin
complexes. The same resting state is observed for reactions conducted with lithium, sodium, or
potassium malonates. The identity of the resting state indicates that C—F bond oxidative addition
is turnover-limiting in each of these cases. We have also observed that (1,1-difluoroallyl)benzene
reacts with lithium malonate 44 times faster than with sodium malonate and 3300 times faster than
with potassium malonate in the presence of our iridium catalyst. Taken together, these data
demonstrate that the counterion strongly influences the rate of C—F oxidative addition. The
conclusion that oxidative addition is rate limiting also is consistent with the trend in rates of
reactions of alkali metal malonates. This trend runs parallel to the relative fluorophilicities of the
counterions (Li>Na>K) and opposite the trend of nucleophilicity of the corresponding malonate
salts (K>Na>Li).
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We have also determined that reactions of malonate anions with 3-fluorocinnamyl
trifluoroacetate (which also proceed by nucleophilic attack on a fluorinated n-allyl intermediate)
occur rapidly regardless of the counterion for the malonate anion, with a half-life significantly
shorter (ti2 < 1 min) than the half-life of reactions of this nucleophile with 3-substituted 3,3-
difluoropropenes and lithium (t12 = 29.3 min), sodium (t12 = 23.6 h), or potassium malonates (ti/2
> 1150 h). This comparison of rates demonstrates that reductive elimination by outer-sphere attack
of the nucleophile on the w-allyl intermediate is too fast to be turnover limiting and, therefore,
cannot explain the difference in reactivity between the malonate salts in the present reaction.
Collectively, these results provide strong evidence for a cation-assisted, turnover-limiting
oxidative addition of the C-F bond during the defluorinative alkylation. We have also
demonstrated that oxidative addition is irreversible, enantiodetermining, and proceeds from a
mixture of rapidly interconverting diastereomeric resting states under Curtin Hammett control.
Lastly, we have developed a stereochemical model that explains the opposite configuration of
products derived from 3-fluoroallylic electrophiles and 3-substituted 3,3-difluoropropenes (see

section “Model for Stereochemical Induction” for more details).
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Figure S1. Proposed mechanism of enantioselective defluorinative alkylation. OA = oxidative
addition; RE = reductive elimination; TLS = turnover-limiting step; EDS = enantiodetermining

step.
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RELATIVE RATES OF REACTIONS WITH LITHIUM, SODIUM, AND POTASSIUM MALONATE
Reactions of (1,1-difluoroallyl)benzene (1b) with malonates derived from diethyl methyl
malonate (2a) and an alkali metal tert-butoxide (M = Li, Na, or K) were conducted under the
reaction conditions illustrated in the scheme below (Figure S2). An internal standard (4,4'-difluoro-
1,1'-biphenyl) was added directly to the reaction, and aliquots of the reaction mixture were
removed, diluted in CDClz at —40 °C, and subsequently analyzed by NMR spectroscopy
periodically. The first half-life for reactions with lithium tert-butoxide (ty2 = 29.3 min) and sodium
tert-butoxide (tu2 = 23.6 h) were approximated by linear interpolation from the two time points
nearest to 50% vyield. Although reactions conducted with potassium tert-butoxide did not reach
50% vyield in the time studied, a lower bound for this half-life was determined by linear
extrapolation to 50% yield using the origin (0%, 0 h) and the latest time point measured (3.5%, 81
h) (tu2 > 1150 h). The initial rates for each reaction were approximated from an early time point
for each reaction (40% conv. for Li, 15% conv. for Na, and 3.5% conv. for K). From these data,
the relative initial rates are 3080 (Li), 70 (Na), and 1 (K). Note: Complete mass balance was

observed. Error was estimated to be + 2% yield for each data point.
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Figure S2. Counterion effects on the defluorinative alkylation reactions. Figure prepared with
the Origin 2019 (9.6) software package.
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To gain information about the rate of nucleophilic attack on m-allyl intermediates, we
studied the rates of reactions of 3-fluorocinnamyl trifluoroacetate with lithium, sodium, and
potassium malonate under conditions that are identical to those used to study the reactions of (1,1-
difluoroallyl)benzene (1b) described above. The rates of these reactions provide information on
the mechanism of the reaction of the 1,1-difluoroallyl electrophiles because reactions of 3-
fluoroallylic trifluoroacetates proceed through fluorine-containing w-allyl intermediates that have
the same connectivity of the intermediates from reaction of the 1,1-difluoroallyl electrophiles. We
have demonstrated that the allylic substitution of 3-fluorocinnamy! trifluoroacetate proceeds with
half-lives significantly shorter than 1 minute with malonate anion as the nucleophile bearing any
of the alkali metal cations. Because this rate is much faster than the overall rate of the catalytic
cycle (and oxidative addition is irreversible), reductive elimination by an outer-sphere nucleophilic
attack cannot be turnover limiting in the reactions of 3-substituted 3,3-difluoropropenes with

malonates (figure S3).

. " 4 mol% C21 (Co) E Ph
e N
Ph)\/\oc O)CF * EtO. c)\co Et TR N Z
(O)CFs 2 2 MOt-Bu (1.5 equiv) Et0,C \CO,E
(0.10 mmol) 2a (1.5 equiv) M = Li, Na, K 3ba

Yield of 3ba over time for the reaction of Li, Na, and
K malonates with 3-fluorocinnamyl trilfuoroacetate

Li* Na* K*
2min | >98% 96% 96%
10 min| >98% >98% >98%

Figure S3. Rates of reactions of 3-fluorocinnamyl trifluoroacetate with Li, Na, and K malonates.

OBSERVATION OF THE CATALYST RESTING STATE: IR(l) OLEFIN COMPLEXES

The allylic fluoroalkylation of 2-(1,1-difluoroallyl)naphthalene (1a) with a mixture of
diethyl methyl malonate (2a), lithium tert-butoxide, and catalyst C21 (C®) was conducted in a 3:1
mixture of THF and THF-ds in an NMR sample tube. The reaction was monitored by *H, *°F, and
3P NMR spectroscopy at 27 °C. Reaction conditions are outlined in the following scheme. The
reaction was monitored for 3 hours (up to ~90% conversion), during which time no change in the
identity of the resting state was observed. The following data demonstrate that the resting state is
a mixture of diasteromeric Ir(l) olefin complexes. The resting state of the analogous reactions
conducted with sodium tert-butoxide and potassium tert-butoxide were the same as that with

lithium tert-butoxide.
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The following NMR data indicate that the resting state of the catalyst is a ~4:1 mixture of
diastereomeric Ir(1) olefin complexes. The °F NMR spectrum contains two pairs of doublets, each

pair with a coupling constant that is diagnostic of geminal F—F coupling within a desymmetrized
CF2 group.

F NMR (565 MHz, 3:1 THF/THF-dg) & -74.70 (d, 2Jrr = 230.2 Hz, minor dia., 1F); -74.99 (d,
2Jrr = 232.4 Hz, major dia., 1F); -94.61 (dd, 2Jrr = 232.4, 3Jur = 33.9 Hz, major dia., 1F); -97.08
(dd, 2Jre = 230.2, 3Jue = 34.9 Hz, minor dia., 1F).

31p NMR (243 MHz, 3:1 THF/THF-dg) 8 133.3 (s, major dia.), 133.0 (s, minor dia.).
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Figure S4. *F NMR spectrum of the reaction of 2-(1,1-difluoroallyl)naphthalene (1a) with
malonate 2a in the presence of catalyst Co (C21). The resonances in the insets are those of the

catalyst resting state.
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Figure S5. 3P NMR spectrum of the reaction of 2-(1,1-difluoroallyl)naphthalene (1a) with
malonate 2a in the presence of catalyst Co (C21). The two resonances expanded in the inset

correspond to the two diastereomers of the resting state of the catalyst.

EXSY NMR STuDIES OF IR(I) OLEFIN COMPLEXES

The catalyst resting state was generated in situ by conducting the allylic fluoroalkylation
of 2-(1,1-difluoroallyl)naphthalene (1a) with a mixture of diethyl methyl malonate (2a), potassium
tert-butoxide, and catalyst C21 (Cw) in THF-dg in an NMR sample tube. The catalyst loading was
20 mol%, and the reaction concentration was 0.15 M to facilitate characterization. At this
concentration, the resonances in the '°F and 3P NMR spectrum were the same as those in figure
S4 & S5, but the 3P NMR signals were slightly shifted and were better resolved. A 3P-3'P EXSY
experiment was conducted with two mixing times: 0 ms and 400 ms. The presence of well-defined
off-diagonal peaks demonstrates that the diastereomeric iridium olefin complexes undergo rapid

exchange. The rate constants for exchange were calculated to be Kiorward) = 0.79 s and K-1(packwards)
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= 3.08 s using the EXSYCALC software in Mestrenova. These rate constants are consistent with
the 4:1 diastereomeric ratio observed. The corresponding first-order half-lives for exchange are:
tio(forward) = 0.88 s and tio(packwards) = 0.23 S. These data demonstrate that exchange of the olefin
complexes occurs more rapidly than subsequent oxidative addition, demonstrating Curtin-
Hammett kinetics. Therefore, the relative energies of the transition states for oxidative addition
control the enantioselectivity of the reaction, not the relative concentrations of the olefin

complexes preceding the enantiodetermining oxidative addition.

F131.5

F132.0

F132.5

=—

F133.0

f1 (ppm)

F133.5

S=——>>

r134.0

F134.5

T T T T T T T T T T T T T T T T T T T T
134.2 134.0 133.8 133.6 133.4 133.2 133.0 132.8 132.6 132.4 132.2 132.0 131.8 131.6
f2 (ppm)

Figure S6. 31P-31P EXSY NMR spectrum of the catalyst resting state (mixing time = 0 ms).
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Figure S7. 31P-31p EXSY NMR spectrum of the catalyst resting state (mixing time = 400 ms).

DETERMINATION OF THE ABSOLUTE CONFIGURATION OF THE PRODUCTS

Product 3ba and 3be were each prepared by iridium-catalyzed allylic substitution of 3-
fluoro allylic esters, as we previously reported.? In the previous publication, 3ba and 3be were
prepared from an iridium catalyst derived from (R,R,R)-L2. The absolute configurations of the
products 3ba and 3be derived from 3-fluoro allylic esters and a catalyst derived from (R,R,R)-L2
were established to be (S) in this previous publication by analogy to the configuration of a product
in the series that was characterized by single-crystal X-ray diffraction. Because the signs of the
optical rotations of the products prepared from 3-substituted 3,3-difluoropropenes are the opposite
of the products in our previous publication, the absolute configuration of 3ba and 3be were
assigned as (R). Although compound 3bd has been previously prepared,? its absolute configuration
was not assigned because it formed in low enantioselectivity and its absolute configuration

depended on the counterion of the nucleophile. Its absolute configuration can now be assigned by
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analogy to the other products formed in the current work because it forms in high er when prepared

from 3-substituted 3,3-difluoropropenes.

These data are summarized below:

F, Ph

Me NP2

Et0,C CO,Et
3ba

F, Ph
MOMO N
NC CN
3be

Prepared from:
F

Ph)\/\LG

from (R,R,R)-L2
[a]p?® = -53.3°
(c 0.59, CHCIj).

from (R,R,R)-L2
[a]p?® = -33.0°
(c 0.65, CHCIj).

Prepared from:
FF

from (R,R)-L21

[a]p? = +63.4°
(¢ 0.59, CHCly).

from (R,R)-L21

[a]p?® = +32.4°
(c 0.49, CHCly).

Figure S8. Optical rotation data for the assignment of absolute configurations. LG = leaving
group (e.g. OC(O)CFs, OP(O)(OEt)y).

To assess further whether the configuration of product 3 formed from 3-fluoroallylic esters
is the opposite of that formed from 3-substituted 3,3-difluoropropenes under otherwise identical
reaction conditions, we conducted the following experiment outlined in Figure S9. Each of these
electrophiles was treated with aliquots of the same solution of C21 (Cw) and aliquots of the same
solution of lithium tert-butoxide and malonate 2a. The resulting reaction mixtures were stirred at
room temperature for 48 hours, then concentrated in vacuo. The product was purified by
preparative TLC. Optical rotations and HPLC data indicate that the absolute configurations of the

products are the opposite of each other.
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Figure S9. Formation of products with the opposite absolute configuration from 3-substituted
3,3-difluoropropenes and 3-fluoroallylic esters under identical reaction conditions. Relevant

HPLC data are provided below:

HPLC Trace for the product derived from 3-fluorocinnamyl trifluoroacetate.

HPLC trace for the product derived from (1,1-difluoroallyl)benzene.

HPLC data for the racemate are given with product characterization data for product 3ba.
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MODEL FOR STEREOCHEMICAL INDUCTION

Our experimental data lead to a model that explains the opposite configuration of products
derived from 3-fluorocinnamyl electrophiles and 3-substituted 3,3-difluoropropenes. In short, we
provide evidence that oxidative addition of the C-F bond is irreversible and that the m-allyl
intermediates do not interconvert: these two results demonstrate that oxidative addition of the C—
F bond is enantiodetermining. Therefore, the relative energies of the transition states for oxidative
addition determine the enantioselectivity of the reaction, and these transition states come from
ionization of the Ir-olefin complexes, which are the resting states of the catalyst. The
diastereomeric olefin complexes rapidly interconvert before the formation of the m-allyl
intermediate via oxidative addition (as determined by EXSY experiments), indicating the
enantioselectivity is determined by the difference in transition state energies for oxidative addition
(AAG?), not the ratio of olefin complexes, in accordance with the Curtin-Hammett principle. We
expect that the relative degree of steric hindrance in two transition states for oxidative addition
will be similar to those in the olefin complexes that precede them. We propose a stereochemical
model and quadrant diagram, supported by computational studies, that rationalize the opposite
configurations of the products derived from 3-fluorocinnamyl esters and 3-substituted 3,3-

difluoropropenes.

These proposals are supported by the following mechanistic conclusions:

1. We deduce that n-allyl intermediates do not equilibrate:

(8) We deduce that the =m-allyl intermediates equilibrate much more slowly than the
nucleophile adds to them. If they equilibrated more rapidly, then both 3-fluorocinnamyl
electrophiles and 3-substituted 3,3-difluoropropenes would provide products with the same

configuration and enantioselectivity (common intermediate).

(b) The m-allyl intermediates do not equilibrate by n-c-n interconversion. Closely-related
cyclometalated m-allyl iridium intermediates are experimentally known not to undergo m-o-n

interconversion,” and DFT calculations provide strong evidence that the n! allyl intermediate
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required for interconversion by a m-c-m pathway is too high in energy (22 kcal/mol above the n®
form) to be a relevant intermediate especially when considering that such a rearrangement must
be faster than nucleophilic attack, which is rapid (ti2 < 1 min). This lack of interconversion by this
pathway originates from the fact that iridium(lIl) prefers to maintains an inert, d®, octahedral

geometry.

2. We deduce that oxidative addition of the C—F bond is irreversible:

(a) Oxidative addition is irreversible. Reversible oxidative addition is unreasonable
because it would require the attack of lithium fluoride (a non-nucleophilic, insoluble salt with a
high lattice energy) on the m-allyl intermediate to be competitive with the attack of lithium
malonate (a strong, soluble nucleophile) on the w-allyl intermediate (which is rapid, ty> < 1 min,

see discussion in the main text).

(b) To provide experimental evidence for this assertion, we treated our pre-catalyst Co
with lithium malonate in the presence of a 2-(1,1-difluoroallyl)naphthalene (1a). This mixture
rapidly generates the resting state of the catalytic reaction. On the other hand, treating our pre-
catalyst with lithium fluoride in the presence of a 2-(1,1-difluoroallyl)naphthalene (1a) does not
generate the resting state of the catalytic reaction, even after prolonged reaction times. This result
demonstrates that lithium malonate rapidly attacks m-allyl iridium species, but lithium fluoride

does not.

3. We deduce that the diastereomeric olefin complexes (diastereomeric resting states)
preceding oxidative addition interconvert rapidly.

A 3P-31p EXSY NMR experiment was conducted on the diastereomeric olefin complexes
(resting state). The presence of a cross peak indicates that these diastereomers interconvert on the
timescale of the experiment (400 ms mixing time) at room temperature. Thus, ligand exchange on
the trigonal bipyramidal Ir(l) intermediate is much faster than turnover-limiting oxidative addition.
The half-life for exchange between these two diastereomeric olefin complexes was calculated from
the EXSY NMR data to be ti2(forward) = 0.88 s and ti2(packwards) = 0.23 S.
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This result explains how an 80:20 ratio of diastereomeric olefin complexes leads to >95:5
er: The olefin complexes interconvert 2000 times faster than they undergo turnover-limiting
oxidative addition of the C—F bond. Ultimately, the relative energies of the two transition states
for oxidative addition (AAG*) determines the enantioselectivity, not the equilibrium ratio of olefin

complexes (Curtin-Hammett Kinetics).

4. We advance a stereochemical model (quadrant diagram) that rationalizes the opposite
absolute configuration of products derived from 3-fluorocinnamyl electrophiles and 3-

substituted 3,3-difluoropropenes:

DFT studies demonstrate that a vertex of the COD ligand and an associated hydrogen atom
(illustrated in Fig. S10 below) protrudes into the binding space of the alkene on the allylic
electrophile, blocking the northeast quadrant of this binding site. The northwest and southwest
quadrants are blocked by the BINOLate group of the phosphoramidite ligand and the N-benzyl
group of the phosphoramidite ligand, respectively. Note: This quadrant diagram has been proposed
in the literature.® In the analysis below, we do not consider olefin complexes that place the aryl
group in the NW or SW quadrant because previous mechanistic studies demonstrate that iridium
catalyzed allylic substitutions only proceed through z-allyl complexes bearing substituents in the
SE or NE quadrants.

From this model, it becomes clear that binding and subsequent ionization from the endo
complex of 3-fluorocinnamyl chloride, in which the chloride acts as the leaving group from the
terminal position to mimic the types of substrates studied previously, should occur without
significant hindrance. In the endo complex, the largest substituent (Ph) is placed in the open,
southeast quadrant. In contrast, the binding of the exo isomer should occur with severe clashes
between the Ph group of the alkene and the COD ligand on iridium. These steric interactions are
expected to be present in both the ground state alkene complex and the transition state for
ionization. This stereochemical model explains the formation of the (S) enantiomer of product as

the major enantiomer, and this enantiomer is the major enantiomer observed experimentally.

Binding of the olefin and subsequent ionization from the exo complex of a 3-substituted

3,3-difluoropropene that is the subject of the current paper should occur without significant
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hindrance. In the exo complex, the largest substituent (CF2Ph) is placed in the open, southeast
quadrant. In contrast, the binding of the endo isomer should occur with severe clashes between
the CF. group of the alkene and the COD ligand. These steric interactions are expected to be
present in both the ground state alkene complex and the transition state for ionization. These
phenomena would lead to the formation of the (R) enantiomer of the product as the major
enantiomer, and this enantiomer is the major enantiomer observed experimentally. Thus, this
analysis accurately predicts that the opposite enantiomer should be formed from the two types of

electrophiles.

Stereochemical model

endo (0 kcal/mol) exo (+2.7 kcal/mol)
favored . disfavored
NW E NE \ llr]\\/lF\ F F
X = = j—Ph
Ph
L LT F A I N Sy
((;:’P—n“\\ Gl B /g)/Ph A
_____________ : & Nu F
;\t__);: NG F \)i
% : (s) " '
Art i Ph AN
L e B i = - + = ="
. _/‘==<F \/‘/\ NS N / ?Ph
] ' 7N\
swW ; SE | t F
Relati - culated by DET disfavored exo ¢ favored
elative energies calculated by exo (+2.1 kcal/mol) exo (0 kcal/mol)

Figure S10. Stereochemical model explaining the opposite absolute configuration of products
derived form 3-fluorocinnamyl electrophiles and 3-substituted 3,3-difluoropropenes.

DFT calculations of the corresponding olefin complexes confirm these expected relative
energies for the ground state complexes. Furthermore, these specific steric interactions are

confirmed by close contacts observed in relevant DFT structures (see the following section).

Previous mechanistic studies on iridium-catalyzed allylic substitution with nonfluorinated
substrates have been conducted on systems in which the nucleophile (amine) is less nucleophilic
than the leaving group (methyl carbonate anion).” Consequently, oxidative addition was reversible
and the factors controlling the enantioselectivity in that system (AAG* for nucleophilic attack,
influenced by m-allyl stability) was different from the factors controlling enantioselectivity in this

system (AAG* for oxidative addition, influenced by olefin complex stability).
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COMPUTATIONAL STUDIES OF IRIDIUM OLEFIN AND ALLYL COMPLEXES

To further assess the stereochemical model we propose, we have conducted DFT
computational studies of the iridium olefin complexes and the corresponding iridium w-allyl
intermediates. These studies corroborate our conclusion that the relative energies of endo and exo
olefin complexes for 3-fluorocinnamyl electrophiles are the opposite of those for 3-substituted 3,3-
difluoropropenes, that the specific steric interactions suggested by the quadrant model are present,
and that n-allyl intermediates are energetically inaccessible. These structures and their relative
energies are summarized in figure S11 below and shown in detail on the following pages.

Experimental Notes: All DFT calculations were performed with the Gaussian 09 software
package.® Optimizations of the geometries of all the species at room temperature were conducted
at the b3lyp-D3 level of theory.!®!! The LANL2DZ basis set and pseudo potential*? were used for
the iridium atoms, and the 6-31G(d,p) basis set'® was used for other atoms. All calculations used
pure (spherical-harmonic type) d and f orbitals. Vibrational frequencies were computed at the same
level for each structure to determine if the structure is an energy minimum or a transition state and
to evaluate its zero-point vibrational energy (ZPVE). Solvent effects were computed based on the
gas-phase optimized structures with the same basis sets. Solvation energies in tetrahydrofuran were
evaluated by a self-consistent reaction field (SCRF) with the smd model. In this paper, all energies
discussed are Gibbs free energies at room temperature in tetrahydrofuran (AGTHr 208 k). All
reported energies are AG values with the solvent correction applied. Structural images were
generated from CYLView.* The computational parameters reported herein are the same as those
previously used by our group to examine the origin or regioselectivity in iridium-catalyzed allylic

alkylation.® Computations were conducted on a truncated version of catalyst C10 (see figure S11).
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] A: Iridium 3-fluorocinnamyl chloride complexes
<>, "
’O>T/ \ B: Iridium 3,3-difluoropropene complexes
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A ¢ m* [l
I I e,
o | F i e i i 1]
— — i T\S_
oh cl F \\/)\Ph el |
Aond A F Ph
0 k-e’:/ 0 | 21 I;exi)/ | C-endo C-exo Cyf
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Figure S11. Summary of computed structures and their relative energies
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A-endo (0 kcal/mol) A-exo (+2.1 kcal/mol)

A-exo is less stable than A-endo by 2.1 kcal/mol. Note a steric clash of the phenyl ring and a hydrogen atom
present on the COD ligand (illustrated in the boxed area) and an accompanying rotation of the olefin about
the olefin-Ir bond axis, out of the trigonal plane of the pseudo-trigonal bipyramidal iridium complex A-exo.
The C-H nonbonded distance (2.54 A) is shorter than the sum of van der Waals radii (2.80 i\).

B-endo (+2.7 kcal/mol) B-exo (0 kcal/mol)

B-endo is less stable than B-exo by 2.7 kcal/mol. Note the steric clash between the CF, group and a hydrogen
atom present on the COD ligand (illustrated in the boxed area) and an accompanying rotation of olefin about
the olefin-Ir bond axis, out of the trigonal plane of the pseudo-trigonal bipyramidal iridium complex B-endo.

The F-H nonbonded distance (2.10 A) is shorter than the sum of van der Waals radii (2.60 A)
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C-endo ‘ (+4.4 kcal/mol) C-exo’ (+3.7 kcal/mol)

Consistent with previous studies of iridium-catalyzed allylic substitution, -allyl complexes bearing an anti
phenyl ring (C-endo’ and C-exo’) are less stable than those bearing a syn phenyl ring (C-endo and C-exo).
Furthermore, these anti-substituted w-allyl complexes are unlikely intermediates because they do not arise
from ionization of the fluorine atom antiperiplanar to iridium in the ground-state olefin complexes.
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C-nt (+21.9 kcal/mol)

The energy of the n*-allyl iridium complex C-5%, which is the intermediate required for n-c-n interconversion to
occur, is 21.9 kcal/mol higher than that of the isomeric n-allyl iridium intermediate C-exo. Because the allyl
intermediate is rapidly captured under the reaction conditions, this result implies that the endo and exo w-allyl
intermediates do not interconvert under the reaction conditions. Indeed, previous experimental studies of allylic
substitution with cyclometalated phosphoramidite ligands have demonstrated that such interconversions do not
occur. This high energy of the #* structure relative to the #* form may be due to the d, octahedral configuration

about iridium in the 3 form.
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A-endo:

G (EE+Thermal Free Energy Correction) =-3067.027015
Gcorr (Thermal Correction to Free Energy) = 0.734423
EE(RB3LYP, solvent corrected) = -3067.803095

A-exo:

G (EE+Thermal Free Energy Correction) = -3067.023385
Gcorr (Thermal Correction to Free Energy) = 0.734889
EE(RB3LYP, solvent corrected) = -3067.800185
B-endo:

G (EE+Thermal Free Energy Correction) = -2706.662567
Gcorr (Thermal Correction to Free Energy) = 0.735881
EE(RB3LYP, solvent corrected) = -2707.437767

B-exo:

G (EE+Thermal Free Energy Correction) =-2706.667239
Gcorr (Thermal Correction to Free Energy) = 0.736741
EE(RB3LYP, solvent corrected) = -2707.442929
C-endo:

G (EE+Thermal Free Energy Correction) = -2606.62744
Gcorr (Thermal Correction to Free Energy) = 0.735815

EE(RB3LYP, solvent corrected) = -2607.446511
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C-exo:

G (EE+Thermal Free Energy Correction) = -2606.625771
Gcorr (Thermal Correction to Free Energy) = 0.734175
EE(RB3LYP, solvent corrected) = -2607.445524

C-endo

G (EE+Thermal Free Energy Correction) =

Gcorr (Thermal Correction to Free Energy) =
EE(RB3LYP, solvent corrected) =

C-exo’:

G (EE+Thermal Free Energy Correction) = -2606.621981
Gcorr (Thermal Correction to Free Energy) = 0.735451

EE(RB3LYP, solvent corrected) = -2607.439854

C-n:

G (EE+Thermal Free Energy Correction) = -2606.583539
Gcorr (Thermal Correction to Free Energy) = 0.730392

EE(RB3LYP, solvent corrected) = -2607.406814
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EFFECT OF CATALYST LOADING ON ENANTIOSELECTIVITY

The enantioselectivity of defluorinative alkylation is slightly lower for reactions conducted
with higher catalyst loadings than for those conducted with lower catalyst loadings. When the
cationic precatalyst Co is attacked by lithium malonate to enter the catalytic cycle, an equivalent
of lithium tetrafluoroborate is liberated. We hypothesized that the substitution of fluoride by
iridium with the participation of lithium tetrafluoroborate occurs with lower enantioselectivity than
that with the participation of lithium malonate. In this case, reactions with higher loadings of the
catalyst will generate more LiBF4 and form the product with lower enantioselectivity. Indeed, as
shown in Figure S12 (shown below), the enantioselectivity of the reactions with exogenous lithium
tetrafluoroborate are lower by an amount comparable to that of the reactions with higher catalyst

loading.

Et0,C.__CO,Et Me_ COLE
Ao Y + LiotBu BOL\
Me

NP N
OO x mol% C21 (Cw) OO

0.1 M, THF, RT, 48 h

Conv. er Conv. er
1 mol% [Ir] >98% 94.0:6.0 2mol% [Ir] + o )
0 mol% LIBF, >98% 94.0:6.0
2 mol% [Ir] >98% 94.0:6.0
2 mol% [Ir] + o .
5 mol% [Ir] >98% 93.5:6.5 3 mol% LiBF, >98% 92.5:7.5

10 mol% [Ir] >98% 92.5:7.5

2 mol% [Ir] +

9 .
gmol% LiBF, | 8% 91585

Higher catalyst loadings: Exogenous LiBF;:
Lower enantioselectivity Lower enantioselectivity

Figure S12. Effect of catalyst loading and exogenous LiBF4 on enantioselectivity.
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DEVELOPMENT OF CATALYST CQ

The catalyst structure was modified in an iterative set of experiments outlined in figure
S13. The trends of enantioselectivities are nearly the same for reactions conducted with malonates,
malononitriles, and silyl ketene acetals. However, the enantioselectivity of products formed from
reactions of silyl ketene acetals conducted with catalyst Cy are slightly higher than those of

reactions conducted with catalyst Co.

a N7 1eRe Pod
HNu (2a) y : .
FF (1.5 equiv) \/\ Nu F 0 \?ﬁj BF,
2'“”)\/ oo N THFPhO 1M 2N M PJ'\ O O
(1.5 equiv) @ . RT. 48 h 3aa 0 | N e 0’? o’g’
HNu (2a) = : N— g, 0%
5 mol% [Ir(diene)(ally)(KA(P,C)L)I'BFs  HC(Me)(COLEN), j D 1Rp O O
entry  catalyst Base conv.(%)? er? "
. e
1 €1 (Ca) (1 mol%) NaH 10% (6 h) n.d. O c1s: c19
2 c1 NaH >95 67.1:32.9 ! . 90.6:9.4 er 90.2:9.8 e
3 c2 NaH >95 70.4:29.6 ; e
4 c3 NaH >95 63.7:36.3 : Br
5 c4(Cp) NaH >95 81.2:18.8 3 OO N ke
6 c4(Cp) LiOtBu >95 88.3:11.7 3 oF ot O O
7 ca(cp) NaOt-Bu >95 83.1:169 3 og. Q O
8 c4(Cp) KOt-Bu <5 - 3 O %
9 C5-C23 LiOt-Bu >95 shown below Ph Ph
. o X :
10° 21 (Co) LiotBu >95 96.1:3.9 | 2. <21 (Coy 22
b L ; 87.9:22.1er 93.2:6.8 er 85.2:14.8 er
7 18R (Ar = Ph) l\_s S- BINOL R= Br) N
R-BINOLate \ c2: i r\P !
: ( 12.3:87.7 :
(0 ~I~ (Ar = 2-anisyl) PN \O) er : e

Ph C3: R “Bn ent-C6:

Me\( { (Ar = 2-naphthyl) S (R = CFy) - “|*BF;
he A C4 (CP): 11.9:88.1er = S S
(Ar = 1-naphthyl) O\P/ ~— —,_‘
“

R= : B
Me% /—é (A ‘%A . h
Bu Ph O Me
' M
1R cr: cs: co: c1o: : O ¢

R-BINOLate =] 86.0:14.0er  79.4:20.6er  89.0:11.0er  91.1:89er

' Me
P Me
(o/l >\/\ph C21 (Co): C23:
93.2:6.8 er 82.8:17.2 er
96.1:3.9 er (-10 °C, 2 mol%)°®
c11: c12: c13: T
91.3:8.7 er 75.1:24.9 er 91.9:8.1 er 4Conversion of starting material determined by "H NMR spectroscopy.

bEnantiomeric ratio determined by chiral HPLC after purification by preparative

TLC. °Reaction conducted at -10 °C, with 2 mol% C21 (Cw) at a reaction
concentration of 0.4 M.
O W O WA O W

c14: c15 (Cy): c1e: c17:
92.6:7.4 er 91.6:8.4 er 91.6:84 er 88.5:11.5 er

Figure S13. Development of catalysts for the enantioselective desymmetrization of 3-substituted

3,3-difluoropropenes. a. Initial reaction development b. Investigation of aryl groups at the site of

cyclometallation c. Investigation of substituents at the non-cyclometallated site of the catalyst. d.
Investigation of various diol backbones e. Investigation of the structure of the diene.
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UNSTABILIZED KETONE ENOLATES IN DEFLUORINATIVE ALKYLATION REACTIONS

Defluorinative alkylation reactions with ketones proceed in good yield; however, these
reactions proceed in low enantioselectivity when conducted with the catalysts we developed for
reactions of malonates and silyl ketene (Figure S14).

4 mol% C21 (Cow)

RS i THF, 0.2 M, RT &
S + , R e - , K F
A R)k( | . RJ))\/
R LiOt-Bu (2.0 equiv) R
1b (0.1 mmol) (2.0 equiv)
(Ar = 2-Np)

(0]
R
d (0] . [e] .
0 F RS S
S NP N
Phw Ph ", 7,
Me Me

S1 S2 S3
84% (58:42 er) 72% (69:31 er) 59% (81:19 er)
(5:1 bzl)

Figure S14. Defluorinative alkylation reactions with ketone nucleophiles.

Note: Defluorinative alkylation reactions with ketones were conducted in an analogous fashion

to defluorinative alkylation reactions with malonates under the conditions outlined in Figure S14.

(R)-3-fluoro-2,2-dimethyl-3-(naphthalen-2-yl)-1-phenylpent-4-en-1-one (S1)

o F.
Ph &

me! e
The title compound was prepared according to the general procedure for the allylic alkylation of
malonates and S-keto esters on a 0.100 mmol scale. Reaction time: 36 h. Reaction temperature:
RT. Catalyst loading: 4 mol%. The product was purified by preparative TLC (5/95 of
acetone/hexanes) to provide allylic fluoride S1 as a clear oil (27.9 mg, 0.0839 mmol, 84%).
The enantiomeric ratio was determined to be 58:42 by HPLC analysis with tr = 8.1 min (minor)
and tr = 9.3 min (major) [AD-H, 1.0% iPrOH in hexanes, 0.7 mL/min, 230 nm, 25 °C].
[a]p?® = +1.9° (c 0.49, CHCIs). Corrected for enantiopurity: [a]p?® = +11.9° (c 0.49, CHClIs).
IH NMR (600 MHz, CDCl3) § 7.89 (d, J = 1.8 Hz, 1H), 7.87 — 7.80 (m, 3H), 7.52 — 7.48 (m, 3H),
7.45—-7.42 (m, 2H), 7.40 (t, J = 7.4 Hz, 1H), 7.30 (t, J = 7.7 Hz, 2H), 6.89 (ddd, J = 23.0, 17.0,
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11.1 Hz, 1H), 5.46 (dd, J = 17.0, 1.3 Hz, 1H), 5.35 (ddd, J = 11.2, 2.8, 1.3 Hz, 1H), 1.39 (s, 3H),
1.38 (s, 3H).

13C NMR (151 MHz, CDCls) § 208.2 (d, J = 2.4 Hz), 140.7, 137.8 (d, J = 23.4 Hz), 136.6 (d, J =
18.4 Hz), 132.8, 130.6, 128.6, 127.9, 127.8 (d, J = 4.2 Hz), 127.6, 127.5 (d, J = 1.9 Hz), 126.5,
126.4,125.8 (d, J=11.4 Hz), 124.5 (d, J = 9.5 Hz), 115.6 (d, J = 14.8 Hz), 99.9 (d, J = 187.6 Hz),
56.0 (d, J =24.4 Hz), 23.7 (d, J =4.4 Hz), 23.5 (d, J = 6.1 Hz).

19 NMR (565 MHz, CDCl3) & -157.2 (d, J = 22.8 Hz).

HRMS (ESI): m/z for C23sH21FNaO* [M+Na]* calcd.: 355.1469, found: 355.1466.
(R)-(1-(1-fluoro-1-(naphthalen-2-yhallyl)cyclohexyl)(phenyl)methanone (S2)

O F .
Ph)&i\/

The title compound was prepared according to the general procedure for the allylic alkylation of
malonates and S-keto esters on a 0.100 mmol scale. Reaction time: 36 h. Reaction temperature:
RT. Catalyst loading: 4 mol%. The product was purified by preparative TLC (5/95 of
acetone/hexanes) to provide allylic fluoride S2 as a clear oil (26.9 mg, 0.0722 mmol, 72%).

The enantiomeric ratio was determined to be 69:31 by HPLC analysis with tr = 6.6 min (major)
and tr = 8.8 min (minor) [OD-H, 1.0% iPrOH in hexanes, 0.7 mL/min, 230 nm, 25 °C].

[a]p?® = +13.2° (c 0.38, CHCI3). Corrected for enantiopurity: [a]o?® = +34.7° (¢ 0.38, CHClIs3).
1H NMR (600 MHz, CDCl3) 5 7.88 — 7.80 (m, 4H), 7.59 — 7.56 (m, 2H), 7.52 — 7.48 (m, 3H), 7.42
(t, J=7.4Hz, 1H), 7.32 (t, J = 7.7 Hz, 2H), 6.82 (ddd, J = 23.7, 17.0, 11.2 Hz, 1H), 5.44 (dd, J =
17.0, 1.3 Hz, 1H), 5.32 (ddd, J =11.2, 3.2, 1.3 Hz, 1H), 2.68 — 2.57 (m, 2H), 1.57 — 1.36 (m, 5H),
1.05-0.87 (m, 3H).

13C NMR (151 MHz, CDCl3) § 207.1, 141.6, 137.9 (d, J = 23.8 Hz), 136.5 (d, J = 18.7 Hz), 132.8,
132.7,130.9, 128.6, 128.1 (d, J = 6.6 Hz), 128.0, 127.6, 127.4 (d, J = 1.9 Hz), 126.5, 126.4, 125.9
(d, J=115Hz),124.7 (d, J = 9.8 Hz), 115.2 (d, J = 15.1 Hz), 100.5 (d, J = 187.8 Hz), 61.0 (d, J
=23.7Hz),31.2 (d,J=3.8 Hz), 31.1 (d, J = 5.6 Hz), 25.4, 23.0, 23.0.

F NMR (565 MHz, CDCls) § -156.3 — -156.9 (broadened d, J = 24.4 Hz)

HRMS (ESI): m/z for C2sH2sFNaO* [M+Na]* calcd.: 395.1782, found: 395.1777.
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(R)-cyclohexyl(1-(1-fluoro-1-(naphthalen-2-yl)allyl)cyclohexyl)methanone (S3)

O F'
o5

The title compound was prepared according to the general procedure for the allylic alkylation of
malonates and S-keto esters on a 0.100 mmol scale. Reaction time: 36 h. Reaction temperature:
RT. Catalyst loading: 4 mol%. The product was purified by preparative TLC (5/95 of
acetone/hexanes) to provide allylic fluoride S3 as a clear oil (22.4 mg, 0.0592 mmol, 59%). For
this nucleophile, the linear constitutional isomer of the product was observed (5:1 b:l ratio), which
may form via an uncatalyzed background reaction. An additional purification by preparative TLC
(benzene) provided product S3 in high purity.

The enantiomeric ratio was determined to be 81:19 by HPLC analysis with tr = 5.0 min (major)
and tr = 5.3 min (minor) [OD-H, 0.3% iPrOH in hexanes, 0.8 mL/min, 270 nm, 25 °C].

[a]o?® = +8.0° (c 0.43, CHCIs). Corrected for enantiopurity: [a]o®® = +12.9° (¢ 0.43, CHClIs3).

IH NMR (600 MHz, CDCl3) § 7.88 — 7.81 (m, 2H), 7.82 — 7.77 (m, 2H), 7.53 — 7.46 (m, 2H), 7.43
(dd, J=8.6,1.9 Hz, 1H), 6.58 (ddd, J =22.2, 17.1, 11.2 Hz, 1H), 5.31 (dd, J = 17.1, 1.2 Hz, 1H),
5.26 (ddd, J =11.2, 2.2, 1.2 Hz, 1H), 3.00 (tt, J = 11.2, 3.2 Hz, 1H), 2.60 — 2.52 (m, 1H), 2.44 —
2.36 (m, 1H), 1.93 (d, J = 11.3 Hz, 1H), 1.82 — 1.10 (m, 15H), 0.84 (qt, J = 12.8, 3.8 Hz, 1H).
13C NMR (151 MHz, CDCl3) $ 217.0, 138.3 (d, J = 23.8 Hz), 137.0 (d, J = 18.2 Hz), 132.7, 132.6,
128.6, 127.6, 127.0 (d, J = 1.9 Hz), 126.5, 126.4, 126.2 (d, J = 11.6 Hz), 125.1 (d, J = 9.6 Hz),
115.9 (d, J = 13.3 Hz), 100.9 (d, J = 186.2 Hz), 61.0 (d, J = 22.2 Hz), 47.2 (d, J = 3.2 Hz), 30.7,
29.9 (d, J=3.4 Hz), 29.7 (d, J =5.9 Hz), 29.0 (d, J = 4.8 Hz), 26.1, 26.1, 26.1, 25.6, 23.7, 23.1.
19F NMR (565 MHz, CDCls) & -158.2 (d, J = 22.4 Hz).

HRMS (ESI): m/z for C2sH31FNaO* [M+Na]* calcd.: 401.2251, found: 401.2251.

SYNTHESIS OF SUBSTRATES

Fluorinated allylic electrophiles 1a-1g, and 1j were prepared in one step from commercially-
available arylboronic acids according to the following protocol reported by Zhang and coworkers:®
Fluorinated allylic electrophile 1i was prepared by a sequence involving radical deoxygenation

that is discussed herein. Allylic electrophile 1h was prepared according to a literature procedure.®
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cat. Pdy(dba);
F.F K,CO4 F,F

RB(OH),  + Brx/ > RX/

Dioxane, 80 °C
20 h, sealed under air

Allylic electrophiles 1a, 1c, 1d, 1f, and 1g are known compounds. Allylic electrophiles 1b, 1le, and
1j are new compounds; precise details of their synthesis are given below.
(1,1-difluoroallyl)benzene (1b)

The title compound was prepared according to the following procedure. The reaction was
conducted under air. Phenylboronic acid (365.8 mg, 3.000 mmol, 1 equiv) and K>CO3s (1.244 g,
9.000 mmol, 3 equiv) were weighed directly into a 50 mL Schlenk flask with a single opening
sealed with a Teflon plug and containing a magnetic stir bar. Pdz(dba)s (11.0 mg, 12.0 umol, 0.40
mol%) was added, followed by dry dioxane (15.0 mL) and distilled water (27.0 pL, 1.50 mmol,
0.50 equiv). Lastly, 3-bromo-3,3-difluoropropene (495 L, 4.50 mmol, 1.50 equiv) was added.
The Schlenk flask was sealed, and the reaction mixture was stirred vigorously and heated at 80 °C
in an oil bath for 20 h. After this time, the reaction mixture was cooled to ambient temperature,
diluted with THF, and filtered through a pad of magnesium sulfate. Due to the volatility of the
product, the crude reaction mixture was carefully concentrated in vacuo at 0 °C. The product was
then purified by silica gel column chromatography (0/100 to 10/90 of diethyl ether/pentane) to
provide (1,1-difluoroallyl)benzene (1b) as a clear, colorless liquid (188.5 mg, 1.223 mmol, 41%).
Note: It is important that the reaction vessel has little headspace and that the entire vessel is
submerged in the heating bath.

IH NMR (600 MHz, CDCls) & 7.52 (ddt, J = 5.3, 3.1, 1.6 Hz, 2H), 7.44 (dd, J = 5.2, 2.0 Hz, 3H),
6.17 (ddt, J =17.3, 11.0, 9.7 Hz, 1H), 5.58 (dt, J = 17.2, 2.8 Hz, 1H), 5.49 (d, J = 10.9 Hz, 1H).
13C NMR (151 MHz, CDCls) 6 136.4 (t, J = 27.4 Hz), 134.0 (t, J = 30.2 Hz), 130.1 (t, J = 1.8 Hz),
128.6, 125.6 (t, J = 5.7 Hz), 119.9 (t, J = 9.3 Hz), 119.5 (t, J = 238.3 Hz).

19F NMR (565 MHz, CDCl3)  -94.6 (dd, J = 9.7, 2.8 Hz).

HRMS (EIl): m/z for CoHgF2> [M]" calcd.: 154.0594, found: 154.0593
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1-(1,1-difluoroallyl)-4-(trifluoromethyl)benzene (1e)

/©)"\\/
F,C

3

The title compound was prepared according to the following procedure. The reaction was
conducted under air. 4-(trifluoromethyl)phenylboronic acid (569.8 mg, 3.000 mmol, 1 equiv) and
K2COs3 (1.244 g, 9.000 mmol, 3 equiv) were weighed directly into a 50 mL Schlenk flask with a
single opening sealed with a Teflon plug and containing a magnetic stir bar. Pd>(dba)s (11.0 mg,
12.0 pumol, 0.40 mol%) was added, followed by dry dioxane (15.0 mL) and distilled water (27.0
pL, 1.50 mmol, 0.50 equiv). Lastly, 3-bromo-3,3-difluoropropene (495 uL, 4.50 mmol, 1.50
equiv) was added. The Schlenk flask was sealed and the reaction mixture was stirred vigorously
and heated at 80 °C in an oil bath for 20 h. After this time, the reaction mixture was cooled to
ambient temperature, diluted with THF, and filtered through a pad of magnesium sulfate. Due to
the volatility of the product, the crude reaction mixture was carefully concentrated in vacuo at 0
°C. The product was then purified by silica gel column chromatography (0/100 to 10/90 of diethyl
ether/pentane) to provide difluoroallylarene 1e as a clear, colorless liquid (261.5 mg, 1.177 mmol,
39%). Note: It is important that the reaction vessel has little headspace and that the entire vessel is
submerged in the heating bath.

'H NMR (600 MHz, CDCl3) 8 7.70 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 8.1 Hz, 2H), 6.15 (ddt, J =
17.3,10.9, 9.8 Hz, 1H), 5.59 (dt, J = 17.3, 2.8 Hz, 1H), 5.53 (d, J = 10.9 Hz, 1H).

13C NMR (151 MHz, CDCls3) 6 140.1 (t, J = 27.8 Hz), 133.3 (t, J = 29.7 Hz), 132.3 (q, J = 32.7
Hz), 126.3 (t, J = 5.6 Hz), 125.7 (q, J = 3.8 Hz), 123.9 (q, J = 272.4 Hz), 120.7 (t, J = 9.3 Hz),
118.8 (t, J = 239.2 Hz).

BF NMR (565 MHz, CDCls) 6 -63.9, -95.4 (dd, J = 9.7, 2.5 Hz).

HRMS (El): m/z for C10H7Fs [M]" calcd.: 222.0468, found: 222.0464.
2-(1,1-difluoroallyl)-6-methoxynaphthalene (1j)

F,F

N

SO h
MeO

The title compound was prepared according to the following procedure. The reaction was
conducted under air. (6-methoxynaphthalen-2-yl)boronic acid (2.020 g, 10.00 mmol, 1 equiv) and
K2CO3s (4.150 g, 30.03 mmol, 3 equiv) were weighed directly into a 50 mL pressure tube
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containing a large magnetic stir bar. Pd2>(dba)s (120.0 mg, 0.2087 mmol, 2.087 mol%) was added,
followed by dry dioxane (45 mL) and distilled water (90.0 pL, 5.00 mmol, 0.50 equiv). Lastly, 3-
bromo-3,3-difluoropropene (2.50 mL, 3.85 g, 24.1 mmol, 2.41 equiv) was added. The pressure
tube was sealed, and the reaction mixture was stirred vigorously and heated at 80 °C in an oil bath
for 25 h. After this time, the reaction mixture was cooled to ambient temperature, diluted with
THF, and filtered through a pad of magnesium sulfate. The crude reaction mixture was
concentrated in vacuo and purified by silica gel column chromatography (0/100 to 5/95 of ethyl
acetate/hexanes) to provide difluoroallylarene 1j as a white powder (716.5 mg, 3.059 mmol, 31%).
Note: It is important that the reaction vessel has little headspace and that the entire vessel is
submerged in the heating bath.

IH NMR (600 MHz, CDCl3) & 7.94 (s, 1H), 7.80 — 7.77 (m, 2H), 7.53 (dd, J = 8.6, 1.8 Hz, 1H),
7.20 (dd, J =8.9, 2.5 Hz, 1H), 7.16 (d, J = 2.5 Hz, 1H), 6.24 (ddt, J = 17.3, 10.9, 9.7 Hz, 1H), 5.62
(dt, J=17.3,2.7 Hz, 1H), 5.52 (d, J = 10.9 Hz, 1H), 3.94 (s, 3H).

13C NMR (151 MHz, CDCl3) 6 158.8, 135.3, 134.1 (t, J = 30.3 Hz), 131.4 (t, J = 27.6 Hz), 130.2,
128.1,127.3,125.2 (t, J = 6.4 Hz), 123.4 (t, J = 4.9 Hz), 120.0 (t, J = 9.1 Hz), 119.8 (t, J = 238.1
Hz), 119.7, 105.8, 55.5.

F NMR (565 MHz, CDCl3) 6 -92.6 (d, J = 9.8 Hz).

HRMS (EI): m/z for C14H12F20 [M]* calcd.: 234.0856, found: 234.0857.

Allylic electrophile 1i was prepared according to the foIIowing sequence:

o ————> WP \2\/ 7
2-N
P In(0) on DMF RT Toluene
H,O/THF 90% 100 °C 1i
99% s4 71%

S5

2,2-dif|uoro-l—(naphthalen-z-yl)but-3-en-1—o| (S4)

OH

2 equiv In(0)
X g N
8:1 H,O/THF (0.2 M) A
60 °C, 48 h

(2 equiv)
S4

The following procedure was adapted from the literature.®* A 100 mL Schlenk flask with a single
opening sealed with a Teflon plug was charged with indium(0) powder (1.837 g, 16.00 mmol) and
a magnetic stir bar. The flask was evacuated and refilled with nitrogen three times, and degassed
water (40 mL) was added. 3-Bromo-3,3-difluoropropene (2.51 g, 1.63 mL, 16.0 mmol) was added,
followed immediately by a solution of 2-naphthaldehyde (1.249 g, 8.000 mmol) in dry, degassed
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tetrahydrofuran (4.8 mL). The Teflon plug was sealed, and the flask was heated at 60 °C for 48 h
with vigorous stirring. After this time, the reaction mixture was diluted with 1 M HCI (40 mL) and
extracted with diethyl ether (3 x 50 mL). The combined organic layers were washed with brine (1
x 20 mL), dried over sodium sulfate, and concentrated in vacuo. The resulting residue was purified
by column chromatography (0/100 to 30/70 ethyl acetate/hexanes) to provide homoallylic alcohol
S4 as a clear liquid (1.850 g, 7.899 mmol, 99%). All NMR data matched with the literature.’
0O-(2,2-difluoro-1-(naphthalen-2-yl)but-3-en-1-yl) S-methyl carbonodithioate (S5)

1. CS,, DBU, DMF, RT, 1 h )j\
2.Mel, 1h

X X
F F F F

S4 S5

OH

2,2-difluoro-1-(naphthalen-2-yl)but-3-en-1-ol (S4) (1.172 g, 5.003 mmol, 1 equiv) was weighed
directly into a dry 100 mL round-bottomed flask. The flask was sealed with a septum and the
headspace was replaced with nitrogen. Then, dry DMF (15 mL) was added, followed by DBU
(3.00 mL, 20.1 mmol, 4 equiv) and carbon disulfide (3.01 mL, 50.0 mmol, 10 equiv). The resulting
solution was stirred at room temperature for one hour. Then, methyl iodide (3.11 mL, 50.0 mmol,
10 equiv) was added, and the resulting solution was stirred at room temperature for one hour. After
this time, the reaction was concentrated in vacuo, diluted with water (100 mL), and extracted with
hexanes (4 x 50 mL). The combined organic layers were washed with water (4 x 50 mL) and brine
(30 mL). The organic layer was dried over sodium sulfate and concentrated in vacuo. The product
was purified by silica gel column chromatography (0/100 to 5/95 of ethyl acetate/hexanes) to
provide xanthate S5 as a white solid (1.4681 g, 4.526 mmol, 90%).

'H NMR (600 MHz, CDCl3) § 7.90 — 7.82 (m, 4H), 7.54 — 7.49 (m, 3H), 6.89 (dd, J = 11.2, 9.7
Hz, 1H), 5.95 (ddt, J = 17.3, 12.3, 10.9 Hz, 1H), 5.71 (dt, J = 17.4, 2.4 Hz, 1H), 5.54 (d, J = 11.0
Hz, 1H), 2.60 (s, 3H).

13C NMR (151 MHz, CDCl3) 8 214.4, 133.7, 132.9, 129.9, 129.7 (t, J = 25.7 Hz), 128.7, 128.4,
128.3, 127.9, 126.9, 126.6, 125.6, 122.4 (t, J = 9.2 Hz), 118.2 (dd, J = 246.5, 245.1 Hz), 83.0 (t, J
= 31.5 Hz), 19.5.

F NMR (565 MHz, CDCl3) 6 -104.9 (dt, J = 251.2, 10.3 Hz), -108.2 (dt, J = 251.3, 12.0 Hz).
HRMS (EI): m/z for C16H14F20S2 [M]* calcd.: 324.0454, found: 324.0451.
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2-(2,2-difluorobut-3-en-1-yl)naphthalene (1i)

)j\ TMS3SiH, AIBN
Toluene, 100 °C, 3 h

X X
F F F F

S5 1i

In a nitrogen-filled glove box, a 20 mL vial was charged with xanthate S5 (600.0 mg, 1.850 mmol,
1 equiv) and AIBN (60.7 mg, 0.370 mmol, 0.200 equiv). Then, dry, degassed toluene (9.25 mL)
was added, followed by tris(trimethylsilyl)silane (852 uL, 2.76 mmol, 1.50 equiv). The vial was
equipped with a magnetic stir bar, sealed, and the reaction mixture was stirred and heated at 100
°C for 3 hours (Note: longer reaction times result in lower isolated yields). After this time, the
reaction was cooled to room temperature, diluted with water, and extracted with diethyl ether. The
combined organic layers were dried over sodium sulfate and concentrated in vacuo. The product
was purified by silica gel column chromatography (isocratic, hexanes) to provide gem-
difluoroalkyl alkene 1i as a white solid (288.4 mg, 1.321 mmol, 71%).

IH NMR (600 MHz, CDCl3) § 7.87 — 7.80 (m, 3H), 7.74 (d, J = 1.7 Hz, 1H), 7.53 — 7.47 (m, 2H),
7.41 (dd, J = 8.3, 1.6 Hz, 1H), 5.91 (dq, J = 17.4, 11.2 Hz, 1H), 5.60 (dtd, J = 17.4, 2.5, 0.8 Hz,
1H), 5.39 (dd, J = 11.0, 0.8 Hz, 1H), 3.40 (t, J = 15.6 Hz, 2H).

13C NMR (151 MHz, CDCls) 6 133.4, 132.7, 132.6 (t, J = 26.9 Hz), 130.4 (t, J = 4.4 Hz), 129.6,
128.6, 128.0, 127.9, 127.8, 126.3, 126.1, 120.4 (t, J = 240.6 Hz), 119.7 (t, J = 9.2 Hz), 44.3 (t, J =
27.5 Hz).

F NMR (565 MHz, CDCls) § -96.3 (q, J = 14.7 Hz).

HRMS (EIl): m/z for C14H12F2 [M]" calcd.: 218.0907, found: 218.0906.

SYNTHESIS OF NEW LIGANDS AND CATALYSTS

1.) Ligands

Ligands L1-L4* and L10'® and their corresponding amine precursors (Amine 1-4 and Amine 10)
were prepared according to the literature. The synthesis and characterization of new ligands L5-
L9 and L11-L22 are discussed below. A general scheme for their synthesis is provided below
(figure S15). The required chiral amines, ketones, and benzylic bromides were obtained from
commercial sources. The required aldehydes were obtained from commercial sources or prepared

according to literature procedures cited herein.
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Me NaBH,;CN Me

aldehyde .
Ar)\NHg ¥ or MeOH or Ar/'\N/R
ketone MeOH/DCE H
1.0 equiv 1.0- _2.5 AcOH (pH = 6)
equiv RT - 65 °C
PCl3, NEt i
-OR- then Diol ~ (RORPNRR
phosphoramidites
Me Na,CO4 Me ////////}' L1-L22
—_—
Ar/'\NHz ¥ B Ar DMPU Ar/'\N/\Ar'
) ) 120°C, 6 h
1.0 equiv 1.1 equiv

Figure S15. Synthesis of phosphoramidite ligands.

Synthesis of L5-L9 and L11-L22:
Ligands L5-L9 and L11-L22 were prepared according to the following general procedure.

In a nitrogen-filled dry box, a 4 mL or 20 mL vial was charged with chiral amine (Amine)
(1.0 equiv), triethylamine (5.0 equiv), and dichloromethane (0.5 M in chiral amine). The resulting
solution was cooled to —40 °C. Then, phosphorus trichloride (1.0 equiv) was added dropwise with
stirring at —40 °C, and the resulting suspension was allowed to warm to room temperature and stir
for 6 hours. After this time, the reaction mixture was again cooled to —40 °C, and the corresponding
diol was added as a solid in one portion. The resulting suspension was stirred at room temperature
for 16 h. After this time, the reaction was removed from the glovebox, transferred to a separatory
funnel with dichloromethane (20 mL) and quenched with water (20 mL). The product was
extracted with dichloromethane (3 x 20 mL), and the combined organic layers were dried over

sodium sulfate. Column chromatography on silica afforded the pure ligands.

ent-LS

Br
CL
\

P—N

o’>
T -

(SaS)
ent-L5 was prepared from 0.316 mmol of ent-amine 5 according to the general procedure. The
product was then purified by silica gel column chromatography (0/100 to 15/85 of ethyl
acetate/hexanes) to provide ligand ent-L5 as a white powder (167.4 mg, 0.2769 mmol, 88%).
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[a]o% = +281° (c 0.30, CHCIs).

1H NMR (600 MHz, CDCls) § 8.11 (d, J = 7.3 Hz, 1H), 8.04 (d, J = 8.8 Hz, 1H), 7.95 (d, J = 8.1
Hz, 1H), 7.85 — 7.82 (m, 2H), 7.69 (d, J = 8.7 Hz, 1H), 7.60 — 7.56 (m, 2H), 7.44 (ddd, J = 8.0,
6.7, 1.2 Hz, 1H), 7.38 — 7.34 (m, 3H), 7.31 — 7.13 (m, 9H), 4.64 (dq, J = 14.1, 7.2 Hz, 1H), 4.07
(d, J=14.9 Hz, 1H), 3.02 (d, J = 14.9 Hz, 1H), 1.66 (dd, J = 7.2, 4.3 Hz, 3H).

13C NMR (151 MHz, CDCl3) § 150.3 (d, J = 5.0 Hz), 149.7, 143.1, 138.2, 133.2, 133.0, 132.7,
131.6, 130.7, 130.5, 130.4, 129.0, 128.9, 128.6 (d, J = 3.1 Hz), 128.5, 128.3, 128.2, 128.1, 127.2,
127.1,127.1,126.2,126.2, 125.0, 124.7, 124.3 (d, J = 5.4 Hz), 124.0, 122.6, 122.5, 121.7, 56.9 (d,
J=25.4Hz),49.0 (d,J = 4.5 Hz), 22.8 (d, J = 32.7 H2).

3P NMR (243 MHz, CDCl3) § 141.8.

HRMS (ESI): m/z for CasH2s®'BrNO2P* [M+H]" calcd.: 606.1015, found: 606.1013.

ent-L6

CF3
OO lo) wiMe
\
/P—N
-
Ph

(SaS)
ent-L6 was prepared from 0.179 mmol of ent-amine 6 according to the general procedure. The
product was then purified by silica gel column chromatography (0/100 to 15/85 of ethyl
acetate/hexanes) to provide ligand ent-L6 as a white powder (100.0 mg, 0.1685 mmol, 94%).
[a]p?® = +223° (¢ 0.64, CHCls).
'H NMR (600 MHz, CDCls) 6 8.45 (d, J = 7.9 Hz, 1H), 8.04 (d, J = 8.7 Hz, 1H), 7.96 (d, J = 8.2
Hz, 1H), 7.88 (t, J = 7.6 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.81 (d, J = 8.9 Hz, 1H), 7.69 (d, J =
8.4 Hz, 2H), 7.51 (t, J = 7.6 Hz, 1H), 7.45 (ddd, J = 8.2, 6.6, 1.3 Hz, 1H), 7.39 — 7.33 (m, 3H),
7.27 (ddd, J =8.5, 6.7, 1.4 Hz, 1H), 7.25 — 7.20 (m, 4H), 7.19 — 7.13 (m, 3H), 4.64 (dq, J = 14.1,
7.2 Hz, 1H), 4.07 (d, J = 15.7 Hz, 1H), 3.00 (d, J = 15.7 Hz, 1H), 1.75 (dd, J = 7.1, 4.6 Hz, 3H).
13C NMR (151 MHz, CDCl3) & 150.1 (d, J = 4.8 Hz), 149.6 144.0, 138.1, 133.0, 132.7, 132.6,
131.6, 130.7, 130.5, 130.4, 129.0 (d, J = 4.4 Hz), 128.5, 128.3, 128.2, 127.9, 127.5, 127.2, 127.2,
127.0, 126.3, 126.2, 125.9 (q, J = 5.7 Hz), 125.0, 124.8, 124.2 (d, J = 5.3 Hz), 124.2 (9, J = 274.5
Hz), 122.6, 122.5, 121.5, 54.4 (d, J = 24.5 Hz), 49.3 (d, J = 4.5 Hz), 24.9 (d, J = 35.2 Hz).
F NMR (565 MHz, CDCls) § -59.2.

S36



3P NMR (243 MHz, CDCls) 6 142.0.
HRMS (ESI): m/z for C3sH27FsKNO2P+ [M+K]" calcd.: 632.1363, found: 632.1357.

L7

(RaR)
L7 was prepared from 0.810 mmol of amine 7 according to the general procedure. The product
was then purified by silica gel column chromatography (1/99 to 10/90 of ethyl acetate/hexanes) to
provide ligand L7 as a white powder (74.6 mg, 0.149 mmol, 18%).
[a]p?® = -437° (c 0.12, CHCls).
'H NMR (600 MHz, CDCl3) 6 8.32 (dd, J = 8.7, 2.7 Hz, 1H), 7.98 (d, J = 8.7 Hz, 1H), 7.93 (d, J
=8.2 Hz, 1H), 7.91 - 7.86 (m, 3H), 7.81 (d, J = 8.1 Hz, 1H), 7.68 — 7.63 (m, 1H), 7.62 (d, J = 7.2
Hz, 1H), 7.54 (dd, J = 12.6, 8.1 Hz, 2H), 7.51 — 7.32 (m, 6H), 7.28 — 7.21 (m, 2H), 5.62 (dq, J =
13.7, 6.8 Hz, 1H), 1.95 - 1.91 (m, 6H).
13C NMR (151 MHz, CDCl3) 6 150.2 (d, J = 5.1 Hz), 149.4, 136.5 (d, J = 10.8 Hz), 134.1, 132.8,
132.6, 131.6, 131.3, 130.6, 130.2, 130.0, 128.9, 128.3, 128.1, 127.0, 126.9, 126.2, 126.0, 126.0,
125.6, 124.7, 124.7, 1245, 124.5, 124.5, 123.9 (d, J = 5.0 Hz), 123.6 (d, J = 9.9 Hz), 122.6 (d, J =
2.0 Hz), 122.0, 121.8, 52.7 (d, J = 45.0 Hz), 27.3 (d, J = 5.8 HZz), 19.8 (d, J = 8.0 Hz).
3P NMR (243 MHz, CDCls) 6 149.5.
HRMS (ESI): m/z for CssH27NO2P* [M+H]"* calcd.: 500.1774, found: 500.1752.
L8

o) Me
P—N
/
o _>_\
O
(Ra,R)

L8 was prepared from 1.315 mmol of amine 8 according to the general procedure. The product
was then purified by silica gel column chromatography (1/99 to 15/85 of ethyl acetate/hexanes) to
provide ligand L8 as a white powder (565.4 mg, 1.018 mmol, 77%).
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[a]o® = ~166° (¢ 0.43, CHCl5).

IH NMR (600 MHz, CDCl3) § 8.39 (d, J = 7.2 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 8.7
Hz, 1H), 7.97 — 7.93 (m, 2H), 7.86 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 8.8
Hz, 1H), 7.69 (t, J = 7.7 Hz, 1H), 7.60 (d, J = 8.7 Hz, 1H), 7.57 (ddd, J = 8.4, 6.7, 1.5 Hz, 1H),
7.53 (ddd, J=7.9, 6.8, 1.1 Hz, 1H), 7.46 — 7.35 (m, 5H), 7.29 — 7.25 (m, 2H), 5.34 (dq, J = 14.9,
7.3 Hz, 1H), 3.05 — 2.98 (m, 1H), 1.90 (dd, J = 7.4, 3.0 Hz, 3H), 1.55 — 1.37 (m, 2H), 1.18 (dddd,
J=15.4,10.7, 7.6, 2.9 Hz, 1H), 0.96 (t, J = 7.4 Hz, 3H), 0.78 (ddt, J = 17.9, 14.0, 7.2 Hz, 1H),
0.15 (t, J = 7.4 Hz, 3H).

13C NMR (151 MHz, CDCl3) 6 150.4 (d, J = 7.4 Hz), 149.9, 143.4, 134.1, 133.0, 132.8, 131.5,
130.5, 130.4, 130.1, 129.6, 129.3, 128.4, 128.3, 127.3, 127.3, 127.2, 126.3, 126.1, 126.0, 125.8,
125.5,124.8,124.4,124.2,124.2 (d, J = 7.0 Hz), 122.6 (d, J = 1.6 Hz), 122.3, 122.1, 122.0 (d, J =
2.4 Hz), 58.4 (d, J = 3.6 Hz), 49.8 (d, J = 23.9 Hz), 29.1, 25.8 (d, J = 31.8 Hz), 24.0, 11.6, 11.5.
31p NMR (243 MHz, CDCl3) § 147.0.

HRMS (ESI): m/z for C37H3sNO2P* [M+H]* calcd.: 556.2400, found: 556.2383.

L9
t
O Me
JP—N
QY

L9 was prepared from 1.363 mmol of amine 9 according to the general procedure. The product
was then purified by silica gel column chromatography (1/99 to 10/90 of ethyl acetate/hexanes) to
provide ligand L9 as a white powder (619.2 mg, 1.114 mmol, 82%).

[a]p?® =-181° (c 0.29, CHCls).

'H NMR (600 MHz, CDCls) 6 8.28 (dd, J=7.2, 1.2 Hz, 1H), 8.13 - 8.06 (m, 1H), 8.01 (d, J=8.8
Hz, 1H), 7.97 (dd, J= 7.5, 1.9 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.81 (d,
J=8.0Hz, 1H), 7.72 (t, = 7.7 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.59 —
7.52 (m, 2H), 7.42 (ddd, J = 8.0, 6.6, 1.2 Hz, 1H), 7.39 — 7.31 (m, 3H), 7.26 — 7.21 (m, 2H), 7.02
(d, J=8.8 Hz, 1H), 5.54 (dq, J = 14.6, 7.2 Hz, 1H), 2.60 (dd, J = 14.8, 5.1 Hz, 1H), 2.24 (dd, J =
14.8, 4.4 Hz, 1H), 1.90 (dd, J = 7.3, 3.0 Hz, 3H), 0.70 (s, 9H).
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13C NMR (151 MHz, CDCl3) § 151.0 (d, J = 5.9 Hz), 149.5, 140.3 (d, J = 1.5 Hz), 133.9, 132.8,
132.6, 131.5, 131.3, 130.3, 130.2, 129.7, 129.1, 128.2, 128.0, 127.8, 127.1, 126.7, 126.1, 126.0,
125.8,125.6, 125.4, 124.7,124.3 (d, J = 4.2 Hz), 124.3, 124.2 (d, J = 5.4 Hz), 122.6, 122.2 (d, J =
1.9 Hz), 121.9 (2C), 56.8, 55.0 (d, J = 21.6 Hz), 32.1, 29.3, 23.5 (d, J = 29.0 Hz).

31p NMR (243 MHz, CDCl3) § 149.2.

HRMS (ESI): m/z for C37H3sNO2P* [M+H]" calcd.: 556.2400, found: 556.2422.

L11

(RaR)
L11 was prepared from 0.472 mmol of amine 11 according to the general procedure. The product
was then purified by silica gel column chromatography (0/99 to 8/92 of ethyl acetate/hexanes) to
provide ligand L11 as a white powder (206.5 mg, 0.3502 mmol, 74%).
[a]p?® = -236° (c 0.27, CHCls).
'H NMR (600 MHz, CDCls) 6 8.22 (d, J = 7.2 Hz, 1H), 8.02 (d, J = 8.8 Hz, 1H), 7.94 (d, J = 8.2
Hz, 1H), 7.92 (d, J = 8.3, 1.3 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.75 (d,
J=8.9Hz 1H), 7.71 (t, J = 7.6 Hz, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.66 (d, J = 8.7 Hz, 1H), 7.49
(ddd, J =8.0, 6.7, 1.0 Hz, 1H), 7.43 (ddd, J = 8.0, 6.6, 1.1 Hz, 1H), 7.41 — 7.32 (m, 5H), 7.28 —
7.25 (m, 1H), 7.23 (d, J = 8.9 Hz, 1H), 7.21 (ddd, J = 8.2, 6.7, 1.3 Hz, 1H), 7.08 (t, J = 7.4 Hz,
1H), 7.02 (t, J = 7.2 Hz, 1H), 6.85 (d, J = 7.4 Hz, 1H), 5.18 (dq, J = 14.2, 7.2 Hz, 1H), 3.87 (d, J
=16.0 Hz, 1H), 3.30 (dd, J = 16.0, 1.6 Hz, 1H), 1.93 (dd, J = 7.2, 3.7 Hz, 3H), 1.44 (s, 3H).
13C NMR (151 MHz, CDCls) 6 150.3 (d, J = 5.0 Hz), 149.5, 139.8 (d, J = 1.7 Hz), 136.1, 135.8,
133.8, 132.8 (d, J = 1.4 Hz), 132.5, 131.5, 131.4, 130.5, 130.2, 129.9, 129.7, 128.9, 128.3, 128.0,
127.9, 127.2, 127.0, 127.0, 126.3, 126.0 (3C), 125.7, 125.6, 125.5, 124.7, 124.5,124.1 (d, J = 2.3
Hz), 124.1 (d, J = 5.1 Hz), 122.5 (d, J = 2.1 Hz), 122.3 (2C) 121.6, 52.6 (d, J = 26.0 Hz), 45.4 (d,
J=4.1Hz),23.2(d,J=30.3Hz), 18.5.
3P NMR (243 MHz, CDCl3) & 145.2.
HRMS (ESI): m/z for C4oH33NO2P* [M+H]" calcd.: 590.2243, found: 590.2244.
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L12 was prepared from 0.3455 mmol of amine 12 according to the general procedure. The product
was then purified by silica gel column chromatography (0/99 to 8/92 of ethyl acetate/hexanes) to
provide ligand L12 as a white powder (195.4 mg, 0.3237 mmol, 94%).
[a]p?® =-112° (c 0.38, CHCls).
'H NMR (600 MHz, CDCls) 6 8.36 (d, J = 7.0 Hz, 1H), 8.04 (d, J = 8.7 Hz, 1H), 7.96 (d, J = 8.1
Hz, 1H), 7.87 (d, J = 8.1 Hz, 2H), 7.84 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.79 (dd, J =
8.1, 7.1 Hz, 1H), 7.65 (d, J = 8.7 Hz, 1H), 7.62 (d, J = 8.9 Hz, 1H), 7.48 — 7.33 (m, 5H), 7.31 —
7.22 (m, 2H), 7.20 (ddd, J = 8.1, 6.6, 1.3 Hz, 1H), 7.15 (d, J = 8.6 Hz, 1H), 6.90 (t, J = 7.4 Hz,
1H), 6.67 (d, J = 7.5 Hz, 2H), 4.91 (dq, J = 14.4, 7.3 Hz, 1H), 4.30 (d, J = 14.1 Hz, 1H), 3.59 (dd,
J=14.1,1.7Hz, 1H), 1.79 (dd, J = 7.3, 5.0 Hz, 3H), 1.67 (s, 6H).
13C NMR (151 MHz, CDCls) & 151.4 (d, J = 6.1 Hz), 149.8, 140.8, 138.6, 134.0, 133.0, 132.7,
132.2, 131.6, 131.0, 130.7, 130.5, 130.0, 128.7, 128.5, 128.5, 128.3, 127.8, 127.2, 127.2, 126.3,
126.2,125.9, 125.7, 125.6, 124.9, 124.7, 124.3 (d, J = 5.3 Hz), 124.0 (d, J = 2.5 Hz), 122.6 (d, J =
1.7 Hz), 122.4, 122.4, 122.2, 121.9, 52.0 (d, J = 22.7 Hz), 43.2 (d, J = 2.9 Hz), 24.6 (d, J = 36.9
Hz), 19.6.
3P NMR (243 MHz, CDCls) § 147.7.
HRMS (ESI): m/z for Ca1HaaKNO2P* [M+K]* calcd.: 642.1959, found: 642.1989.
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L13 was prepared from 0.2208 mmol of amine 13 according to the general procedure. The product
was then purified by silica gel column chromatography (0/99 to 10/90 of ethyl acetate/hexanes) to
provide ligand L13 as a white powder (99.7 mg, 0.1530 mmol, 69%).

[a]p?® =-173° (¢ 0.12, CHCls).

IH NMR (600 MHz, CDCl3) & 8.01 (d, J = 8.7 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 8.3
Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.74 (d, J = 7.1 Hz, 1H), 7.70 — 7.63 (m, 4H), 7.47 (ddd, J =
8.0, 6.7, 1.0 Hz, 1H), 7.45 - 7.33 (m, 7H), 7.29 — 7.20 (m, 2H), 7.17 — 7.11 (m, 1H), 7.07 (td, J =
7.5,1.7 Hz, 1H), 7.04 (td, J = 7.3, 1.6 Hz, 1H), 7.02 — 6.95 (m, 3H), 6.85 (dd, J = 7.3, 1.6 Hz, 1H),
6.22 (d, J = 7.4 Hz, 2H), 5.20 (dq, J = 14.0, 7.1 Hz, 1H), 3.88 (d, J = 16.4 Hz, 1H), 3.21 (dd, J =
16.5, 1.4 Hz, 1H), 1.83 (dd, J = 7.1, 2.7 Hz, 3H).

13C NMR (151 MHz, CDCls) 6 150.4 (d, J = 4.6 Hz), 149.8, 141.1, 140.1, 138.9 (d, J = 4.8 H2),
135.4, 133.9, 133.0, 132.6, 131.6, 131.6, 130.7, 130.4, 130.2, 129.3, 128.9, 128.9, 128.5, 128.2,
127.9, 127.5, 127.2, 127.2, 127.1, 127.0, 126.5, 126.2, 126.2, 126.1, 126.1, 125.4, 125.3, 124.9,
124.8,124.2, 124.2, 122.7, 122.7 (d, J = 4.3 Hz), 122.5, 121.8, 52.0 (d, J = 30.0 Hz), 45.5 (d, J =
4.5 Hz), 22.6 (d, J = 24.2 Hz).

3P NMR (243 MHz, CDCls) § 146.7.

HRMS (ESI): m/z for C4sHasNO2P* [M+H]" calcd.: 652.2400, found: 652.2406.
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L14 was prepared from 0.2052 mmol of amine 14 according to the general procedure. The product
was then purified by silica gel column chromatography (0/99 to 10/90 of ethyl acetate/hexanes) to
provide ligand L14 as a white powder (118.6 mg, 0.1744 mmol, 85%).

[a]p?® =-139° (c 0.20, CHClI3).

IH NMR (600 MHz, CDCl3) & 8.03 (d, J = 8.7 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.85 — 7.80 (m,
2H), 7.79 (d, J = 7.2 Hz, 1H), 7.71 — 7.66 (m, 3H), 7.64 (d, J = 8.6 Hz, 1H), 7.53 (d, J = 7.8 Hz,
1H), 7.50 — 7.32 (m, 7H), 7.28 — 7.19 (m, 2H), 7.12 (td, J = 7.6, 1.4 Hz, 1H), 7.09 — 7.02 (m, 2H),
6.84 (dd, J = 7.5, 1.4 Hz, 1H), 6.77 (s, 1H), 5.94 (s, 2H), 5.15 (dq, J = 14.0, 7.1 Hz, 1H), 3.89 (d,
J=16.1Hz, 1H), 3.37 (d, J = 16.1 Hz, 1H), 2.08 (s, 6H), 1.78 (dd, J = 7.2, 3.0 Hz, 3H).

13C NMR (151 MHz, CDCls) 6 150.3 (d, J = 5.0 Hz), 149.7, 141.9, 140.2, 139.2 (d, J = 4.3 H2),
136.8, 135.4, 133.9, 133.0, 132.6, 131.6, 131.5, 130.5, 130.4, 129.9, 129.4, 129.0, 128.5, 128.3,
128.1, 127.8, 127.7, 127.2, 127.2, 127.0, 126.8, 126.2, 126.1, 126.1, 126.0, 125.4, 125.4, 124.9,
124.6,124.3 (d, J = 5.4 Hz), 124.1 (d, J = 3.0 Hz), 122.8, 122.6 (d, J = 1.7 Hz), 122.5, 121.9, 52.2
(d, J=29.6 Hz), 45.3 (d, J = 4.5 Hz), 22.9 (d, J = 26.2 Hz), 21.3.

3P NMR (243 MHz, CDCls) 6 145.0.

HRMS (ESI): m/z for C47H3sKNO2P* [M+K]" calcd.: 718.2272, found: 718.2254.
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L15 (Ly)

L15 (Ly) was prepared from 0.2704 mmol of amine 15 according to the general procedure. The
product was then purified by silica gel column chromatography (0/99 to 5/95 of ethyl
acetate/hexanes) to provide ligand L15 (Ly) as a white powder (149.4 mg, 0.1956 mmol, 72%).
[a]p?® =-126° (¢ 0.22, CHClIs).

'H NMR (600 MHz, CDCIs) 6 8.01 (d, J = 8.7 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 8.0
Hz, 1H), 7.77 (d, J =8.2 Hz, 1H), 7.74 — 7.61 (m, 5H), 7.58 (dd, J = 5.6, 3.7 Hz, 1H), 7.46 (t, J =
7.4 Hz, 1H), 7.43 - 7.27 (m, 7H), 7.25 — 7.19 (m, 2H), 7.09 — 7.06 (m, 2H), 7.01 — 6.95 (m, 1H),
6.87 (d, J = 8.8 Hz, 1H), 6.63 (s, 2H), 5.15 (dq, J = 13.9, 7.0 Hz, 1H), 4.03 (dd, J = 16.2, 2.4 Hz,
1H), 3.74 (d, J = 15.9 Hz, 1H), 1.69 (d, J = 6.8 Hz, 3H), 1.17 (s, 18H).

13C NMR (151 MHz, CDCls3) 6 150.2, 150.0 (d, J = 5.6 Hz), 149.7, 142.6, 140.0, 139.0 (d, J=7.0
Hz), 135.9, 134.1, 133.0, 132.6, 131.6, 131.6, 130.5, 130.3, 130.2, 129.7, 129.1, 128.6, 128.4,
128.4,128.0,127.3,127.2,126.9, 126.2, 126.2, 126.1, 126.1, 125.5, 125.2, 124.9, 124.5, 124.4 (d,
J=5.4Hz),124.1 (d, J = 4.2 Hz), 123.6, 123.2 (d, J = 4.1 Hz), 122.5, 122.4 (d, J = 1.8 Hz), 121.6,
120.7,52.6 (d, J = 32.4 Hz), 45.1 (d, J = 4.8 Hz), 34.8, 31.6, 22.3 (d, J = 17.5 Hz).

3P NMR (243 MHz, CDCls) & 145.3.

HRMS (ESI): m/z for Cs3HsiNO2P* [M+H]* calcd.: 764.3652, found: 764.3625.
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L16 was prepared from 0.4365 mmol of amine 16 according to the general procedure. The product
was then purified by silica gel column chromatography (0/100 to 5/95 of ethyl acetate/hexanes) to
provide ligand L16 as a white powder (280.5 mg, 0.3963 mmol, 91%).

[a]p?® = -68.0° (c 0.39, CHCI5).

IH NMR (600 MHz, CDCl3) & 8.02 (d, J = 8.7 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 8.0
Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.80 (d, J = 7.1 Hz, 1H), 7.70 — 7.60 (m, 4H), 7.52 — 7.40 (m,
5H), 7.40 — 7.31 (m, 3H), 7.29 — 7.22 (m, 2H), 7.13 (td, J = 7.6, 1.4 Hz, 1H), 7.08 (t, J = 7.0 Hz,
1H), 6.96 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.9 Hz, 1H), 6.90 (dd, J = 7.5, 1.4 Hz, 1H), 6.14 (d, J =
8.2 Hz, 2H), 5.12 (dq, J = 14.0, 7.1 Hz, 1H), 3.92 (d, J = 16.3 Hz, 1H), 3.21 (d, J = 16.3 Hz, 1H),
1.84 (dd, J=7.1, 2.8 Hz, 3H), 1.38 (s, 9H).

13C NMR (151 MHz, CDCls) 6 150.4 (d, J = 4.5 Hz), 149.8, 149.1, 141.3, 139.2 (d, J = 4.1 H2),
137.0, 135.6, 133.9, 133.0, 132.7, 131.6, 131.6, 130.7, 130.4, 130.0, 129.3, 128.9, 128.6, 128.5,
128.1, 127.8, 127.3, 127.2, 127.1, 126.9, 126.2, 126.2, 126.2, 125.4, 125.2, 124.9, 124.8, 124.3,
124.2 (d, J = 5.0 Hz), 124.1 (d, J = 2.8 Hz), 122.8 (d, J = 1.7 Hz), 122.7 (d, J = 2.1 Hz), 122.5,
122.5,121.9,52.1 (d, J = 28.6 Hz), 45.7 (d, J = 4.4 Hz), 34.5, 31.6, 22.7 (d, J = 25.3 Hz).

3P NMR (243 MHz, CDCls) 6 146.9.

HRMS (ESI): m/z for CagHa3sNO2P* [M+H]" calcd.: 708.3026, found: 708.3015.
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L17 was prepared from 0.1231 mmol of amine 17 according to the general procedure. The product
was then purified by silica gel column chromatography (0/99 to 10/90 of ethyl acetate/hexanes) to
provide ligand L17 as a white powder (99.7 mg, 0.1056 mmol, 86%).
[a]p?® = -395° (¢ 0.055, CHClI3).
'H NMR (600 MHz, CDCls) 6 8.09 (d, J = 7.2 Hz, 1H), 7.99 (d, J = 8.8 Hz, 1H), 7.93 (d, J = 8.5
Hz, 1H), 7.92 — 7.89 (m, 2H), 7.86 (d, J = 8.5 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.61 (d, J = 8.8
Hz, 1H), 7.57 (t, J = 7.7 Hz, 1H), 7.53 — 7.39 (m, 6H), 7.35 (d, J = 8.6 Hz, 1H), 7.31 (d, J = 8.6
Hz, 1H), 7.25 (ddt, J = 10.6, 5.9, 1.7 Hz, 3H), 7.14 (t, J = 7.4 Hz, 1H), 7.02 (d, J = 8.8 Hz, 1H),
6.96 (t, J =7.5Hz, 1H), 6.70 (app t, J = 7.6 Hz, 2H), 6.47 (d, J = 7.5 Hz, 1H), 5.35 (dq, J = 14.1,
7.2 Hz, 1H), 3.60 (d, J = 17.4 Hz, 1H), 2.91 (d, J = 17.6 Hz, 1H), 1.96 (dd, J = 7.2, 3.2 Hz, 3H),
1.25 (s, 3H), 0.53 (s, 3H).
13C NMR (151 MHz, CDCls) § 150.3 (d, J = 5.0 Hz), 149.7, 139.8 (d, J = 3.0 Hz), 139.4, 139.0,
136.1, 135.6, 134.5, 134.0, 132.9, 132.7, 131.5, 130.8, 130.4, 130.2, 129.1, 128.7, 128.7, 128.4,
128.0,127.2,127.1,127.0,126.9, 126.8, 126.6, 126.5, 126.3, 126.1 (3C), 125.6 (2C), 124.9, 124.5,
124.2 (d, J =5.1 Hz), 123.8, 122.6, 122.5, 122.1, 122.1, 121.5, 53.7 (d, J = 27.0 Hz), 46.7 (d, J =
4.5 Hz), 23.4 (d, J = 27.4 Hz), 19.6, 18.7.
3P NMR (243 MHz, CDCls) 6 146.7.
HRMS (ESI): m/z for C47H3sKNO2P* [M+K]" calcd.: 718.2272, found: 718.2264.
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L18 was prepared from 0.5000 mmol of amine 14 and 2,2’-biphenol according to the general
procedure. The product was then purified by silica gel column chromatography (2/98 to 8/92 of
ethyl acetate/hexanes) to provide ligand L18 as a white powder (258.7 mg, 0.4463 mmol, 89%).
[a]p?® =-74.1° (c 0.38, CHCI5).

IH NMR (600 MHz, CDCl3) & 7.83 (d, J = 8.1 Hz, 1H), 7.73 — 7.66 (m, 3H), 7.65 (d, J = 7.8 Hz,
1H), 7.49 — 7.41 (m, 3H), 7.43 — 7.37 (m, 2H), 7.30 (tt, J = 7.8, 1.7 Hz, 1H), 7.27 — 7.17 (m, 4H),
7.16 (t, J =7.4 Hz, 1H), 7.09 (d, J = 8.0 Hz, 1H), 7.01 (d, J = 7.8 Hz, 1H), 6.98 (d, J = 7.5 Hz,
1H), 6.77 (s, 1H), 6.17 (s, 2H), 5.21 (dq, J = 13.3, 7.0 Hz, 1H), 4.14 (d, J = 16.4 Hz, 1H), 3.57 (d,
J=16.3 Hz, 1H), 2.11 (s, 6H), 1.74 (dt, J = 7.2, 2.3 Hz, 3H).

13C NMR (151 MHz, CDCls) 6 152.0 (d, J = 5.5 Hz), 151.5 (d, J = 4.1 Hz), 142.0, 140.4, 138.8
(d, J = 4.1 Hz), 137.0, 135.8, 133.9, 131.5, 131.3 (d, J = 3.3 Hz), 131.0 (d, J = 2.7 Hz), 129.8,
129.8, 129.5, 129.3, 129.2, 128.9, 128.3, 128.0, 127.8, 127.1, 126.8, 126.2, 126.0, 125.4, 125.3,
124.7,124.3,124.2 (d, J=3.0 Hz), 123.0 (d, J = 2.6 Hz), 122.3, 122.0, 52.3 (d, J = 29.5 Hz), 45.1
(d, J=3.6 Hz), 22.5 (d, J = 23.8 Hz), 21.3.

3P NMR (243 MHz, CDCls) 6 146.2.

HRMS (ESI): m/z for C39H3sNO2P* [M+H]* calcd.: 580.2400, found: 580.2416.
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L19 was prepared from 0.5000 mmol of amine 14 and 2,2’-methylenebisphenol according to the
general procedure. The product was then purified by silica gel column chromatography (2/98 to
8/92 of ethyl acetate/hexanes) to provide ligand L19 as a white powder (239.5 mg, 0.4034 mmol,
81%).

[a]p?® =-119° (¢ 0.37, CHCls).

IH NMR (600 MHz, CDCl3) § 7.97 (d, J = 7.8 Hz, 1H), 7.89 — 7.84 (m, 2H), 7.77 (d, J = 7.2 Hz,
1H), 7.72 (d, J = 8.1 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.47 — 7.40 (m, 2H), 7.38 (td, J = 7.6, 1.5
Hz, 1H), 7.36 — 7.32 (m, 2H), 7.27 (t, J = 7.6 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.15 (t, J = 7.6 Hz,
1H), 7.11 (d, J = 7.5 Hz, 1H), 7.08 — 7.01 (m, 3H), 6.89 (d, J = 7.9 Hz, 1H), 6.81 (s, 1H), 6.51 (s,
2H), 5.29 (dg, J = 13.7, 7.1 Hz, 1H), 4.76 (dd, J = 16.2, 3.8 Hz, 1H), 4.40 (dd, J = 13.0, 2.8 Hz,
1H), 4.21 (dd, J = 16.2, 4.1 Hz, 1H), 3.60 (d, J = 13.0 Hz, 1H), 2.11 (s, 6H), 1.76 (dd, J = 7.1, 2.0
Hz, 3H).

13C NMR (151 MHz, CDCls) 6 151.7 (d, J = 5.7 Hz), 151.7 (d, J = 6.3 Hz), 142.8, 140.9, 139.1
(d, J = 3.9 Hz), 137.4, 136.4, 135.4 (d, J = 2.3 Hz), 135.2 (d, J = 2.1 Hz), 134.1, 131.5, 130.0,
130.0,129.7,129.0, 129.0, 128.4, 128.1 (2C), 127.9, 127.3, 127.0 (2C), 126.4, 126.0, 125.5, 125.5,
124.6, 124.2 (d, J = 2.8 Hz), 123.3, 123.1 (d, J = 2.9 Hz), 122.8 (d, J = 3.0 Hz), 52.7 (d, J = 25.9
Hz), 44.6, 34.3,22.2 (d, J =21.4 Hz), 21.2.

31p NMR (243 MHz, CDCl3)  139.1.
HRMS (ESI): m/z CaoHszNO2P* [M+H]" calcd.: 594.2556, found: 594.2544.
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L20 was prepared from 0.5000 mmol of amine 14 and (R)-3,3’-dibromo-BINOL according to the
general procedure. The product was then purified by silica gel column chromatography (2/98 to
8/92 of ethyl acetate/hexanes) to provide ligand L20 as a white powder (327.8 mg, 0.3914 mmol,
78%).

[a]p? = -246° (¢ 0.47, CHCls).

'H NMR (600 MHz, CDCl3) § *H NMR (600 MHz, CDCls) § 8.36 (s, 1H), 8.17 (s, 1H), 7.88 (d,
J=8.3Hz, 1H), 7.82 (d, J =8.5 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.65
(d, J = 7.1 Hz, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.58 (d, J = 8.1 Hz, 1H), 7.49 — 7.43 (m, 2H), 7.41
(ddd, J=7.2, 6.2, 1.6 Hz, 1H), 7.39 — 7.37 (m, 1H), 7.31 — 7.19 (m, 5H), 6.99 (td, J = 7.4, 1.5 Hz,
1H), 6.94 (td, J = 7.6, 1.6 Hz, 1H), 6.89 — 6.86 (m, 2H), 6.18 (s, 2H), 5.34 (dq, J = 11.7, 7.1 Hz,
1H), 3.99 (d, J = 16.2 Hz, 1H), 3.92 (dd, J = 16.1, 2.0 Hz, 1H), 2.25 (s, 6H), 1.85 (dd, J = 7.1, 2.2
Hz, 3H).

13C NMR (151 MHz, CDCls) & 147.6 (d, J = 8.2 Hz), 146.1, 141.3, 140.2, 137.6 (d, J = 6.1 Hz),
137.0, 134.9, 133.8, 133.1, 132.8, 132.0, 132.0, 132.0, 131.8, 131.7, 130.8, 129.1, 128.8, 128.3,
128.0, 127.9, 127.6, 127.4, 127.2, 127.2, 127.0, 126.8, 126.7, 126.6, 126.1, 126.1, 126.1, 125.9 (d,
J=6.2 Hz), 125.7, 125.3, 124.8 (d, J = 3.9 Hz), 123.0, 123.0, 117.2 (d, J = 2.6 Hz), 116.9, 52.4
(d, J=35.0 Hz), 445 (d, J=4.6 Hz), 22.7 (d, J = 22.2 Hz), 21.4.

31p NMR (243 MHz, CDCl3) & 144.3.

HRMS (ESI): m/z for C47Hz6"°Br¥BrNNaO,P* [M+Na]* calcd.: 860.0722, found: 860.0698.
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L21 (Lo) was prepared from 0.5000 mmol of amine 14 and (R)-Hs-BINOL according to the
general procedure. The product was then purified by silica gel column chromatography (2/98 to
8/92 of ethyl acetate/hexanes) to provide ligand L21 as a white powder (261.7 mg, 0.3805 mmol,
76%).

[a]p?® = -40.0° (c 0.55, CHCI5).

'H NMR (600 MHz, CDCls) & 7.80 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 7.1 Hz, 1H), 7.66 — 7.62 (m,
2H), 7.53 (d, J = 7.7 Hz, 1H), 7.45 (ddd, J = 8.0, 6.7, 1.0 Hz, 1H), 7.41 (dd, J = 8.1, 7.2 Hz, 1H),
7.37 (ddd, J = 8.3, 6.7, 1.4 Hz, 1H), 7.18 (dd, J = 8.2, 1.1 Hz, 1H), 7.14 — 7.10 (m, 2H), 7.08 (td,
J=7.4,15Hz 1H), 6.91 (dd, J = 7.4, 1.5 Hz, 1H), 6.82 — 6.77 (m, 2H), 6.56 (d, J = 8.2 Hz, 1H),
6.13 (s, 2H), 5.10 (dqg, J = 14.0, 7.1 Hz, 1H), 3.78 (d, J = 16.1 Hz, 1H), 3.39 (d, J = 16.1 Hz, 1H),
2.91-2.73 (m, 3H), 2.72 - 2.59 (m, 3H), 2.27 (dt, J = 17.0, 5.8 Hz, 2H), 2.13 (s, 6H), 1.83 — 1.73
(m, 5H), 1.72 (dd, J = 7.1, 2.9 Hz, 3H), 1.61 — 1.47 (m, 2H).

13C NMR (151 MHz, CDCls) § 149.1, 148.9 (d, J = 4.0 Hz), 141.8, 140.4, 139.4 (d, J = 4.8 Hz),
138.1(d, J=1.6 Hz), 137.5, 136.8, 136.1, 134.2 (d, J = 1.4 Hz), 133.9, 132.9, 131.5, 129.5, 129.4,
129.4,129.1, 128.9, 128.2 (d, J = 1.4 Hz), 128.2, 128.0, 127.6, 127.0, 126.9, 126.0, 125.9, 125.3,
125.3, 124.2 (d, J = 3.0 Hz), 122.9 (d, J = 2.8 Hz), 119.2 (d, J = 2.7 Hz), 118.5, 52.0 (d, J = 30.3
Hz), 45.1 (d, J=4.7 Hz), 29.3, 29.3, 27.9, 27.8, 22.9, 22.9, 22.9, 22.8, 22.7, 22.7.

3P NMR (162 MHz, CDCls) § 138.8.

HRMS (ESI): m/z for C47H47NO2P* [M+H]" calcd.: 688.3339, found: 688.3327.
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Ph O o, Me

Ph O O’P_Ni Me

O (R.Ra) Me
L22 was prepared from 0.2282 mmol of amine 14 and (R)-VANOL according to the general
procedure. The product was then purified by silica gel column chromatography (2/98 to 8/92 of
ethyl acetate/hexanes) to provide ligand L22 as a white powder (163.9 mg, 0.1970 mmol, 86%).
[a]p?® =-278° (¢ 0.29, CHCls).
'H NMR (600 MHz, CDCls) 6 8.60 (d, J = 8.3 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.90 (d, J = 8.3
Hz, 1H), 7.87 (d, J = 8.9 Hz 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.81 - 7.76 (m, 2H), 7.71 (d, J = 8.6
Hz, 1H), 7.67 — 7.61 (m, 2H), 7.56 — 7.50 (m, 2H), 7.45 (s, 1H), 7.37 — 7.31 (m, 2H), 7.29 (t, J =
7.5 Hz, 1H), 7.25 (s, 1H), 7.22 (t, J = 7.5 Hz, 1H), 7.13 (t, J = 7.4 Hz, 1H), 7.08 — 7.03 (m, 2H),
6.96 (d, J =7.5, 1H), 6.92 — 6.86 (m, 4H), 6.76 (s, 1H), 6.70 (t, J = 7.6 Hz, 1H), 6.50 — 6.45 (m,
4H), 6.13 (br s, 2H), 5.18 (dq, J = 14.4, 7.2 Hz, 1H), 4.03 (d, J = 16.2 Hz, 1H), 3.47 (d, J = 16.2
Hz, 1H), 2.00 (s, 6H), 1.94 (d, J = 7.1 Hz, 3H).
13C NMR (151 MHz, CDCls) § 148.1 (d, J = 7.5 Hz), 147.7, 142.0, 140.8, 140.8, 140.7, 140.6,
140.3, 140.2, 139.5 (d, J = 4.5 Hz), 137.1, 135.7, 134.5, 134.1, 133.8, 131.8, 129.7, 129.3, 129.1,
129.0, 128.3, 128.3, 128.2, 128.1, 127.6, 127.6, 127.4, 127.2, 127.2, 127.1, 127.0, 126.8, 126.7,
126.6, 126.5, 126.3, 126.2, 126.2, 125.8, 125.5, 125.5, 125.4 (d, J = 5.2 Hz), 125.0 (d, J = 6.7 Hz),
124.5,123.3 (d, J = 3.7 Hz), 122.8 (d, J = 2.0 Hz), 122.5, 122.5, 52.2 (d, J = 30.9 Hz), 45.4 (d, J
=5.0 Hz), 23.3 (d, J = 20.7 Hz), 21.4.
3P NMR (243 MHz, CDCls) 6 145.9.
HRMS (ESI): m/z for CsoHa7NO2P* [M+H]™ calcd.: 832.3339, found: 832.3328.

Synthesis of Amines

The amine precursors to the ligands were prepared by alkylation with a substituted benzylic
bromide (general procedure for Sn2 benzylation) or by reductive amination (general procedure for
reductive amination).

General Procedure for Sn2 Benzylation of Amines!®
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Me Na,CO,3 Me
+ _—
Ar NH, B A DMPU Ar
120 °C,6 h

Ar'

Iz

1.0 equiv 1.1 equiv

A 20 mL vial equipped with a magnetic stir bar was charged with a chiral amine (1.0 equiv),
anhydrous sodium carbonate (2.0 equiv), and anhydrous DMPU (0.25 M in chiral amine). A
benzylic bromide (1.1 equiv) was added, the vial was sealed under nitrogen, and the reaction
mixture was heated to 120 °C for 4 hours. After this time, the reaction mixture was cooled to
ambient temperature, diluted with water (200 mL) and extracted with diethyl ether (4 x 100 mL).
The combined organic layers were washed with 3 M NaOH (1 x 100 mL), water (4 x 100 mL),
and brine (1 x 100 mL), and finally dried over sodium sulfate and concentrated in vacuo. The
resulting residue was purified by column chromatography on silica pretreated with the
triethylamine/hexanes eluent.

General Procedure for Reductive Amination

M NaBH3;CN M
/'\e . aldehyde e )i R
Ar NH, or MeOH or Ar N7
ketone MeOH/DCE H
1.0 equiv 1.0-25 AcOH (pH = 6)
equiv RT - 65 °C

A round-bottomed flask equipped with a magnetic stir bar was charged with chiral amine
(1.0 equiv), aldehyde or ketone (1.0-2.0 equiv), and methanol (0.25 M in chiral amine).
Dichloroethane was added as a cosolvent when the reaction mixtures remained heterogeneous in
methanol. Sodium cyanoborohydride (1.2 equiv) was added, and the pH of the reaction mixture
was adjusted to ~5 by dropwise addition of glacial acetic acid. The reaction mixture was then
stirred at either room temperature or 50 °C. After the reaction reached completion, as judged by
TLC analysis, the reaction mixture was concentrated in vacuo, diluted with saturated potassium
carbonate solution (100 mL), and extracted with dichloromethane (3 x 50 mL). The combined
organic layers were washed with brine (50 mL), dried over sodium sulfate, and concentrated in
vacuo. The resulting residue was purified by column chromatography on silica pretreated with the
triethylamine/hexanes eluent.

Grame-scale preparation of Amine 14
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Me

Me ! Me ! Me ! Me
o Me MeOH Me NaBH, We
H ¥ H,N ] NN ) N :
SO SEEEIS RO AR S
80 °C

Amine 14
73% overall, 2.54 g

Me

A 100 mL round bottomed flask with a magnetic stir bar was charged with 3',5'-dimethyl-
[1,1'-biphenyl]-2-carbaldehyde®® (2.000 g, 9.511 mmol, 1 equiv), freshly distilled (R)-1-
(naphthalen-1-yl)ethan-1-amine (2.350 g, 13.72 1.443 equiv), and methanol (32 mL, 0.30 M in
aldehyde). The reaction was stirred at reflux for two hours (until completion, as judged by TLC
analysis). At this stage, a significant amount of white precipitate formed. The reaction mixture was
transferred to a 250 mL Erlenmeyer flask with anhydrous methanol, heated to boiling, and slowly
diluted with anhydrous methanol until all solid material dissolved. The solution was allowed to
cool slowly to room temperature for two hours and then was cooled to —10 °C for two hours to
provide the imine as colorless needles. After this time, the crystalline material was isolated by
vacuum filtration on a glass frit. The resulting crystals were washed twice with cold methanol,
dried in vacuo, and used immediately for the subsequent step.

Next, a 250 mL round-bottomed flask equipped with a magnetic stir bar was charged with
the crystalline imine (2.880 g, 7.923 mmol, 1 equiv) and sodium borohydride (754.2 mg, 19.94
mmol, 2.516 equiv). The flask was evacuated and backfilled with nitrogen three times, and
anhydrous ethanol (80 mL, 0.10 M in imine) was added. The reaction mixture was heated at reflux
for 7 h. After this time, the reaction had reached completion (as judged by TLC analysis), the
reaction mixture was concentrated in vacuo, diluted with saturated sodium bicarbonate (100 mL),
and extracted with dichloromethane (3 x 50 mL). The combined organic layers were washed with
brine (50 mL), dried over sodium sulfate, and concentrated in vacuo. The product was purified by
silica gel column chromatography (2/98 of triethylamine/hexanes) to provide Amine 14 as a
colorless liquid (2.535 g, 6.935 mmol, 73% over two steps). Note: Amine 15 was prepared in a

similar manner.
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ent-Amine 5

ent-Amine 5 was prepared from 3.549 mmol of (S)-1-(2-bromophenyl)ethan-1-amine and benzyl
bromide according to the general procedure for the Sn2 benzylation of amines. The product was
then purified by silica gel column chromatography (2/98 of triethylamine/hexanes) to provide ent-
Amine 5 as a colorless liquid (785.3 mg, 2.706 mmol, 76%).

[a]p?® = -3.66° (c 0.36, CHCI5).

IH NMR (600 MHz, CDCls) & 7.65 (dd, J = 7.8, 1.7 Hz, 1H), 7.56 (dd, J = 8.0, 1.3 Hz, 1H), 7.37
(t, J=7.6, 1.3 Hz, 1H), 7.35 - 7.31 (m, 4H), 7.29 — 7.25 (m, 1H), 7.13 (td, J = 7.6, 1.7 Hz, 1H),
4.33 (q, J = 6.6 Hz, 1H), 3.65 (AB, J = 13.1 Hz, 2H), 1.63 (br s, 1H), 1.37 (d, J = 6.6 Hz, 3H).
13C NMR (151 MHz, CDCls) 6 144.1, 140.6, 133.0, 128.5, 128.3, 128.3, 127.9, 127.8, 127.0,
123.9, 56.5, 51.9, 23.1.

HRMS (ESI): m/z for C1sH17BrN* [M+H]" calcd.: 290.0539, found: 290.0526.

ent-Amine 6

CF; Me

N" > Ph
N

(S)
ent-Amine 6 was prepared from 0.6079 mmol of (S)-1-(2-(trifluoromethyl)phenyl)ethan-1-amine
and benzyl bromide according to the general procedure for the Sn2 benzylation of amines. The
product was then purified by silica gel column chromatography (2/98 of triethylamine/hexanes) to
provide ent-Amine 6 as a colorless liquid (133.0 mg, 0.4762 mmol, 78%).
[a]p?® = -13.8° (c 0.37, CHClIs).
'H NMR (400 MHz, CDCl3) § 7.92 (d, J = 7.9 Hz, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.59 (t, J = 7.7
Hz, 1H), 7.39 — 7.20 (m, 6H), 4.37 (q, J = 6.3 Hz, 1H), 3.65 (d, J = 12.9 Hz, 1H), 3.52 (d, J = 12.8
Hz, 1H), 1.57 (br s, 1H), 1.38 (d, J = 6.5 Hz, 3H).
13C NMR (101 MHz, CDCls) 5 145.5, 140.7, 132.4, 128.5, 128.3 (q, J = 29.9 Hz), 128.2, 127.6,
127.1, 126.8, 125.5 (g, J = 6.0 Hz), 124.7 (g, J = 274.1 Hz), 53.2 (q, J = 1.7 Hz), 52.0, 25.0.
F NMR (376 MHz, CDCls) § -57.3.
HRMS (ESI): m/z for C16H17FsN* [M+H]" calcd.: 280.1308, found: 280.1306.

Amine 7
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(R)
Amine 7 is known, and it was prepared according to a literature procedure.?

Amine 8

g
(e
H

(R)

Amine 8 was prepared from 7.008 mmol of (R)-1-(naphthalen-1-yl)ethan-1-amine and 14.02
mmol 3-pentanone according to the general procedure for reductive amination. The reaction was
conducted in 28 mL methanol solvent and the reaction was deemed complete after 7 days at room
temperature. After extraction, the product was purified by silica gel column chromatography
(1.5/98.5 of triethylamine/hexanes) to provide Amine 8 as a colorless liquid (965.9 mg, 4.002
mmol, 57%).

[a]p?® = +56.3° (c 0.43, CHClIs3).

IH NMR (600 MHz, CDCl3) & 8.30 (d, J = 8.3 Hz, 1H), 7.91 (dd, J = 8.0, 1.6 Hz, 1H), 7.78 (d, J
=8.1 Hz, 1H), 7.74 (d, J = 7.1 Hz, 1H), 7.56 — 7.48 (m, 3H), 4.82 (g, J = 6.6 Hz, 1H), 2.42 (p, J =
5.7 Hz, 1H), 1.57 — 1.37 (m, 7H), 1.30 (br s, 1H), 0.92 (t, J = 7.5 Hz, 3H), 0.90 (t, J = 7.5 Hz, 3H).
13C NMR (151 MHz, CDCl3) § 142.3, 134.1, 131.5, 129.0, 127.0, 125.8, 125.7, 125.3, 123.3,
123.1,56.8 (d, J = 3.5 Hz), 50.3, 26.7, 25.5, 24.6, 10.4, 9.3.

HRMS (ESI): m/z for C17H24N* [M+H]" calcd.: 242.1903, found: 242.1904.

Amine 9

A
H
(R)

Amine 9 was prepared from 10.00 mmol of (R)-1-(haphthalen-1-yl)ethan-1-amine and 25.00
mmol pivaldehyde according to the general procedure for reductive amination. The reaction was
conducted in 40 mL methanol solvent and the reaction was deemed complete after 72 h at room
temperature. After extraction, the product was purified by silica gel column chromatography (2/98
of triethylamine/hexanes) to provide Amine 9 as a colorless liquid (1.925 g, 7.975 mmol, 80%).
[a]p?® = +96.6° (c 0.31, CHClIs3).
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'H NMR (600 MHz, CDCls3) 6 8.31 (d, J = 8.4 Hz, 1H), 7.97 — 7.90 (m, 1H), 7.84 — 7.76 (m, 2H),
7.59 -7.51 (m, 3H), 4.63 (9, J = 6.6 Hz, 1H), 2.44 (d, J = 11.2 Hz, 1H), 2.36 (d, J = 11.2 Hz, 1H),
1.57 (d, J = 6.6 Hz, 3H), 1.32 (br s, 1H), 1.01 (s, 9H).
13C NMR (151 MHz, CDCls) & 141.9, 134.1, 131.6, 129.0, 127.1, 125.8, 125.7, 125.3, 123.3,
123.0, 60.5, 54.7, 31.6, 28.0, 24.0.
HRMS (ESI): m/z for C17H24N* [M+H]" calcd.: 242.1903, found: 242.1902.
Amine 11
SShas

H

(R)
Amine 11 was prepared from 2.336 mmol of (R)-1-(naphthalen-1-yl)ethan-1-amine and 2.569
mmol 2-methylbenzyl bromide according to the general procedure for the Sn2 benzylation of
amines. The product was then purified by silica gel column chromatography (2/98 of
triethylamine/hexanes) to provide Amine 11 as a colorless liquid (419.5 mg, 1.523 mmol, 65%).
[a]p?® = +5.0° (c 0.24, CHCls).
1H NMR (600 MHz, CDCl3) & 8.22 (d, J = 8.1 Hz, 1H), 7.91 (dd, J = 7.8, 1.8 Hz, 1H), 7.82 (d, J
=7.2 Hz, 1H), 7.80 (d, J = 8.2 Hz, 1H), 7.56 — 7.48 (m, 3H), 7.35 (dd, J = 5.2, 3.7 Hz, 1H), 7.23
—7.15 (m, 3H), 4.75 (q, J = 6.6 Hz, 1H), 3.74 (AB, J = 13.1 Hz, 2H), 2.31 (s, 3H), 1.58 (br s, 1H),
1.57 (d, J = 6.6 Hz, 3H).
13C NMR (151 MHz, CDCls) & 141.3, 138.8, 136.6, 134.2, 131.5, 130.4, 129.1, 128.7, 127.4,
127.1,126.0, 125.9, 125.8, 125.4, 123.2, 123.1, 53.8, 50.0, 23.9, 19.1.
HRMS (ESI): m/z for Co0H22N™ [M+H]" calcd.: 276.1747, found: 276.1743.
Amine 12

O Me Me
N
H
Me

Amine 12 was prepared from 2.336 mmol of (R)-1-(naphthalen-1-yl)ethan-1-amine and 2.569
mmol 2,6-dimethylbenzyl bromide according to the general procedure for the Sn2 benzylation of
amines. The product was then purified by silica gel column chromatography (2/98 of
triethylamine/hexanes) to provide Amine 12 as a colorless liquid (379.9 mg, 1.313 mmol, 56%).
[a]p?® = +24.7° (c 0.36, CHClIs3).
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'H NMR (600 MHz, CDCls3) 6 8.36 (d, J = 8.4 Hz, 1H), 7.96 (dd, J = 8.0, 1.6 Hz, 1H), 7.89 (d, J
=7.1 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.62 — 7.54 (m, 3H), 7.14 (dd, J = 8.4, 6.4 Hz, 1H), 7.09
(d, J = 7.4 Hz, 2H), 4.83 (g, J = 6.6 Hz, 1H), 3.79 (s, 2H), 2.43 (s, 6H), 1.63 (d, J = 6.6 Hz, 3H),
1.42 (br s, 1H).

13C NMR (151 MHz, CDCl3) & 141.3, 137.2, 137.0, 134.1, 131.5, 129.1, 128.3, 127.4, 127.1,
125.8, 125.8, 125.4, 123.2, 123.1, 54.8, 46.6, 23.7, 19.7.

HRMS (ESI): m/z for C21H24N* [M+H]" calcd.: 290.1903, found: 290.1903.

Amine 13
®
SRR’

Amine 13 was prepared from 2.336 mmol of (R)-1-(naphthalen-1-yl)ethan-1-amine and 2.569
mmol 2-phenylbenzyl bromide according to the general procedure for the Sn2 benzylation of
amines. The product was then purified by silica gel column chromatography (2/98 of
triethylamine/hexanes) to provide Amine 13 as a colorless liquid (515.3 mg, 1.527 mmol, 65%).
[a]p?® = +22.2° (c 0.34, CHClIs3).

'H NMR (600 MHz, CDCls3) 6 8.10 — 8.05 (m, 1H), 7.90 — 7.86 (m, 1H), 7.74 (d, J = 8.1 Hz, 1H),
7.55(d, J =7.1 Hz, 1H), 7.51 - 7.45 (m, 3H), 7.43 (dd, J = 8.1, 7.2 Hz, 1H), 7.40 — 7.31 (m, 7H),
7.29-7.26 (m, 1H), 4.53 (q, J = 6.6 Hz, 1H), 3.79 (d, J = 12.8 Hz, 1H), 3.66 (d, J = 12.8 Hz, 1H),
1.52 (br s, 1H), 1.40 (d, J = 6.6 Hz, 3H).

13C NMR (151 MHz, CDCl3) & 142.1, 141.3, 141.0, 138.1, 134.1, 131.4, 130.2, 129.8, 129.2,
129.0, 128.3, 127.6, 127.2, 127.1, 127.1, 125.9, 125.7, 125.3, 123.2, 123.0, 53.5, 49.9, 23.7.
HRMS (ESI): m/z for C2sH24N* [M+H]" calcd.: 338.1903, found: 338.1916.

Amine 14

Me l Me
O Me

Amine 14 was prepared from 0.9519 mmol of (R)-1-(naphthalen-1-yl)ethan-1-amine and 0.9511
mmol 3',5'-dimethyl-[1,1'-biphenyl]-2-carbaldehyde?® according to the general procedure for

reductive amination. The reaction was conducted in 5.0 mL methanol solvent and the reaction was
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deemed complete after 48 h at 65 °C. After extraction, the product was purified by silica gel
column chromatography (2/98 of triethylamine/hexanes) to provide Amine 14 as a colorless liquid
(309.7 mg, 0.8473 mmol, 89%). Note: Amine 14 was prepared on a gram scale by a cleaner,
stepwise protocol. See above for details.

[[a]o?®| < 2° (c 0.15, CHCI3). — The specific rotation for this sample was too small to determine
the sign or quantify the absolute rotation.

1H NMR (600 MHz, CDCl3) & 8.12 —8.07 (m, 1H), 7.94 — 7.89 (m, 1H), 7.78 (d, J = 8.1 Hz, 1H),
7.60 (d, J = 7.0 Hz, 1H), 7.55 — 7.48 (m, 2H), 7.50 — 7.44 (m, 2H), 7.39 — 7.34 (m, 2H), 7.33 —
7.28 (m, 1H), 7.06 (s, 1H), 7.02 (s, 2H), 4.57 (q, J = 6.6 Hz, 1H), 3.86 (d, J = 12.8 Hz, 1H), 3.71
(d, J=12.8 Hz, 1H), 2.38 (s, 6H), 1.60 (br s, 1H), 1.44 (d, J = 6.6 Hz, 3H).

13C NMR (151 MHz, CDCls) 6 142.3, 141.3, 141.1, 138.0, 137.7, 134.1, 131.4, 130.2, 129.8,
129.0, 128.7, 127.4,127.1, 127.0, 127.0, 125.9, 125.7, 125.3, 123.1, 122.9, 53.1, 49.9, 23.7, 21.4.
HRMS (ESI): m/z for C27H2sN™ [M+H]" calcd.: 366.2216, found: 366.2213.

Amine 15

Amine 15 was prepared from 4.316 mmol of (R)-1-(naphthalen-1-yl)ethan-1-amine and 2.717
mmol 3',5'-di-tert-butyl-[1,1'-biphenyl]-2-carbaldehyde?? according to the general procedure for
reductive amination. The reaction was conducted in a mixture of 9 mL methanol and 3 mL of DCE
and the reaction was deemed complete after 48 h at 50 °C. After extraction, the product was
purified by silica gel column chromatography (1/99 of triethylamine/hexanes) to provide Amine
15 as a sticky oil (890.9 mg, 1.981 mmol, 73%). Note: Amine 15 was prepared on a gram scale
by a cleaner, stepwise protocol. See above for details.

[a]p?® = +13.9° (c 0.13, CHClI3).

'H NMR (400 MHz, CDCls3) 6 8.03 — 7.95 (m, 1H), 7.89 — 7.82 (m, 1H), 7.72 (d, J = 8.0 Hz, 1H),
7.53-7.28 (m, 9H), 7.21 (d, J = 1.9 Hz, 2H), 4.45 (q, J = 6.5 Hz, 1H), 3.77 (d, J = 12.8 Hz, 1H),
3.67 (d, J = 12.8 Hz, 1H), 1.49 (br s, 1H), 1.35 — 1.30 (m, 21H).
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13C NMR (101 MHz, CDCl3) & 150.7, 143.2, 141.1, 140.5, 138.2, 134.1, 131.4, 130.3, 129.9,
129.0, 127.4,127.1, 127.0, 125.9, 125.7, 125.3, 123.5, 123.1, 122.9, 121.0, 53.1, 50.2, 35.0, 31.7,
23.7.

HRMS (ESI): m/z for CasHsN* [M+H]" calcd.: 450.3155, found: 450.3153.

Amine 16

Amine 16 was prepared from 4.028 mmol of (R)-1-(naphthalen-1-yl)ethan-1-amine and 2.518
mmol 4'-(tert-butyl)-[1,1'-biphenyl]-2-carbaldehyde?® according to the general procedure for
reductive amination. The reaction was conducted in a mixture of 9.0 mL methanol and 3.0 mL
DCE and the reaction was deemed complete after 48 h at 50 °C. After extraction, the product was
purified by silica gel column chromatography (1/99 of triethylamine/hexanes) to provide Amine
16 as a tan solid (535.3 mg, 1.360 mmol, 54%).

[a]p?® = +21.7° (c 0.33, CHClIs3).

IH NMR (400 MHz, CDCl3) § 8.07 — 7.99 (m, 1H), 7.85 — 7.79 (m, 1H), 7.68 (d, J = 8.1 Hz, 1H),
7.53 (d, J =7.0 Hz, 1H), 7.45 - 7.34 (m, 4H), 7.34 — 7.18 (m, 7H), 4.46 (q, J = 6.6 Hz, 1H), 3.73
(d, J=12.8 Hz, 1H), 3.61 (d, J = 12.7 Hz, 1H), 1.49 (br s, 1H), 1.36 — 1.31 (s, 12H).

13C NMR (101 MHz, CDCl3) & 149.9, 142.0, 141.0, 138.3, 138.2, 134.1, 131.4, 130.3, 129.8,
129.0, 128.9, 127.4, 127.2, 127.0, 125.9, 125.7, 125.3, 125.1, 123.3, 123.1, 53.5, 49.9, 34.7, 31.6,
23.7.

HRMS (ESI): m/z for C29H32N*™ [M+H]" calcd.: 394.2529, found: 394.2544.

Amine 17
Me O Me
(70
(R)
Amine 17 was prepared from 0.4759 mmol of (R)-1-(naphthalen-1-yl)ethan-1-amine and 0.4756
mmol 2',6'-dimethyl-[1,1'-biphenyl]-2-carbaldehyde?* according to the general procedure for

reductive amination. The reaction was conducted in 2.5 mL methanol solvent and the reaction was
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deemed complete after 48 h at 65 °C. After extraction, the product was purified by silica gel
column chromatography (2/98 of triethylamine/hexanes) to provide Amine 17 as a colorless liquid
(121.8 mg, 0.3332 mmol, 70%).

[a]p?® = +25.7° (c 0.15, CHCls3).

'H NMR (600 MHz, CDCl3) 6 8.08 - 8.04 (m, 1H), 7.89 — 7.86 (m, 1H), 7.74 - 7.70 (m, 1H), 7.52
—7.45 (m, 3H), 7.40 — 7.33 (m, 4H), 7.23 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 7.11 (d, J
= 7.5 Hz, 1H), 7.10 — 7.06 (m, 1H), 4.52 (q, J = 6.6 Hz, 1H), 3.47 (d, J = 12.9 Hz, 1H), 3.36 (d, J
=12.9 Hz, 1H), 2.03 (s, 3H), 1.92 (s, 3H), 1.41 (br s, 1H), 1.37 (d, J = 6.6 Hz, 3H).

13C NMR (151 MHz, CDCl3) & 140.9, 140.4, 140.4, 138.2, 136.3, 136.1, 134.1, 131.4, 129.6,
129.6, 129.0, 127.5, 127.5, 127.5, 127.4, 127.3, 127.1, 126.0, 125.7, 125.3, 123.1, 122.7, 53.4,
49.9, 23.9, 20.9, 20.7.

HRMS (ESI): m/z for C27H2sN* [M+H]" calcd.: 366.2216, found: 366.2212.

2.) Iridium Catalysts

Iridium catalysts C1-C22 were prepared from the corresponding ligands L1-122
according to the following procedure, which was adapted from the literature.%2>2% Similarly,
catalyst C23 was prepared from L21 and [Ir(DBCOT)CI].. The catalysts were synthesized on

small scale and used immediately for screening.

N | Sar
Ph”X-"0co,Me 1

THF, RT (3 equiv) *(C Ot
L+ [lr(cod)Cll, — S \\-//\Ph
1 equiv 0.5 equiv AgBF, (1 equiv) R/N 2
48 h, dark, RT Ar

In a nitrogen-filled glovebox, a 4 mL vial equipped with a magnetic stir bar was charged
with [Ir(cod)Cl]2 (0.01 mmol, 0.5 equiv), ligand L (0.02 mmol, 1 equiv), and THF (400 pL). The
reaction mixture was stirred at room temperature for 2 hours. Then, cinnamyl methyl carbonate
(0.04 mmol, 2 equiv) was added, followed by a solution of AgBF4 (0.02 mmol, 1 equiv) in THF
(400 pL). The reaction mixture was protected from light with aluminum foil and was stirred
vigorously for 48 hours at room temperature. Note: Rapid stirring is important. After this time,
the reaction mixture was filtered through a 0.2 um PTFE syringe filter to afford a yellow solution.
Outside of the glovebox and under air, the crude product was concentrated in vacuo to afford a
tan-colored residue which is further dried under high vacuum (< 1 torr) for one hour. Note: removal

of residual THF is important for the following precipitation. Anhydrous, unstabilized diethyl ether
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was added to the tan-colored residue to form a pale-yellow powder. The resulting powder was
washed with diethyl ether several times, until cinnamyl methyl carbonate is no longer observed by
TLC of the supernatant solution (typically 5-6 times is sufficient). The resulting powder is
concentrated in vacuo, dried under high vacuum for 12 hours, and used without further
purification. The iridium catalysts are stable under air.

Catalyst C21 (Cw) was prepared according to the procedure given above on a larger scale
and at higher concentration, using 0.300 mmol ligand L21 (L), 0.150 mmol [Ir(cod)Cl]2, 0.900
mmol cinnamyl methyl carbonate, 0.300 mmol AgBF4, and 3.00 mL THF. Yield: 320.2 mg, 0.269
mmol, 90%.

Catalyst C21° (C®’) bears an unsubstituted allyl group instead of a cinnamyl group.
Catalyst C21’ (Cw’) was used for substrates in which an impurity arising from attack of a
nucleophile on the -cinnamyl precatalyst complicated product purification. Catalyst C21’ (C®’)
was prepared according to the procedure given above, using 0.0760 mmol ligand L21, 0.038 mmol
[Ir(cod)Cl]2, 0.230 mmol allyl methyl carbonate, 0.0760 mmol AgBFs, and 0.70 mL THF. Yield:
64.7 mg, 0.0580 mmol, 76%.

Catalyst C15 (Cy) was prepared according to the procedure given above on a larger scale,
using 0.200 mmol ligand L15 (Ly), 0.100 mmol [Ir(cod)Cl]2, 0.600 mmol cinnamyl methyl
carbonate, 0.200 mmol AgBF4, and 2.00 mL THF. Yield: 233.7 mg, 0.184 mmol, 92%.

IRIDIUM-CATALYZED ASYMMETRIC ALLYLIC FLUOROALKYLATION

1) General Procedure: Malonates and [-Keto Esters

In a nitrogen-filled glovebox, a 4 mL vial equipped with a stir bar was charged with 3-
substituted 3,3-difluoropropene 1 (0.100 mmol) and a 50 pL aliquot of a solution of iridium
catalyst C21 (Cw) (40 mM solution, 0.0020 mmol, 2.0 mol%). A solution of the nucleophile 2 and
LiOt-Bu was prepared in THF (0.15 mmol LiOt-Bu and 0.15 mmol nucleophile per 200 uL THF),
and the mixture was stirred at room temperature until fully homogeneous (~15 minutes). The
solution of the nucleophile and the solution of the catalyst and 3-substituted 3,3-difluoropropene
were both cooled to —40 °C in a glovebox freezer for 20 minutes. While keeping both solutions
cold, a 200 pL aliquot of the nucleophile solution was added to the vial containing the catalyst and
the 3-substituted 3,3-difluoropropene. The reaction vial was quickly sealed, removed from the

glovebox, and transferred to a magnetically-stirred cold well maintained at —10 °C. After 72 hours,
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the reaction mixture was warmed to room temperature, diluted with DCM, and transferred to a 20
mL vial. The solvent was removed in vacuo and the crude reaction mixture was directly subjected
to purification by either preparative TLC or silica-gel column chromatography to provide pure
allylic fluoride 3.

Note: The reaction development and catalyst design (outlined in figure S13) was conducted
as discussed above with 5.0 mol% of the corresponding catalyst at a 0.02 mmol scale of 3-
substituted 3,3-difluoropropene 1. These reactions were conducted at room temperature for 48 h.
2) General Procedure: Malononitriles

In a nitrogen-filled glovebox, a 4 mL vial equipped with a stir bar was charged with 3-
substituted 3,3-difluoropropene 1 (0.100 mmol) and a 250 pL aliquot of a solution of iridium
catalyst C21’ (C®”) (8 mM solution, 0.0020 mmol, 2.0 mol%). Lithium bromide (43.4 mg, 0.500
mmol, 5.00 equiv) was added neat to this solution. In a separate vial, a solution of the nucleophile
2e and LiOt-Bu was prepared in THF (0.20 mmol LiOt-Bu and 0.20 mmol nucleophile per 750 pL
THF), and the mixture was stirred at room temperature until fully homogeneous (~15 minutes).
Then, a 750 pL aliquot of the nucleophile solution was added to the vial containing the catalyst,
lithium bromide, and the 3-substituted 3,3-difluoropropene. The reaction vial was sealed and
stirred at room temperature for 24 hours. After this time, the solvent was removed in vacuo and
the crude reaction mixture was directly subjected to purification by either preparative TLC or

silica-gel column chromatography to provide pure allylic fluoride 3.

3) General Procedure: Silyl Ketene Acetals

In a nitrogen-filled glovebox, a 4 mL vial equipped with a stir bar was charged with 3-
substituted 3,3-difluoropropene 1 (0.100 mmol) and a 120 pL aliquot of a solution of iridium
catalyst C15 (Cy) (50 mM solution, 0.0060 mmol, 6.0 mol%). In a separate vial, a solution of
diethyl methyl malonate (43.6 mg, 0.250 mmol) in THF (4.00 mL) was treated with dry sodium
hydride (12.0 mg, 0.500 mmol) and stirred vigorously for 10 minutes at room temperature. This
solution was then passed through a syringe filter to provide a homogeneous solution of sodium
diethyl malonate. An 80 uL aliquot of the freshly prepared sodium diethyl methyl malonate
solution (0.0050 mmol sodium malonate, 5.0 mol%) was added to the vial containing substrate
and catalyst, and the resulting suspension was stirred for 1 minute, followed immediately by the

addition of neat silyl ketene acetal 2 (0.200 mmol, 2.00 equiv). The reaction vial was sealed and
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stirred at room temperature. After 48 — 96 hours the reaction mixture was diluted with DCM and
transferred to a 20 mL vial. The solvent was removed in vacuo and resulting residue was directly

subjected to purification by preparative TLC to provide pure allylic fluoride 3.

CHARACTERIZATION OF ALLYLIC FLUOROALKYLATION PRODUCTS — SCOPE OF NUCLEOPHILES
Products from Nucleophiles with Lithium Counterions
diethyl (R)-2-(1-fluoro-1-(naphthalen-2-yl)allyl)-2-methylmalonate (3aa)

Me_ CO,Et
Et0,c— F

2-Np
3aa
98%, 96:4 er

The title compound was prepared according to the general procedure for the allylic alkylation of
malonates and S-keto esters on a 0.100 mmol scale. Reaction time: 72 h. Reaction temperature:
—10 °C. The product was purified by preparative TLC (1/99 of diethyl ether/benzene) to provide
allylic fluoride 3aa as a clear oil (35.2 mg, 0.0982 mmol, 98%).

The enantiomeric ratio was determined to be 96:4 by HPLC analysis with tr = 10.4 min (major)
and tr = 11.5 min (minor) [AD-H, 1.0% iPrOH in hexanes, 0.8 mL/min, 268 nm, 25 °C].

[a]o?® = +68.3° (c 0.19, CHCI3). Corrected for enantiopurity: [a]o®® = +74.2° (¢ 0.19, CHClIs3).
IH NMR (600 MHz, CDCl3) & 7.98 (s, 1H), 7.87 — 7.77 (m, 3H), 7.65 (dd, J = 8.8, 1.9 Hz, 1H),
7.50 — 7.46 (m, 2H), 7.06 (ddd, J = 22.0, 17.1, 11.1 Hz, 1H), 5.45 (d, J = 17.1 Hz, 1H), 5.34 (d, J
=11.1 Hz, 1H),4.19 (q, J = 7.1 Hz, 2H), 4.11 — 4.01 (m, 2H), 1.58 (d, J = 1.4 Hz, 3H), 1.23 (t, J
=7.1Hz, 3H), 1.06 (t, J = 7.1 Hz, 3H).

13C NMR (151 MHz, CDCls) 6 169.5 (d, J = 4.4 Hz), 169.2 (d, J = 7.1 Hz), 137.4 (d, J = 23.1 Hz),
137.1 (d, J = 18.0 Hz), 132.8, 132.7 (d, J = 1.5 Hz), 128.6, 127.5, 127.2 (d, J = 2.1 Hz), 126.5,
126.2, 126.1 (d, J = 11.9 Hz), 124.5 (d, J = 10.1 Hz), 115.9 (d, J = 14.5 Hz), 97.6 (d, J = 189.3
Hz), 62.8 (d, J = 26.8 Hz), 61.6, 61.5, 18.2 (d, J = 5.5 Hz), 14.1, 13.8.

F NMR (376 MHz, CDCls) 6 -157.2 (d, J = 22.0 Hz).

HRMS (ESI): m/z for C21H23FNaO4™ [M+Na]* calcd.: 381.1473, found: 381.1474.
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diethyl (R)-2-allyl-2-(1-fluoro-1-(naphthalen-2-yl)allyl)malonate (3ab)

\\ CO,Et
E0,c—X F
2-Np Z

3ab
78%, 94:6 er

The title compound was prepared according to the general procedure for the allylic alkylation of
malonates and S-keto esters on a 0.100 mmol scale. Reaction time: 96 h. Reaction temperature:
—10 °C. The product was purified by preparative TLC (1/99 of diethyl ether/benzene) to provide
allylic fluoride 3ab as a clear oil (30.1 mg, 0.0783 mmol, 78%).

The enantiomeric ratio was determined to be 94:6 by HPLC analysis with tr = 12.3 min (major)
and tr = 13.3 min (minor) [AD-H, 1.0% iPrOH in hexanes, 0.8 mL/min, 210 nm, 25 °C].

[a]p?® = +71.4° (c 0.23, CHCIs). Corrected for enantiopurity: [a]o®® = +81.1° (c 0.23, CHClI3).
'H NMR (600 MHz, CDCls) 6 7.92 (s, 1H), 7.86 — 7.77 (m, 3H), 7.57 (dd, J = 8.7, 1.9 Hz, 1H),
7.50—7.46 (m, 2H), 7.01 (ddd, J =22.2,17.1, 11.1 Hz, 1H), 5.75 (ddt, J = 17.0, 10.0, 7.3 Hz, 1H),
5.46 (d, J = 17.1 Hz, 1H), 5.35 (d, J = 11.0 Hz, 1H), 5.05 (d, J = 17.1 Hz, 1H), 4.98 (d, J = 10.0
Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 4.11 — 3.99 (m, 2H), 2.91 (dd, J = 14.1, 7.9 Hz, 1H), 2.81 (dd,
J=14.1,6.5Hz 1H), 1.22 (t, J= 7.1 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H).

13C NMR (151 MHz, CDCl3) § 168.4 (d, J = 4.4 Hz), 168.0 (d, J = 6.1 Hz), 137.4 (d, J = 23.1 Hz),
137.0 (d, J = 18.1 Hz), 133.9, 132.9, 132.7 (d, J = 1.5 Hz), 128.6, 127.6, 127.4 (d, J = 2.2 H2),
126.6, 126.3,125.8 (d, J =11.7 Hz), 124.2 (d, J = 10.0 Hz), 118.6, 116.1 (d, J = 14.4 Hz), 97.6 (d,
J=192.7 Hz), 67.2 (d, J = 25.2 Hz), 61.5, 61.4, 36.5 (d, J = 5.3 Hz), 14.1, 13.8.

19F NMR (565 MHz, CDCl3) § -157.1 (d, J = 22.3 Hz).

HRMS (ESI): m/z for C23sH2sFNaOs* [M+Na]* calcd.: 407.1629, found: 407.1625.

bis(4-methoxybenzyl) (R)-2-(1-fluoro-1-(naphthalen-2-yl)allyl)-2-methylmalonate (3ac)

Me_ CO,PMB
PMBO,C F

2-Np 7

84%,33215 er
The title compound was prepared according to the general procedure for the allylic alkylation of
malonates and S-keto esters on a 0.100 mmol scale. Reaction time: 72 h. Reaction temperature:
—10 °C. The product was purified by preparative TLC (benzene, run up the plate twice) to provide

allylic fluoride 3ac as a clear oil (45.5 mg, 0.0839 mmol, 84%).
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The enantiomeric ratio was determined to be 95:5 by HPLC analysis with tr = 23.0 min (major)
and tr = 24.5 min (minor) [AD-H, 4.0% iPrOH in hexanes, 0.8 mL/min, 230 nm, 25 °C].

[a]p?® = +46.5° (c 0.13, CHCIs). Corrected for enantiopurity: [a]o?® = +51.7° (¢ 0.13, CHClIs3).
IH NMR (600 MHz, CDCl3) § 7.92 (s, 1H), 7.82 — 7.73 (m, 2H), 7.70 (d, J = 8.7 Hz, 1H), 7.56
(dd, J =8.7, 1.9 Hz, 1H), 7.50 — 7.44 (m, 2H), 7.14 (d, J = 8.6 Hz, 2H), 7.00 (ddd, J = 22.1, 17.1,
11.1 Hz, 1H), 6.90 (d, J = 8.6 Hz, 2H), 6.80 (d, J = 8.6 Hz, 2H), 6.68 (d, J = 8.6 Hz, 2H), 5.40 (d,
J=17.1 Hz, 1H), 5.28 (ddd, J = 11.1, 2.4, 1.2 Hz, 1H), 5.03 (s, 2H), 4.90 (AB, J = 11.9 Hz, 2H),
3.80 (s, 3H), 3.76 (s, 3H), 1.60 (d, J = 1.4 Hz, 3H).

13C NMR (151 MHz, CDCls) 6 169.3 (d, J = 4.5 Hz), 168.9 (d, J = 6.2 Hz), 159.7, 159.6, 137.3
(d, J=23.1 Hz), 136.9 (d, J = 17.7 Hz), 132.8, 132.7 (d, J = 1.4 Hz), 130.1, 130.0, 128.7, 127.5,
127.4,127.3 (d, J = 2.0 Hz), 127.1, 126.5, 126.2, 126.0 (d, J = 11.6 Hz), 124.4 (d, J = 10.0 Hz),
116.1 (d, J=14.4 Hz), 113.9, 113.8, 97.6 (d, J = 190.0 Hz), 67.2 (2C), 63.0 (d, J = 26.6 Hz), 55.4,
55.3,18.3 (d, J = 5.6 Hz).

F NMR (376 MHz, CDCl3) 6 -157.0 (d, J = 22.1 Hz).

HRMS (ESI): m/z for C3sH31FNaOs™ [M+Na]" calcd.: 565.1997, found: 565.1985.

ethyl (R)-1-((R)-1-fluoro-1-phenylallyl)-2-oxocyclohexane-1-carboxylate (3bd)

96%, 6:1 dr
/\CO.Et  (determined by NMR)

& 79%, 98:2 er
single diastereomer
(after isolation)

(e}
Ph

3bd
The title compound was prepared according to the general procedure for the allylic alkylation of
malonates and f-keto esters on a 0.400 mmol scale with the catalyst loading increased to 5.00
mol%. Catalyst C21’ (C®’) was used in place of catalyst C21 (Cw). The reaction temperature was
increased to 0 °C for this nucleophile. Reaction time: 72 h. After this time, the reaction mixture
was transferred to a separatory funnel with diethyl ether (100 mL) and was washed with water (2
x 50 mL), 1 M HCI (1 x 50 mL), saturated NaHCO3 (2 x 50 mL), and brine (1 x 50 mL). The
organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to provide a
yellow-brown oil. Trichloroethylene (72.0 uL, 0.802 mmol, 2.01 equiv) was added as an internal
standard and the entire mixture was dissolved in CDCIs (8 mL). An aliquot was removed and was
analyzed by *H NMR to establish a chemical yield of 96% and diastereomeric ratio of 6:1. The

NMR sample and bulk sample were combined, dried in vacuo, and purified by silica gel column
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chromatography (2/98 to 15/85 of ethyl acetate/hexanes) to provide allylic fluoride 3bd as a clear
oil and as a single diastereomer (96.5 mg, 0.317 mmol, 79%). Note: the diastereomers do not
visibly separate on TLC, so an aliquot of each fraction containing the product was analyzed by *H
NMR prior to combining fractions.

The enantiomeric ratio was determined to be 98:2 by HPLC analysis with tr = 17.39 min (major)
and tr = 19.96 min (minor) [0J, 0.1% iPrOH in hexanes, 1.0 mL/min, 190 nm, 25 °C].

[a]p?® = +134° (¢ 0.53, CHCIs). Corrected for enantiopurity: [a]o?® = +138° (¢ 0.53, CHCls).

All other characterization data matched with the literature, and the absolute configuration is
opposite that of our previous work.?

(R)-2-(1-fluoro-1-(naphthalen-2-yl)allyl)-2-(methoxymethoxy)malononitrile (3ae)

MOMO CN
NC F

2-Np =

98%,332:6 er

The title compound was prepared according to the general procedure for the allylic alkylation of
malononitriles on a 0.100 mmol scale. The product was purified by preparative thin-layer
chromatography (30/70 of diethyl ether/hexanes) to provide allylic fluoride 3ae as an amorphous
white solid (30.3 mg, 0.0976 mmol, 98%).

The enantiomeric ratio was determined to be 94:6 by HPLC analysis with tr = 12.0 min (minor)
and tr = 12.8 min (major) [OD-H, 1.0% iPrOH in hexanes, 0.7 mL/min, 260 nm, 25 °C].

[a]o?® = +52.3° (c 0.61, CHCI3). Corrected for enantiopurity: [a]o®® = +59.8° (¢ 0.61, CHClIs).
'H NMR (600 MHz, CDCls) 6 8.10 (s, 1H), 7.96 — 7.85 (m, 3H), 7.64 (dd, J = 8.7, 1.9 Hz, 1H),
7.59 — 7.54 (m, 2H), 6.60 (ddd, J = 20.5, 17.1, 11.1 Hz, 1H), 5.87 (d, J = 17.0 Hz, 1H), 5.71 (dd,
J=11.1, 2.3 Hz, 1H), 5.05 (AB, J = 7.0 Hz, 2H), 3.43 (s, 3H).

13C NMR (151 MHz, CDCls) 6 133.7, 132.7 (d, J = 1.5 Hz), 131.4 (d, J = 21.5 Hz), 130.9 (d, J =
17.6 Hz), 128.9, 128.3 (d, J = 1.7 Hz), 127.8, 127.6, 126.9, 126.7 (d, J = 11.1 Hz), 123.4 (d, J =
8.9 Hz), 121.6 (d, J = 12.7 Hz), 111.5, 111.1, 97.0, 96.6 (d, J = 197.0 Hz), 72.9 (d, J = 35.4 Hz),
57.7.

19F NMR (565 MHz, CDCl3) & -159.0 (d, J = 20.5 Hz).

HRMS (EI): m/z for C1gH1sFN202 [M]* calcd.: 310.1118, found: 310.1120.
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Products from Silyl Ketene Acetals

methyl (R)-3-fluoro-2,2-dimethyl-3-(naphthalen-2-yl)pent-4-enoate (3af)
[e]

Me OMe
M £

e 2
2-Np 7

3af
99%, 90:10 er

The title compound was prepared according to the general procedure for the allylic alkylation of
silyl ketene acetals with a reaction time of 48 h and using 21.0 mg (0.103 mmol) of 2-(1,1-
difluoroallyl)naphthalene. The product was purified by preparative TLC on silica (7/93 ethyl
acetate/hexanes) to provide allylic fluoride 3af as a clear oil (29.3 mg, 0.102 mmol, 99%).

The enantiomeric ratio was determined to be 90:10 by HPLC analysis with tr = 6.3 min (major)
and tr = 7.1 min (minor) [AD-H, 2.0% iPrOH in hexanes, 0.8 mL/min, 278 nm, 25 °C].

[a]p?® = +85.3° (¢ 0.15, CHCI3). Corrected for enantiopurity: [a]p?® = +107° (¢ 0.15, CHCls).
IH NMR (600 MHz, CDCl3) & 7.87 — 7.78 (m, 4H), 7.53 — 7.45 (m, 2H), 7.41 (dd, J = 8.6, 1.9 Hz,
1H), 6.78 (ddd, J = 23.0, 17.0, 11.1 Hz, 1H), 5.48 (d, J = 17.0 Hz, 1H), 5.34 (d, J = 11.1 Hz, 1H),
3.60 (s, 3H), 1.34 (s, 3H), 1.25 (s, 3H).
13C NMR (151 MHz, CDCl3) 8 175.1 (d, J = 5.7 Hz), 137.8 (d, J = 23.1 Hz), 136.4 (d, J = 19.0
Hz), 132.8 (d, J = 1.5 Hz), 132.8, 128.5, 127.6, 127.4 (d, J = 2.1 Hz), 126.4, 126.4, 125.1 (d, J =
11.4 Hz), 123.8 (d, J = 9.8 Hz), 115.5 (d, J = 14.8 Hz), 98.8 (d, J = 190.9 Hz), 52.0, 51.4 (d, J =
24.8 Hz), 21.8 (d, J =4.1 Hz), 20.7 (d, J = 5.7 Hz).

F NMR (565 MHz, CDCl3) § -165.9 (d, J = 22.8 Hz).

HRMS (ESI): m/z for C1gH19FNaO," [M+Na]" calcd.: 309.1261, found: 309.1262

ethyl (R)-3-fluoro-2,2-dimethyl-3-(naphthalen-2-yl)pent-4-enoate (3ag)

O,
OEt
\F
A

Me
Me
2-Np
3ag
95%, 91:9 er

The title compound was prepared according to the general procedure for the allylic alkylation of
silyl ketene acetals with a reaction time of 48 h and using 20.6 mg (0.101 mmol) of 2-(1,1-
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difluoroallyl)naphthalene. The product was purified by preparative TLC on silica (7/93 ethyl
acetate/hexanes) to provide allylic fluoride 3ag as a clear oil (28.8 mg, 0.0959 mmol, 95%).

The enantiomeric ratio was determined to be 91:9 by HPLC analysis with tr = 6.0 min (major)
and tr = 6.6 min (minor) [AD-H, 2.0% iPrOH in hexanes, 0.8 mL/min, 260 nm, 25 °C].

[a]p?® = +90.1° (c 0.12, CHCIs). Corrected for enantiopurity: [a]o?® = +110° (c 0.12, CHCIs).

'H NMR (600 MHz, CDCls3) 6 7.86 — 7.78 (m, 4H), 7.51 — 7.46 (m, 2H), 7.44 (dd, J = 8.7, 1.9 Hz,
1H), 6.79 (ddd, J = 22.9, 17.0, 11.1 Hz, 1H), 5.48 (dd, J = 17.0, 1.4 Hz, 1H), 5.33 (ddd, J = 11.2,
2.9, 1.4 Hz, 1H), 4.11 — 4.02 (m, 2H), 1.34 (s, 3H), 1.25 (d, J = 1.6 Hz, 3H), 1.13 (t, J = 7.1 Hz,
3H).

13C NMR (151 MHz, CDCl3) 6 174.6 (d, J = 5.9 Hz), 137.9 (d, J = 23.1 Hz), 136.6 (d, J = 19.0
Hz), 132.8 (d, J = 1.6 Hz), 132.7, 128.5, 127.6, 127.3 (d, J = 2.1 Hz), 126.4, 126.3, 125.1 (d, J =
11.5 Hz), 123.9 (d, J = 9.6 Hz), 115.4 (d, J = 14.6 Hz), 98.8 (d, J = 190.5 Hz), 61.0, 51.2 (d, J =
24.7 Hz),21.9 (d, J =4.2 Hz), 20.8 (d, J =5.7 HZz), 14.1.

F NMR (376 MHz, CDCl3) 6 -164.0 (d, J = 22.8 Hz).

HRMS (ESI): m/z for C19H2:FNaO," [M+Na]" calcd.: 323.1418, found: 323.1418.

methyl (R)-1-(1-fluoro-1-(naphthalen-2-yl)allyl)cyclohexane-1-carboxylate (3ah)

o]
OMe
F

2-Np F

93%,3838h:12 er
The title compound was prepared according to the general procedure for the allylic alkylation of
silyl ketene acetals with a reaction time of 48 h and using 21.0 mg (0.103 mmol) of 2-(1,1-
difluoroallyl)naphthalene. The product was purified by preparative TLC on silica (7/93 ethyl
acetate/hexanes) to provide allylic fluoride 3ah as a clear oil (31.3 mg, 0.0959 mmol, 93%).
The enantiomeric ratio was determined to be 88:12 by HPLC analysis with tr = 6.9 min (major)
and tr = 7.7 min (minor) [AD-H, 2.0% iPrOH in hexanes, 0.8 mL/min, 260 nm, 25 °C].
[a]o?® = +59.3° (c 0.10, CHCIs). Corrected for enantiopurity: [a]o?® = +78.0° (¢ 0.10, CHClIs3).
'H NMR (600 MHz, CDCls) & 7.86 — 7.81 (m, 2H), 7.79 (d, J = 8.7 Hz, 1H), 7.75 (s, 1H), 7.51 -
7.46 (m, 2H), 7.35 (dd, J = 8t.7, 1.9 Hz, 1H), 6.70 (ddd, J = 23.4, 17.0, 11.1 Hz, 1H), 5.45 (dd, J
=17.0, 1.4 Hz, 1H), 5.31 (ddd, J = 11.1, 3.2, 1.4 Hz, 1H), 3.58 (s, 3H), 2.40 — 2.34 (m, 1H), 2.12
—2.07 (m, 1H), 1.71 - 1.61 (m, 2H), 1.59 — 1.54 (m, 1H), 1.50 (td, J = 13.2, 4.0 Hz, 1H), 1.39 (td,
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J=13.2,3.8 Hz, 1H), 1.22 (qt, J = 13.4, 3.8 Hz, 1H), 1.15 (qt, J = 13.3, 2.9 Hz, 1H), 1.05 (qt, J =
13.1, 3.6 Hz, 1H).

13C NMR (151 MHz, CDCls) & 173.5 (d, J = 4.7 Hz), 137.7 (d, J = 23.5 Hz), 136.2 (d, J = 18.8
Hz), 132.7,128.4, 127.6, 127.2, 127.1, 126.4, 126.4, 125.1 (d, J = 11.5 Hz), 124.0 (d, J = 9.7 H2),
115.3 (d, J = 15.0 Hz), 98.8 (d, J = 192.3 Hz), 56.9 (d, J = 23.1 Hz), 51.6, 29.6 (d, J = 3.5 Hz),
28.4 (d, J=5.5Hz), 25.4, 23.7, 23.6.

19F NMR (565 MHz, CDCl3) § -166.6 (d, J = 23.3 Hz).

HRMS (ESI): m/z for C21H23FNaO," [M+Na]" calcd.: 349.1574, found: 349.1570.

methyl (R)-1-(1-fluoro-1-(naphthalen-2-yl)allyl)cycloheptane-1-carboxylate (3ai)

o]
OMe

~ d
94%,::3a2i:18 er

The title compound was prepared according to the general procedure for the allylic alkylation of

silyl ketene acetals with a reaction time of 96 h and using 20.4 mg (0.100 mmol) of 2-(1,1-

difluoroallyl)naphthalene. The product was purified by preparative TLC on silica (7/93 ethyl

acetate/hexanes) to provide allylic fluoride 3ai as a clear oil (32.1 mg, 0.0943 mmol, 94%).

The enantiomeric ratio was determined to be 82:18 by HPLC analysis with tr = 9.9 min (minor)

and tr = 10.8 min (major) [OD-H, 0.3% iPrOH in hexanes, 0.8 mL/min, 260 nm, 25 °C].

[a]p?® = +56.2° (c 0.11, CHCIs). Corrected for enantiopurity: [a]o®® = +87.8° (¢ 0.11, CHClIs).

1H NMR (600 MHz, CDCl3) & 7.86 — 7.79 (m, 2H), 7.79 (d, J = 8.7 Hz, 1H), 7.77 (s, 1H), 7.51 —

7.46 (m, 2H), 7.35 (dd, J = 8.7, 1.9 Hz, 1H), 6.72 (ddd, J = 23.5, 17.0, 11.1 Hz, 1H), 5.44 (dd, J =

17.0, 1.4 Hz, 1H), 5.30 (ddd, J = 11.2, 3.3, 1.4 Hz, 1H), 3.62 (s, 3H), 2.32 (dd, J = 14.6, 8.5 Hz,

1H), 2.12 (dd, J = 14.6, 8.2 Hz, 1H), 1.88 (ddd, J = 14.8, 10.2, 1.7 Hz, 1H), 1.82 (ddd, J = 14.8,

10.0, 1.9 Hz, 1H), 1.62 — 1.51 (m, 2H), 1.50 — 1.26 (m, 6H).

13C NMR (151 MHz, CDCl3) 6 174.8 (d, J = 6.6 Hz), 138.1 (d, J = 23.1 Hz), 136.9 (d, J = 18.8

Hz), 132.8 (d, J = 1.5 Hz), 132.7, 128.5, 127.6, 127.3 (d, J = 2.1 Hz), 126.4, 126.4, 125.2 (d, J =

11.7 Hz), 123.9 (d, J = 9.8 Hz), 115.1 (d, J = 15.0 Hz), 99.9 (d, J = 193.3 Hz), 59.4 (d, J = 22.6

Hz), 51.8, 32.3 (d, J = 3.0 Hz), 31.4 (d, J = 4.4 Hz), 29.6, 29.5, 24.2, 24.0.

F NMR (565 MHz, CDCl3) 6 -165.1 (d, J = 23.6 Hz).

HRMS (ESI): m/z for C22H2sFNaO,* [M+Na]* calcd.: 363.1731, found: 363.1732.
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methyl (R)-3-fluoro-3-(naphthalen-2-yl)pent-4-enoate (3aj)

o]
OMe
F

2-Np F

3aj
74%, 92:8 er

The title compound was prepared according to the general procedure for the allylic alkylation of
silyl ketene acetals with a reaction time of 53 h and using 20.4 mg (0.100 mmol) of 2-(1,1-
difluoroallyl)naphthalene. For this silyl ketene acetal, the corresponding TBS-silyl ketene acetal
was used instead of the TMS-silyl ketene acetal. Sodium diethyl methyl malonate was not added
to this reaction. The product was purified by column chromatography on silica (1/99 to 10/90 ethyl
acetate/hexanes) to provide allylic fluoride 3aj as a clear oil (19.0 mg, 0.0736 mmol, 74%).

The enantiomeric ratio was determined to be 92:8 by HPLC analysis with tr = 13.2 min (minor)
and tr = 16.0 min (major) [OD-H, 2.0% iPrOH in hexanes, 0.75 mL/min, 260 nm, 25 °C].

[a]p?® = +19.4° (c 0.38, CHCIs). Corrected for enantiopurity: [a]p?® = +23.1° (¢ 0.38, CHClI3).
'H NMR (600 MHz, CDCl3) 6 7.88 — 7.76 (m, 4H), 7.51 — 7.41 (m, 3H), 6.34 (td, J = 17.2, 11.0
Hz, 1H), 5.40 (dt, J = 17.3, 1.2 Hz, 1H), 5.30 (d, J = 10.9 Hz, 1H), 3.57 (s, 3H), 3.19 (s, 1H), 3.15
(s, 1H).

13C NMR (151 MHz, CDCl3) 6 169.2 (d, J = 3.7 Hz), 138.5 (d, J = 22.2 Hz), 138.4 (d, J = 22.3
Hz), 133.1, 133.0, 128.5, 128.4, 127.7, 126.4, 126.5, 123.9 (d, J = 9.5 Hz), 122.9 (d, J = 7.6 Hz),
115.8 (d, J =11.6 Hz), 95.6 (d, J = 180.4 Hz), 51.9, 45.4 (d, J = 25.4 Hz).

F NMR (565 MHz, CDCls) 6 -150.9 (g, J = 20.0 Hz).

HRMS (El): m/z for C16H1sFO2 [M]" calcd.: 258.1056, found: 258.1056.

methyl (R)-3-fluoro-3-(6-methoxynaphthalen-2-yl)-2,2-dimethylpent-4-enoate (3jf)

98%, 92:8 er

The synthesis of compound 3jf is discussed in the section regarding the synthesis of F-

methallenstril.
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CHARACTERIZATION OF ALLYLIC FLUOROALKYLATION PRODUCTS — SCOPE OF
ELECTROPHILES

diethyl (R)-2-(1-fluoro-1-phenylallyl)-2-methylmalonate (3ba)

Me_ CO,Et
Et0,c—X F
S

84%?32:4 er

The title compound was prepared according to the general procedure for the allylic alkylation of
malonates and f-keto esters on a 0.100 mmol scale. Reaction time: 72 h. Reaction temperature:
—10 °C. The product was purified by preparative TLC (1/99 of diethyl ether/benzene) to provide
allylic fluoride 3ba as a clear oil (26.0 mg, 0.0843 mmol, 84%).

The enantiomeric ratio was determined to be 96:4 by HPLC analysis with tr = 22.4 min (minor)
and tr = 27.6 min (major) [OD-H, 0.1% iPrOH in hexanes, 0.7 mL/min, 214 nm, 25 °C].

[a]p?® = +58.3° (c 0.59, CHCI3). Corrected for enantiopurity: [a]o®® = +63.4° (¢ 0.59, CHClIs).
'H NMR (600 MHz, CDCls) 6 7.52 — 7.49 (m, 2H), 7.33 — 7.25 (m, 3H), 6.93 (ddd, J =22.3, 17.1,
11.1 Hz, 1H), 5.40 (dd, J = 17.1, 1.3 Hz, 1H), 5.29 (ddd, J = 11.1, 2.6, 1.4 Hz, 1H), 4.17 (q, J =
7.1 Hz, 2H), 4.12 - 4.01 (m, 2H), 1.52 (d, J = 1.4 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H), 1.11 (t, J = 7.1
Hz, 3H).

13C NMR (151 MHz, CDCl3) 6 169.5 (d, J = 4.3 Hz), 169.1 (d, J = 6.9 Hz), 139.9 (d, J = 22.8 Hz),
137.1(d, J = 18.0 Hz), 128.0, 127.7 (d, J = 2.0 Hz), 126.6 (d, J = 11.0 Hz), 115.7 (d, J = 14.8 Hz),
97.3 (d, J = 189.4 Hz), 62.7 (d, J = 26.5 Hz), 61.6, 61.5, 18.1 (d, J = 5.8 Hz), 14.1, 13.8.

F NMR (376 MHz, CDCl3) § -158.3 (d, J = 22.4 Hz).

HRMS (ESI): m/z for C17H21FNaO4™ [M+Na]* calcd.: 331.1316, found: 331.1317.

diethyl (R)-2-(1-(4-(tert-butyl)phenyl)-1-fluoroallyl)-2-methylmalonate (3ca)

Me_ CO,Et
Et0,C F

N
t-Bu
3ca

89%, 95:5 er

The title compound was prepared according to the general procedure for the allylic alkylation of

malonates and S-keto esters on a 0.100 mmol scale. Reaction time: 72 h. Reaction temperature:
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—10 °C. The product was purified by preparative TLC (1/99 of diethyl ether/benzene) to provide
allylic fluoride 3ca as a clear oil (32.5 mg, 0.0892 mmol, 89%).

The enantiomeric ratio was determined to be 95:5 by HPLC analysis with tr = 18.2 min (minor)
and tr = 21.4 min (major) [OD-H, 0.1% iPrOH in hexanes, 0.7 mL/min, 214 nm, 25 °C].

[a]p?® = +59.1° (c 0.11, CHCIs). Corrected for enantiopurity: [a]o?® = +65.7° (¢ 0.11, CHClIs).
'H NMR (600 MHz, CDCls) 6 7.42 (d, J = 8.7 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 6.92 (ddd, J =
22.6,17.2, 11.1 Hz, 1H), 5.40 (dd, J = 17.1, 1.4 Hz, 1H), 5.27 (ddd, J = 11.1, 2.7, 1.4 Hz, 1H),
4.16 (q, J = 7.1 Hz, 2H), 4.10 — 4.00 (m, 2H), 1.53 (d, J = 1.4 Hz, 3H), 1.29 (s, 9H), 1.21 (t, J =
7.1 Hz, 3H), 1.09 (t, J = 7.1 Hz, 3H).

13C NMR (151 MHz, CDCls) 4 169.5 (d, J = 4.0 Hz), 169.2 (d, J = 6.6 Hz), 150.8, 137.1 (d, J =
18.0 Hz), 136.8 (d, J = 23.2 Hz), 126.3 (d, J = 10.8 Hz), 124.7 (d, J = 1.5 Hz), 115.3 (d, J = 14.8
Hz), 97.4 (d, J = 189.1 Hz), 62.8 (d, J = 26.7 Hz), 61.5, 61.4, 34.6, 31.4, 18.0 (d, J = 6.0 Hz), 14.1,
13.8.

F NMR (376 MHz, CDCl3) § -158.3 (d, J = 22.4 Hz).

HRMS (ESI): m/z for C21H20FNaO4* [M+Na]* calcd.: 387.1942, found: 387.1944.

diethyl (R)-2-(1-(4-bromophenyl)-1-fluoroallyl)-2-methylmalonate (3da)

Me,_ CO,Et
Et0,C F

N

NP

Br

96%?32:4 er
The title compound was prepared according to the general procedure for the allylic alkylation of
malonates and S-keto esters on a 0.100 mmol scale. Reaction time: 72 h. Reaction temperature:
—10 °C. The product was purified by preparative TLC (1/99 of diethyl ether/benzene) to provide
allylic fluoride 3da as a clear oil (37.0 mg, 0.0955 mmol, 96%).
The enantiomeric ratio was determined to be 96:4 by HPLC analysis with tr = 11.5 min (major)
and tr = 14.0 min (minor) [OD-H, 1.0% iPrOH in hexanes, 0.75 mL/min, 230 nm, 25 °C].
[a]p?® = +61.5° (c 0.16, CHCI3). Corrected for enantiopurity: [a]o?® = +66.8° (¢ 0.16, CHClIs3).
'H NMR (600 MHz, CDCls) 6 7.44 (d, J = 8.6 Hz, 2H), 7.40 (d, J = 8.8 Hz, 2H), 6.86 (ddd, J =
22.3,17.1, 11.1 Hz, 1H), 5.39 (dd, J = 17.1, 1.2 Hz, 1H), 5.30 (ddd, J = 11.1, 2.6, 1.2 Hz, 1H),
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4.16 (g, J = 7.1 Hz, 2H), 4.11 — 4.00 (m, 2H), 1.51 (d, J = 1.3 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H),
1.12 (t, 3 = 7.1 Hz, 3H).

13C NMR (151 MHz, CDCl3) 8 169.3 (d, J = 5.0 Hz), 169.0 (d, J = 6.6 Hz), 139.1 (d, J = 23.4 Hz),
136.5 (d, J = 17.9 Hz), 130.8 (d, J = 1.9 Hz), 128.6 (d, J = 11.0 Hz), 122.3 (d, J = 2.0 Hz), 116.1
(d, J = 14.7 Hz), 97.2 (d, J = 189.3 Hz), 62.5 (d, J = 26.6 Hz), 61.7, 61.6, 18.0 (d, J = 5.7 H2),
14.1,13.9.

19F NMR (376 MHz, CDCls) § -158.2 (d, J = 22.2 Hz).

HRMS (ESI): m/z for C17H2"°BrFNaO4* [M+Na]* calcd.: 409.0421, found: 409.0425.

diethyl (R)-2-(1-fluoro-1-(4-(trifluoromethyl)phenyl)allyl)-2-methylmalonate (3ea)
Me,_ COEt
E0,C :\F/
FiC
96%,33;:3 er
The title compound was prepared according to the general procedure for the allylic alkylation of
malonates and S-keto esters on a 0.100 mmol scale. Reaction time: 72 h. Reaction temperature:
—10 °C. The product was purified by preparative TLC (1/99 of diethyl ether/benzene) to provide
allylic fluoride 3ea as a clear oil (33.1 mg, 0.0880 mmol, 88%).
The enantiomeric ratio was determined to be 97:3 by HPLC analysis with tr = 7.81 min (minor)
and tr = 8.32 min (major) [IA, 0.1% iPrOH in hexanes, 1.0 mL/min, 227 nm, 25 °C].
[a]p?® = +64.1° (c 0.18, CHCI3). Corrected for enantiopurity: [a]p?® = +68.2° (¢ 0.18, CHClIs).
!H NMR (600 MHz, CDCls) 6 7.67 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 6.90 (ddd, J =
22.5,17.1,11.1 Hz, 1H), 5.41 (d, J = 17.1 Hz, 1H), 5.33 (ddd, J = 11.1, 2.7, 1.2 Hz, 1H), 4.18 (q,
J=7.1Hz, 2H), 4.11 - 3.98 (m, 2H), 1.53 (d, J = 1.4 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H), 1.08 (t, J
= 7.1 Hz, 3H).
13C NMR (151 MHz, CDCl3) § 169.2 (d, J = 6.0 Hz), 168.9 (d, J = 6.1 Hz), 144.1 (d, J = 23.3 Hz),
136.3 (d, J =17.8 Hz), 130.2 (q, J = 32.1 Hz), 127.2 (d, J = 11.4 Hz), 124.7 (dqg, J = 5.9, 2.9 Hz),
124.2 (9, J=272.1 Hz), 116.4 (d, J = 14.8 Hz), 97.2 (d, J = 189.8 Hz), 62.5 (d, J = 26.9 Hz), 61.8,
61.6,18.1 (d, J =5.6 Hz), 14.1, 13.8.
19F NMR (565 MHz, CDCls) & -63.7 (3F), -160.5 (d, J = 22.5 Hz, 1F).

HRMS (ESI): m/z for C1gH20F4NaO4* [M+Na]" calcd.: 399.1190, found: 399.1190.
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diethyl (R)-2-(1-fluoro-1-(3-nitrophenyl)allyl)-2-methylmalonate (3fa)

Me, CO,Et
Et0,C F

N
<

ON %

97%,3:3?3:4 er
The title compound was prepared according to the general procedure for the allylic alkylation of
malonates and S-keto esters on a 0.100 mmol scale. Reaction time: 72 h. Reaction temperature:
—10 °C. The product was purified by preparative TLC (1/99 of diethyl ether/benzene) to provide
allylic fluoride 3fa as a clear oil (34.1 mg, 0.0965 mmol, 97%).
The enantiomeric ratio was determined to be 96:4 by HPLC analysis with tr = 11.2 min (minor)
and tr = 12.8 min (major) [AD-H, 1.0% iPrOH in hexanes, 0.8 mL/min, 214 nm, 25 °C].
[a]p?® = +65.9° (c 0.22, CHCI3). Corrected for enantiopurity: [a]p?® = +71.6° (¢ 0.22, CHClIs3).
'H NMR (600 MHz, CDCls) 6 8.41 (t, J = 2.1 Hz, 1H), 8.16 (ddd, J = 8.2, 2.3, 1.0 Hz, 1H), 7.89
(ddd, J =8.0, 1.8, 1.0 Hz, 1H), 7.51 (t, J = 8.1 Hz, 1H), 6.87 (ddd, J = 22.6, 17.1, 11.1 Hz, 1H),
5.45(dd,J=17.1,1.1Hz, 1H),5.37 (ddd, J=11.1, 2.8, 1.1 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 4.14
—4.00 (M, 2H), 1.55 (d, J = 1.4 Hz, 3H), 1.22 (t, J = 7.2 Hz, 3H), 1.10 (t, J = 7.1 Hz, 3H).
13C NMR (151 MHz, CDCl3) § 169.1 (d, J = 6.6 Hz), 168.7 (d, J = 5.4 Hz), 147.8 (d, J = 2.1 Hz),
142.4 (d, J =23.9 Hz), 135.8 (d, J = 17.8 Hz), 133.0 (d, J = 11.0 Hz), 128.7 (d, J = 1.9 Hz), 123.0,
122.2 (d, J =12.0 Hz), 117.0 (d, J = 14.6 Hz), 96.9 (d, J = 190.7 Hz), 62.5 (d, J = 26.5 Hz), 62.0,
61.8, 18.2 (d, J=5.3 Hz), 14.0, 13.8.
19F NMR (376 MHz, CDCls) & -158.4 (d, J = 22.7 Hz).
HRMS (ESI): m/z for C17H20FNNaOs* [M+Na]" calcd.: 376.1167, found: 376.1167.

diethyl (R)-2-(1-(2,5-dimethylphenyl)-1-fluoroallyl)-2-methylmalonate (3ga)

Me  CO,Et
EtO,C F

N

Me N4
Me
3ga
95%, 94:6 er
The title compound was prepared according to the general procedure for the allylic alkylation of

malonates and f-keto esters on a 0.100 mmol scale. Reaction time: 72 h. Reaction temperature:
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—10 °C. The product was purified by preparative TLC (1/99 of diethyl ether/benzene) to provide
allylic fluoride 3ga as a clear oil (32.0 mg, 0.0951 mmol, 95%).

The enantiomeric ratio was determined to be 94:6 by HPLC analysis with tr = 8.9 min (minor)
and tr = 10.3 min (major) [OD-H, 0.3% iPrOH in hexanes, 0.8 mL/min, 214 nm, 25 °C].

[a]p?® = +58.9° (c 0.18, CHCIs). Corrected for enantiopurity: [a]o?® = +66.9° (c 0.18, CHClIs).
'H NMR (600 MHz, CDCls) & 7.06 (s, 1H), 7.00 (d, J = 7.8 Hz, 1H), 6.95 (d, J = 7.7 Hz, 1H),
6.88 — 6.78 (m, 1H), 5.31 — 5.27 (m, 2H), 4.19 — 4.08 (m, 4H), 2.39 (d, J = 7.8 Hz, 3H), 2.26 (s,
3H), 1.61 (d, J = 1.3 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H).

13C NMR (151 MHz, CDCl3) 6 169.8 (d, J = 3.8 Hz), 169.6 (d, J = 7.5 Hz), 138.1 (d, J = 20.1 Hz),
137.5 (d, J = 22.0 Hz), 134.2 (d, J = 1.5 Hz), 133.8, 133.0, 128.6, 128.2 (d, J = 8.3 Hz), 115.7 (d,
J=13.7 Hz), 100.5 (d, J = 190.9 Hz), 63.4 (d, J = 25.9 Hz), 61.7, 61.6, 22.7 (d, J = 14.1 Hz), 21.2,
18.9 (d, J=5.0 Hz), 14.0, 13.9.

F NMR (376 MHz, CDCl3) 6 -152.2 (br s).

HRMS (ESI): m/z for C19H25FNaO.* [M+Na]* calcd.: 359.1629, found: 359.1630.

(R)-2-(1-fluoro-1-phenylallyl)-2-(methoxymethoxy)malononitrile (3be)

MOMO CN
NC F

N

N
97%, 93::;5;, 335 mg
The title compound was prepared according to the general procedure for the allylic alkylation of
malononitriles on a 1.332 mmol scale (200.0 mg of PhACF,CH=CHy>). The product was purified by
silica gel column chromatography (0/100 to 20/80 of ethyl acetate/hexanes) to provide allylic
fluoride 3be as a clear oil (335.3 mg, 1.288 mmol, 97%).
The enantiomeric ratio was determined to be 93:7 by HPLC analysis with tr = 12.8 min (minor)
and tr = 13.6 min (major) [OD-H, 0.3% iPrOH in hexanes, 1.0 mL/min, 220 nm, 25 °C].
[a]p?® = +29.6° (c 0.32, CHCI3) Corrected for enantiopurity: [a]p® = +34.4° (¢ 0.32, CHCls).
All other characterization data matched with the literature, and the absolute configuration is

opposite that of our previous work.?
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(R)-2-(1-(4-bromophenyl)-1-fluoroallyl)-2-(methoxymethoxy)malononitrile (3ce)

MOMO  CN
NC F
I
t-Bu

3ce
84%, 94:6 er

The title compound was prepared according to the general procedure for the allylic alkylation of
malononitriles on a 0.100 mmol scale. The product was purified by preparative thin-layer
chromatography (30/70 of diethyl ether/hexanes) to provide allylic fluoride 3ce as clear oil (26.5
mg, 0.0838 mmol, 84%).

The enantiomeric ratio was determined to be 94:6 by HPLC analysis with tr = 25.2 min (major)
and tr = 29.2 min (minor) [OD-H, hexanes, 0.8 mL/min, 210 nm, 25 °C].

[a]p?® = +22.5° (¢ 0.61, CHCI3). Corrected for enantiopurity: [a]o®® = +25.8° (¢ 0.61, CHClIs3).
'H NMR (600 MHz, CDCls) 6 7.50 (d, J = 8.7 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 6.47 (ddd, J =
20.8,17.1,11.1 Hz, 1H), 5.80 (d, J = 17.1 Hz, 1H), 5.64 (dd, J = 11.1, 2.4 Hz, 1H), 5.03 (AB, J =
7.2 Hz, 2H), 3.44 (s, 3H), 1.33 (s, 9H).

13C NMR (151 MHz, CDCls) 6 153.2, 131.0 (d, J = 21.9 Hz), 131.0 (d, J = 17.5 Hz)126.3 (d, J =
9.5 Hz), 125.5 (d, J = 1.8 Hz), 121.0 (d, J = 12.8 Hz), 111.6, 111.1, 96.9, 96.4 (d, J = 196.5 Hz),
72.8 (d, J =35.8 Hz), 57.6, 34.9, 31.3.

19F NMR (565 MHz, CDCls) -160.02 (d, J = 21.1 Hz).

All characterization data matched with the literature, and the absolute configuration is opposite

that of our previous work.>

(R)-2-(1-(4-bromophenyl)-1-fluoroallyl)-2-(methoxymethoxy)malononitrile (3de)

MOMQ_ CN
NC— F
S

Br
3de
92%, 94:6 er

The title compound was prepared according to the general procedure for the allylic alkylation of
malononitriles on a 0.100 mmol scale. The product was purified by preparative thin-layer
chromatography (30/70 of diethyl ether/hexanes) to provide allylic fluoride 3de as clear oil (31.3
mg, 0.0923 mmol, 92%).
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The enantiomeric ratio was determined to be 94:6 by HPLC analysis with tr = 13.0 min (major)
and tr = 14.5 min (minor) [AS-H, hexanes, 0.8 mL/min, 210 nm, 25 °C].

[a]p?® = +34.6° (c 0.50, CHCI3). Corrected for enantiopurity: [a]o?® = +39.7° (¢ 0.50, CHClIs3).
'H NMR (600 MHz, CDCls) 6 7.59 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 6.42 (ddd, J =
20.5, 17.0, 11.1 Hz, 1H), 5.82 (d, J = 17.0 Hz, 1H), 5.68 (dd, J = 11.1, 2.3 Hz, 1H), 5.05 (dd, J =
7.0, 0.8 Hz, 1H (leaning)), 5.02 (dd, J = 7.0, 0.8 Hz, 1H (leaning)), 3.44 (s, 3H).

13C NMR (151 MHz, CDCls) § 133.1 (d, J = 22.0 Hz), 131.8 (d, J = 2.0 Hz), 130.3 (d, J = 17.4
Hz), 128.3 (d, J = 9.9 Hz), 124.8 (d, J = 1.3 Hz), 121.9 (d, J = 12.7 Hz), 111.2, 110.9, 97.0, 96.2
(d, J=197.4 Hz), 72.4 (d, J = 35.3 Hz), 57.7.

F NMR (565 MHz, CDCl3) 6 -159.8 (d, J = 20.5 Hz).

HRMS (EI): m/z for C14H12"°BrFN20, [M]* calcd.: 338.0066, found: 338.0059.

(R)-2-(1-(2,5-dimethylphenyl)-1-fluoroallyl)-2-(methoxymethoxy)malononitrile (3ge)
MOMO_ CN
Me N ’\F/
Me
87%,332:6 er
The title compound was prepared according to the general procedure for the allylic alkylation of
malononitriles on a 0.100 mmol scale. The catalyst loading was increased to 5.0 mol% for this
substrate, and the reaction time was extended to 48 h. The product was purified by silica gel
column chromatography (0/100 to 30/70 of diethyl ether/hexanes) to provide allylic fluoride 3ge
as a clear oil (25.0 mg, 0.0867 mmol, 87%).
The enantiomeric ratio was determined to be 94:6 by HPLC analysis with tr = 26.4 min (minor)
and tr = 27.3 min (major) [AD-H, 1.0% iPrOH in hexanes, 0.25 mL/min, 220 nm, 25 °C].
[a]p?® = +15.2° (c 0.60, CHCI3). Corrected for enantiopurity: [a]o?® = +17.3° (¢ 0.60, CHClIs3).
'H NMR (600 MHz, CDCls) 6 7.34 (s, 1H), 7.15 — 7.08 (m, 2H), 6.48 (ddd, J = 18.9, 17.1, 11.0
Hz, 1H), 5.72 (dd, J = 17.1, 0.6 Hz, 1H), 5.66 (dd, J = 11.1, 2.0 Hz, 1H), 5.09 (s, 2H), 3.50 (s, 3H),
2.47 (d, J = 6.4 Hz, 3H), 2.34 (s, 3H).
13C NMR (151 MHz, CDCls) 4 135.0 (d, J = 1.2 Hz), 134.8, 133.3, 132.0 (d, J = 19.4 Hz), 131.8
(d, J=20.5Hz), 130.6, 128.4 (d, J = 9.0 Hz), 121.6 (d, J = 12.5 Hz), 111.7 (d, J = 2.6 Hz), 111.4,

99.0 (d, J = 197.4 Hz), 96.9, 73.1 (d, J = 34.7 Hz), 57.7, 22.2 (d, J = 10.9 Hz), 21.2.
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F NMR (565 MHz, CDCl3) 6 -151.1 (br s).
HRMS (EI): m/z for C16H17FN202 [M]* calcd.: 288.1274, found: 288.1270.

diethyl (S)-2-(1-(benzoyloxy)-2-fluorobut-3-en-2-yl)-2-methylmalonate (3ha)

Me_ CO,Et
Et0,c—X F
BzO N2

3ha
71%, 99:1 er

The title compound was prepared according to the general procedure for the allylic alkylation of
malonates and fS-keto esters on a 0.200 mmol scale. The reaction temperature was increased to
+65 °C for this electrophile and the catalyst loading was increased to 5 mol% of C21 (Co).
Reaction time: 96 h. The product was purified by silica gel column chromatography (2/98 to 15/85
of ethyl acetate/hexanes) followed by preparative TLC (1/99 of diethyl ether/benzene, run up the
plate twice) to provide allylic fluoride 3ha as a clear oil (52.3 mg, 0.143 mmol, 71%).

The enantiomeric ratio was determined to be 99.3:0.7 by HPLC analysis with tr = 20.3 min
(minor) and tr = 22.0 min (major) [AD-H, 1.0% iPrOH in hexanes, 0.7 mL/min, 230 nm, 25 °C].
[a]o?® = +40.5° (c 0.31, CHCIs). Corrected for enantiopurity: [a]o?® = +41.1° (¢ 0.31, CHClIs).
IH NMR (600 MHz, CDCl3) & 8.02 (d, J = 7.6 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.7
Hz, 2H), 6.11 (ddd, J = 23.3, 17.2, 11.2 Hz, 1H), 5.51 (dd, J = 17.3, 1.4 Hz, 1H), 5.38 (ddd, J =
11.2,2.9, 1.4 Hz, 1H), 5.03 (dd, J = 32.1, 12.2 Hz, 1H), 4.85 (dd, J = 14.4, 12.2 Hz, 1H), 4.28 -
4.16 (m, 4H), 1.58 (d, J = 1.3 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H).

13C NMR (151 MHz, CDCls) 4 169.3 (d, J = 8.8 Hz), 169.0 (d, J = 2.7 Hz), 166.1, 133.2, 133.0
(d, J=19.8 Hz), 130.1, 129.9, 128.5, 118.1 (d, J = 13.2 Hz), 96.9 (d, J = 192.3 Hz), 65.4 (d, J =
219 Hz), 62.1, 62.0,59.6 (d, J = 23.3 Hz), 17.7 (d, J = 5.3 Hz), 14.1, 14.1.

F NMR (376 MHz, CDCl3) 6 -170.4 (ddd, J = 32.1, 23.2, 14.5 Hz).

HRMS (ESI): m/z for C19H23FNaOs™ [M+Na]" calcd.: 389.1371, found: 389.1365.
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diethyl (S)-2-(2-fluoro-1-(naphthalen-2-yl)but-3-en-2-yl)-2-methylmalonate (3ia)

Me  CO,Et
Et0,c— F
2Np N _~

94%,3;?3:2 er

The title compound was prepared according to a procedure modified from the general procedure
for the allylic alkylation of malonates with 2-(2,2-difluorobut-3-en-1-yl)naphthalene (40.0 mg,
0.183 mmol). The reaction was conducted with barium triflate as an additive (3.00 equiv) at a
reaction concentration of 0.2 M in THF. The reaction was conducted at room temperature for 19
hours with 2.0 mol% C. After the reaction reached completion, the mixture was concentrated in
vacuo, diluted with ethyl acetate, filtered, and concentrated in vacuo. The resulting residue was
purified by preparative TLC (benzene) to provide allylic fluoride 3ia as clear oil (64.2 mg, 0.172
mmol, 94%).

The enantiomeric ratio was determined to be 98:2 by HPLC analysis with tr = 11.8 min (major)
and tr = 16.4 min (minor) [AD-H, hexanes, 1.0 mL/min, 220 nm, 25 °C].

[a]p?® = +70.5° (c 0.13, CHCI3). Corrected for enantiopurity: [a]po®® = +73.4° (¢ 0.13, CHClIs3).
1H NMR (600 MHz, CDCl3) § 7.81 — 7.76 (m, 2H), 7.72 (d, J = 8.4 Hz, 1H), 7.63 (s, 1H), 7.47 —
7.40 (m, 2H), 7.34 (dt, J = 8.4, 1.6 Hz, 1H), 6.08 (ddd, J = 24.1, 17.3, 11.3 Hz, 1H), 4.99 (ddd, J
=113, 3.0, 1.4 Hz, 1H), 4.94 (dd, J = 17.3, 1.5 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 4.27 — 4.20 (m,
2H), 3.61 (dd, J = 14.2, 12.7 Hz, 1H), 3.52 (dd, J = 39.0, 14.2 Hz, 1H), 1.62 (d, J = 1.3 Hz, 3H),
1.34 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H).

13C NMR (151 MHz, CDCl3) § 170.0 (d, J = 7.8 Hz), 169.9 (d, J = 3.4 Hz), 134.8 (d, J = 19.7 Hz),
133.6, 133.3, 132.4, 129.8, 129.6 (d, J = 1.9 Hz), 127.8, 127.7, 127.1, 125.8, 125.5, 116.9 (d, J =
13.1 Hz), 98.1 (d, J = 191.8 Hz), 61.8, 61.6, 61.1 (d, J = 23.8 Hz), 41.1 (d, J = 21.3 Hz), 17.9 (d,
J=5.7Hz),14.2,14.1.

F NMR (565 MHz, CDCl3) 6 -165.2 (ddd, J = 37.8, 24.0, 12.6 Hz).

HRMS (EI): m/z for C22HzsFO4* [M]* calcd.: 372.1737, found: 372.1744.
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diethyl (S)-2-(2-fluoro-1-(naphthalen-2-yl)but-3-en-2-yl)-2-methylmalonate (3ie)

MOMO CN
NC— F
2Np X _~

89%,?;;:13 er

The title compound was prepared according to a procedure modified from the general procedure
for the allylic alkylation of malononitriles with 2-(2,2-difluorobut-3-en-1-yl)naphthalene (21.8
mg, 0.100 mmol). The reaction was conducted with barium triflate as an additive instead of lithium
bromide (3.00 equiv) at a reaction concentration of 0.1 M in 1,4-dioxane. The reaction was
conducted at room temperature for 24 hours with 20.0 mol% C. After this time, the mixture was
concentrated in vacuo, diluted with ethyl acetate, filtered, and concentrated in vacuo. The resulting
residue was purified by preparative TLC (85/15 of hexanes/diethyl ether) to provide allylic fluoride
3ie as a clear oil (28.9 mg, 0.0891 mmol, 89%).

The enantiomeric ratio was determined to be 87:13 by HPLC analysis with tr = 12.7 min (minor)
and tr = 15.93 min (major) [I1B, 1.0% iPrOH in hexanes, 1.0 mL/min, 229 nm, 25 °C].

[a]p?® = +34.7° (c 0.43, CHCIs). Corrected for enantiopurity: [a]o®® = +46.9 (c 0.43, CHCIs).

1H NMR (600 MHz, CDCl3) § 7.85 — 7.80 (m, 2H), 7.78 (d, J = 8.5 Hz, 1H), 7.68 (s, 1H), 7.52 —
7.46 (m, 2H), 7.33 (dt, J = 8.4, 1.6 Hz, 1H), 5.92 (ddd, J = 22.2, 17.2, 11.2 Hz, 1H), 5.45 (d, J =
17.2 Hz, 1H), 5.42 (dd, J = 11.3, 2.7 Hz, 1H), 5.17 (AB, J = 6.6 Hz, 1H), 3.68 (dd, J = 14.4, 11.9
Hz, 1H), 3.61 (s, 3H), 3.34 (dd, J = 37.5, 14.4 Hz, 1H).

13C NMR (126 MHz, CDCls) 6 133.3, 132.7, 130.2, 130.0, 129.6 (d, J = 19.5 Hz), 128.7 (d, J =
1.2 Hz), 128.0, 127.8, 127.8, 126.3, 126.2, 122.5 (d, J = 11.2 Hz), 111.4, 111.3 (d, J = 1.2 Hz),
97.4 (d, J =200.4 Hz), 97.0, 72.1 (d, J = 31.2 Hz), 57.8, 39.6 (d, J = 20.0 Hz).

F NMR (470 MHz, CDCls) 6 -163.3 (ddd, J = 35.6, 22.2, 11.9 Hz).

HRMS (El): m/z for C19H17FN20O>" [M]" calcd.: 324.1274, found: 324.1277.

SYNTHESIS OF FLUORINATED ANALOGS OF TROPIC ACID AND METHALLENESTRIL

To demonstrate the synthetic utility of this method, we prepared fluorinated analogs of two
biologically active compounds, tropic acid and methallenestril. The synthesis of the fluorinated
derivative of tropic acid was achieved in two steps from compound 3be via hydrolysis and
reductive ozonolysis (Figure S16). Overall, enantioenriched F-Tropic acid was prepared in four

steps from commercial materials. Pharmaceuticals with diverse biological activities, including
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chronotropic effects (atropine), bronchodilation (ipratropium bromide), antiemetic activity
(hyoscine), and a mydriatic activity (tropicamide), are simple esters and amides of tropic acid.
Fluorinated analogs of tropic acid derivatives were studied by Novartis in 2019, indicating these
compounds are of industrial interest. These compounds were all prepared in racemic form in the
patent WO 2019/087146 Al “Azabicyclo and diazepine derivatives for treating ocular
disorders.”?’

Fluorination at the a-position of esters and amides is known to prevent epimerization.
Fluorination o to amides (as would be present for the fluorinated analog of Tropicamide) alters the
conformation about the amide C—C bond.?® The lipophilicity of these compounds is affected by
fluorination, as the calculated cLogP values indicate. For tropic acid, the pKa is predicted to

decrease by two pKa units upon fluorination (Figure S16).
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a Synthesis of a-fluoro tropic acid

Nucleophile 2e

PhB(OH),
* (Pd] LiOtBu
F F _— —_—
X/ K,COs 2 mol% [ir]
Br 41% LiBr 97%, 937 er, 335 mg
1. CSA, AcOH, o 1.03 -78°C o
DME, 60 °C, 6 h HO F 2.DMS, RT HO F
2.3 M NaOH, Ph NF 3. NaBHy4, RT Ph . OH
RT, 4h
F-tropic acid
73% over two steps
b Tropic acid derivatives in pharmaceuticals
+
N(Me)(iPr) OH Me OH NMe
JAE Noelma
S o Ipratropium bromide Ph)\[( N X ph%(NH
Ph (bronchodilator) o o
0
. : : Novartis patented
N~
(ch/r\cirr?ci:t’rr;e ic Me (mydg—;%ﬁlcf;z;g;egic) bioactive compound
pic, ' W02019/087146 A1
organophosphate antidote) ~0 .
Hyoscine (prepared from racemic
(antiemetic) F-Tropic acid)
¢ Modification of physicochemical properties
0 0 OH 1o OH 1o
HO H HO F H J r N E J r N
{_ _OH {__OH S < SN $
Ph Ph oh )ﬁ( oh
Tropic acid F-Tropic acid o e}
pKa =4.11 pKa = 2.48 Tropi i E-Tropi id
cLogP =0.43 cLogP =0.75 fopicamiae ropicamiae
cLogP =1.18 cLogP =2.08

values calculated with Chemdraw Professional

Figure S16. a. Synthesis of a fluorinated analog of tropic acid. b. importance of tropic acid
derivatives in medicinal chemistry. c. Calculated changes in physicochemical properties.
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In addition, we prepared in two steps from allylic fluoride 3jf a fluorinated analog of
methallenestril, which is a non-steroidal estrogen (Figure S17). Overall, enantioenriched F-
methallenestril was prepared in four steps from commercial materials. The fluorinated derivative
we prepared bears two vicinal, fully substituted carbons. The fluorinated analog of methallenestril

is predicted to be three times more acidic than the parent compound (0.5 pKa units).

a Synthesis of fluoro-methallenestril

EE Nucleophile 2f
s 4 mol% [Ir]

OO N 2 mol% TMSOTY
B — e
MeO Dioxane, RT
prepared in one step
from commercial

3jf
98%, 92:8 er

H, (50 bar)
15 mol% [Ru] xs n-PrSLi
D ——————— D —————————
Dioxane, RT DMSO

99%
F-Methallenestril

pKa 4.61
Me  cLogP: 4.63

pKa: 4.12
cLogP: 4.71

MeO

values calculated with Chemdraw Professional
Figure S17. a. Synthesis of a fluorinated analog of methallenestril. b. Calculated changes in

physicochemical properties.

Synthesis of Fluorinated Analogs of Methallenestril and Tropic Acid
F-Methallenestril
methyl (R)-3-fluoro-3-(6-methoxynaphthalen-2-yl)-2,2-dimethylpent-4-enoate (3jf)

R f OTMS

NP 4 mol% [Ir]
 meo” XM >
© 2 mol% TMSOTf
MeO Me MeO

Dioxane (0.4 M), RT, 40 h

3jf
98%, 92:8 er, 133 mg

(2.5 equiv)

Note: We observed that defluorinative alkylation reactions with silyl ketene acetals proceed

faster if trimethylsilyl triflate is added as a cocatalyst. This is particularly beneficial for reactions

S82



conducted at larger scales. Under these conditions, reactions in dioxane solvent occurred with the
highest enantioselectivities.

In a nitrogen-filled glove box, a 20 mL vial equipped with a magnetic stir bar was charged
with 2-(1,1-difluoroallyl)-6-methoxynaphthalene (100.0 mg, 0.4269 mmol, 1 equiv). A solution of
C15 (Cy) (21.6 mg, 0.0170 mmol, 4.00 mol%) in dioxane (1.050 mL) was then added. Methyl
trimethylsilyl dimethyl ketene acetal (186 mg, 217 uL, 1.07 mmol, 2.50 equiv) was added slowly
with stirring. In a separate vial, a solution of trimethylsilyl triflate in dioxane was prepared (15.4
pL TMSOTT in 500 pL dioxane), and an aliquot was added to the reaction mixture (50 pL of this
solution added, amounting to 1.54 pmol TMSOTf, 0.0085 mmol, 2.0 mol%). The resulting
solution was stirred at room temperature for 40 h, after which time, *H NMR spectroscopy
indicated complete consumption of the starting material. The solvent was removed in vacuo, and
the product was purified by silica gel column chromatography (4/96 to 12/88 of ethyl
acetate/hexanes) to provide allylic fluoride 3jf as a clear oil (132.5 mg, 0.4188 mmol, 98%).

The enantiomeric ratio was determined to be 92:8 by HPLC analysis with tr = 9.71 min (major)
and tr = 10.9 min (minor) [IC, 1.0% iPrOH in hexanes, 1.0 mL/min, 240 nm, 25 °C].

[a]p?® = +65.9° (c 0.31, CHCIs). Corrected for enantiopurity: [a]o?® = +78.5° (¢ 0.31, CHClIs).
'H NMR (600 MHz, CDCls3) 6 7.75 - 7.71 (m, 2H), 7.69 (d, J = 8.7 Hz, 1H), 7.38 (dd, J = 8.7, 1.9
Hz, 1H), 7.16 (dd, J = 8.9, 2.5 Hz, 1H), 7.12 (d, J = 2.5 Hz, 1H), 6.77 (ddd, J = 22.9, 17.0, 11.1
Hz, 1H), 5.47 (dd, J = 17.0, 1.4 Hz, 1H), 5.32 (ddd, J = 11.2, 3.0, 1.4 Hz, 1H), 3.92 (s, 3H), 3.60
(s, 3H), 1.33 (s, 3H), 1.25 (d, J = 1.5 Hz, 3H).

13C NMR (151 MHz, CDCl3) 6 175.1 (d, J = 5.4 Hz), 158.1, 136.5 (d, J = 18.8 Hz), 135.4 (d, J =
23.2 Hz), 133.9, 129.9, 128.3, 126.2 (d, J = 1.9 Hz), 124.9 (d, J = 11.4 Hz), 124.3 (d, J = 9.8 Hz),
119.3, 115.2 (d, J = 14.8 Hz), 105.5, 98.7 (d, J = 190.5 Hz), 55.4, 51.9, 51.4 (d, J = 24.9 Hz), 21.8
(d, J=4.2 Hz), 20.7 (d, J = 5.7 Hz).

F NMR (565 MHz, CDCl3) § -164.6 (d, J = 22.6 Hz).

HRMS (El): m/z for C19H21FO3" [M]" calcd.: 316.1475, found: 316.1479.
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methyl (R)-3-fluoro-3-(6-methoxynaphthalen-2-yl)-2,2-dimethylpentanoate (S6)

H, (50 bar)
15 mol% RuHCI(PPh3)3

Dioxane (0.05 M), RT, 24 h

86%, 41.1 mg

In a nitrogen-filled glove-box, a dry test tube was charged with RUHCI(PPhz)3 (20.9 mg,
0.0225 mmol, 15.0 mol%) and a solution of allylic fluoride 3jf (47.5 mg, 0.150 mmol, 1 equiv) in
dioxane (3.00 mL). The test tube was loaded into a stainless-steel Parr bomb and the Paar bomb
was sealed under nitrogen. The Parr bomb was then pressurized to 50 bar with hydrogen, and the
reaction mixture was stirred at room temperature for 24 hours at this pressure. After this time, the
Parr bomb was carefully vented, the solvent was removed in vacuo, and the product was purified
by silica gel column chromatography (0/100 to 15/85 ethyl acetate/hexanes) to provide tertiary
fluoride S6 as a clear oil (41.1 mg, 0.129 mmol, 86% vyield).
[a]p?® = -0.33° (¢ 0.51, CHCIs). Corrected for enantiopurity: [a]o?® = -0.38° (¢ 0.51, CHCIs).
'H NMR (600 MHz, CDCls) § 7.74 (d, J = 8.9 Hz, 1H), 7.72 — 7.66 (m, 2H), 7.28 (br d, J = 8.7
Hz, 1H), 7.16 (dd, J = 8.9, 2.6 Hz, 1H), 7.13 (d, J = 2.5 Hz, 1H), 3.93 (s, 3H), 3.62 (s, 3H), 2.37
(ddq, J =42.4,14.9, 7.4 Hz, 1H), 2.25 (ddq, J = 14.5, 9.7, 7.2 Hz, 1H), 1.27 (s, 3H), 1.22 (d, J =
1.3 Hz, 3H), 0.71 (t, J = 7.3 Hz, 3H).
13C NMR (151 MHz, CDCls) § 175.7 (d, J = 4.5 Hz), 158.0, 134.3 (d, J = 22.6 Hz), 133.8, 129.9,
128.4 (d, J =2.0 Hz), 126.1 (d, J = 2.1 Hz), 125.5 (d, J = 12.5 Hz), 124.8 (d, J = 10.0 Hz), 119.1,
105.5, 101.9 (d, J = 186.2 Hz), 55.5, 52.0, 51.3 (d, J = 24.3 Hz), 27.1 (d, J = 22.6 Hz), 21.8 (d, J
= 4.3 Hz), 21.6 (d, J = 6.2 Hz), 8.1 (d, J = 4.4 Hz).
F NMR (565 MHz, CDCl3) 6 -165.1 (dd, J = 42.8, 9.6 Hz).
HRMS (El): m/z for C19H23FO3" [M]" calcd.: 318.1631, found: 318.1628.
Note: Subjecting allylic fluoride S6 to HPLC analysis (ADH, 1.0% i-PrOH, 1.0 mL/min) indicated

a 91:9 ratio of enantiomers: 7.9 min (major) and 9.8 min (minor).
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(R)-3-fluoro-3-(6-methoxynaphthalen-2-yl)-2,2-dimethylpentanoic acid (F-Methallenestril)

excess n-PrSLi

DMSO (0.075 M), RT, 8 h
MeO

F-Methallenestril
99%, 10.0 mg

In a nitrogen-filled glove-box, a solution of n-PrSLi was prepared as follows:

A dry 20 mL vial was charged with lithium hydride powder (25.4 mg, 3.19 mmol) and then
dry DMSO (1.07 mL). While stirring the suspension of lithium hydride and DMSO, n-propanethiol
was added dropwise (150 pL, 1.62 mmol). After the bubbling had ceased (~5 minutes), the vial
was sealed and stirred at room temperature for 1 hour. After this time, the resulting suspension
was filtered through a 0.2 um PTFE syringe filter.

The reaction was conducted in a separate vial as follows:

A 4 mL vial was charged with tertiary fluoride S6 (10.6 mg, 0.0333 mmol, 1 equiv) and a
stir bar. An aliquot of the n-PrSLi solution (500 pL, ~0.75 mmol, ~23 equiv) was added, the vial
was sealed, and the resulting solution was stirred vigorously at room temperature for 8 hours.
After this time, the reaction mixture was transferred to a separatory funnel with water and ethyl
acetate. The aqueous layer was acidified with 1 M HCI and extracted with ethyl acetate three times.
The combined organic layers were dried over sodium sulfate and concentrated in vacuo to provide
the crude product as a pale-yellow residue. The crude material was dissolved in benzene (40 mL)
and extracted with saturated aqueous NaHCO3 (10 x 15 mL). The combined aqueous layers were
carefully acidified with 3 M HCI and then extracted with dichloromethane (3 x 30 mL). The
combined DCM layers were dried over sodium sulfate and concentrated in vacuo to provide F-
Methallenestril as a white powder (10.0 mg, 0.329 mmol, 99% yield).

The optical rotation of this compound was too low to quantify.

'H NMR (600 MHz, CDCl3) § 7.77 — 7.72 (m, 2H), 7.70 (d, J = 8.6 Hz, 1H), 7.35 (br d, J = 8.6
Hz, 1H), 7.16 (dd, J = 8.9, 2.5 Hz, 1H), 7.13 (d, J = 2.5 Hz, 1H), 3.93 (s, 3H), 2.48 — 2.28 (m, 2H),
1.26 (s, 3H), 1.24 (s, 3H), 0.74 (t, J = 7.3 Hz, 3H). Note: A broad signal at 12.5-9.0 ppm was
observed for the proton of the carboxylic acid.

13C NMR (151 MHz, CDCls) § 180.4 (d, J = 3.2 Hz), 158.1, 133.9, 133.7 (d, J = 22.4 Hz), 130.0,
128.3,126.2 (d, J=2.1 Hz), 125.8 (d, J = 12.2 Hz), 124.9 (d, J = 10.1 Hz), 119.2, 105.5, 102.0 (d,
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J=185.4 Hz), 55.5,51.1 (d, J = 24.2 Hz), 27.3 (d, J = 22.6 Hz), 21.7 (d, J = 5.3 Hz), 21.7 (d, J =
6.1 Hz), 8.1 (d, J=4.5 Hz).

19F NMR (565 MHz, CDCl3) § -164.0 (dd, J = 41.8, 9.9 Hz).

F-Tropic Acid

(S)-2-fluoro-3-hydroxy-2-phenylpropanoic acid (F-Tropic Acid)

MOMO N 1. CSA, AcOH, o 1.03 -78 °C o
Ncgﬁi/ DME,60°C,7h |0 ¢ ¢ 2.DMS, RT Hoﬁ/
" 2.3 M NaOH, | 3.NaBH, RT O
Ph RT. 4 h Ph Ph

3be F-tropic acid
73% over two steps

Step 1: A dry 20 mL vial equipped with a magnetic stir bar was charged with (R)-2-(1-
fluoro-1-phenylallyl)-2-(methoxymethoxy)malononitrile (3be) (75.0 mg, 0.288 mmol, 1 equiv)
and dry dimethoxyethane (3.00 mL). Glacial acetic acid (315 pL, 5.50 mmol, 19.1 equiv) was
added, followed by (+)-camphor sulfonic acid (80.8 mg, 0.348 mmol, 1.21 equiv). The headspace
of the vial was replaced with nitrogen, and the vial was sealed. The vial was heated at 60 °C for 7
hours. After this time, the reaction mixture was cooled to 0 °C and diluted with dimethoxyethane
(3.00 mL). While stirring the reaction mixture vigorously at 0 °C, 3 M NaOH (3.00 mL) was added
dropwise. After complete addition, the reaction mixture was stirred at room temperature for 4
hours. After this time, the reaction mixture was diluted with water (10 mL) and 3 M NaOH (10
mL). The aqueous layer was washed with DCM (3 x 15 mL, discarded) and then acidified with 1
M HCI. The aqueous layer was then extracted with dichloromethane (3 x 30 mL) and these organic
layers were dried over sodium sulfate, filtered, and concentrated in vacuo to provide a pale-yellow
oil.

Step 2: The crude carboxylic acid was transferred to a 20 mL vial equipped with a magnetic
stir bar. Dry dichloromethane (4.50 mL) and dry methanol (4.50 mL) were added, and the vial was
fitted with a septum cap. The reaction mixture was cooled to —78 °C in a dry ice/acetone bath, and
ozone was bubbled through the solution until a dark blue color persisted (~ 15 min). After this
time, dry nitrogen was bubbled through the reaction mixture to remove excess ozone, and dimethyl
sulfide (212 pL, 2.89 mmol, 10.0 equiv) was added while maintaining the reaction mixture at —78
°C. After 5 minutes, the reaction was warmed to room temperature and stirred for an additional 10
minutes. Sodium borohydride (109.2 mg, 2.887 mmol, 10.02 equiv) was added in one portion, and
the reaction mixture as stirred at room temperature for 20 minutes. After this time, the reaction

was concentrated in vacuo and transferred to a separatory funnel with ethyl acetate and water. The
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organic phase was extracted with sodium bicarbonate (3 x 20 mL), and the combined aqueous
layers were washed once with DCM (40 mL). The combined aqueous layers were then acidified
with 1 M HCI, diluted with brine (30 mL), and extracted with ethyl acetate (8 x 50 mL). The
combined layers of ethyl acetate were dried over sodium sulfate and concentrated in vacuo to
provide a colorless residue. The residue was washed with pentane and concentrated under high
vacuum to provide a-fluoro tropic acid (F-Tropic Acid) as a white powder (38.7 mg, 0.210 mmol,
73% yield).

[a]p?® = —4.4° (c 1.00, MeOH). Corrected for enantiopurity: [a]po® = -5.0° (¢ 1.00, MeOH).

'H NMR (600 MHz, ds-DMSO0) & 7.55 — 7.37 (m, 5H), 4.14 (dd, J = 31.6, 12.4 Hz, 1H), 3.80 (dd,
J=17.3,12.4 Hz, 1H). Note: A broad signal at 14.0-12.0 ppm was observed for the proton of the
carboxylic acid.

13C NMR (151 MHz, de-DMSO) § 170.2 (d, J = 27.5 Hz), 136.0 (d, J = 21.9 Hz), 128.6, 128.4,
124.8 (d, J =8.5Hz), 97.4 (d, J = 189.2 Hz), 65.8 (d, J = 21.4 Hz).

BF NMR (565 MHz, ds-DMSO) 6§ -166.7 (dd, J = 31.6, 17.4 Hz).

The NMR data matched with the literature.?’

BENzYLIC SUBSTITUTION WITH 2-DIFLUOROMETHYL NAPHTHALENE

diethyl 2-(fluoro(naphthalen-2-yl)methyl)-2-methylmalonate (5a)

A 4 mL vial was charged with 2-(difluoromethyl)naphthalene (4a) (17.8 mg, 0.100 mmol),
DPEphos (2.7 mg, 0.0050 mmol, 5 mol%), and a solution of [Pd(crotyl)Cl]2 (0.98 mg in 40 pL
THF, 0.0025 mmol, 2.5 mol%). In a separate vial, a solution of diethyl methyl malonate (2.0
equiv), lithium tert-butoxide (2.0 equiv), and lithium triflate (1.0 equiv) per 400 pL THF was
prepared. A 400 pL aliquot of this solution was added to the vial containing the catalyst and
substrate. The vial was sealed and heated at 65 °C for 22 hours. Analysis of the crude mixture by
'H and **F NMR spectroscopy with an internal standard (trichloroethylene) indicated >95% yield.
The product was purified by column chromatography (97/3 to 93/7 hexanes/ethyl acetate) to

provide benzylic fluoride 5a as a clear oil. The reaction was conducted analogously with 5 mol%
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[Pd(crotyl)Cl]2 and 15 mol% (R)-BINAP to provide benzylic fluoride 5a in quantitative yield
(>95% vyield, 100% conversion) and 82:18 er.

The enantiomeric ratio was determined to be 82:18 by HPLC analysis with tr = 12.8 min (minor)
and tr = 15.9 min (major) [AD-H, 2.0% iPrOH in hexanes, 0.75 mL/min, 214 nm, 25 °C].

'H NMR (600 MHz, CDCl3) & 7.85 — 7.81 (m, 4H), 7.52 — 7.45 (m, 3H), 6.43 (d, J = 43.7 Hz,
1H),4.31 (q, J=7.1 Hz, 2H), 4.14 (q, J = 7.1 Hz, 2H), 1.47 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H), 1.20
(t, J = 7.1 Hz, 3H).

13C NMR (151 MHz, CDCl3) 6 169.3, 169.0 (d, J = 9.8 Hz), 133.5, 133.1 (d, J = 21.2 Hz), 132.8,
128.3, 127.8, 127.8, 126.8 (d, J = 8.6 Hz), 126.7, 126.5, 124.4 (d, J = 7.5 Hz), 93.9 (d, J = 181.1
Hz), 62.1, 61.9, 59.8 (d, J = 25.3 Hz), 14.7 (d, J = 4.4 Hz), 14.2, 14.0.

19F NMR (565 MHz, CDCl3) & -185.3 (d, J = 43.7 Hz).

HRMS (ESI): m/z for C19H2:FNaO4* [M+Na]* calcd.: 355.1316, found: 355.1318.
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