

Coef

Coef

Supplementary Figure 2 55 60 65 70 75 80 85 35 100 Points Rad_Tumoral -1.80.2 0.6 2.6 Rad_Peritumrol_3u -3.4 -2.6 -1.8-0.2Rad Peritumrol 6u 0.8 0.2 -0.4 -1 -1.6 Rad_Peritumrol_12u -0.2Rad_DeepL_2d -1.8-0.6-0.20.2 0.6 1.4 1.8 2.2 Rad_DeepL_3d -1.7 -1.5 -1.3 -1.1 -0.9-0.7-0.5-0.3-0.10.1 0.3 0.5 0.7 STAS 0 **Total Points** 100 120 2 year progression rate 0.8 0.7 0.6 0.5 3 years progression rate 0.8 0.7 0.6 0.5 0.4 0.3 0.2

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9

5 years progression rate

Supplementary Figure 3

Image protocol quality - well-documented image protocols (for example, contrast, slice thickness, energy, etc.) and/or usage of public image protocols allow reproducibility/replicability	protocols well documented
	public protocol used
	none
Multiple segmentations - possible actions are: segmentation by different physicians/algorithms/software, perturbing segmentations by (random) noise, segmentation at different breathing cycles. Analyse feature robustness to segmentation variabilities	yes no
Phantom study on all scanners - detect inter-scanner differences and vendor-dependent features. Analyse feature robustness to these sources of variability	yes no
<u> </u>	
Imaging at multiple time points - collect images of individuals at additional time points. Analyse feature robustness to temporal variabilities (for example, organ movement, organ expansion/shrinkage)	yes no
Feature reduction or adjustment for multiple testing - decreases	Either measure is implemented
the risk of overfitting. Overfitting is inevitable if the number of features exceeds the number of samples. Consider feature robustness when selecting features	Neither measure is implemented
Multivariable analysis with non radiomics features (for example, EGFR mutation) - is expected to provide a more holistic model.	yes
Permits correlating/inferencing between radiomics and non radiomics features	O no
Detect and discuss biological correlates - demonstration of phenotypic differences (possibly associated with underlying gene- protein expression patterns) deepens understanding of radiomics and biology	○ yes
	no
Cut-off analyses - determine risk groups by either the median, a	yes
previously published cut-off or report a continuous risk variable. Reduces the risk of reporting overly optimistic results	O no
Discrimination statistics - report discrimination statistics (for example, C-statistic, ROC curve, AUC) and their statistical significance (for example, p-values, confidence intervals). One can also apply resampling method (for example, bootstrapping, cross-validation)	 a discrimination statistic and its statistical significance are reported
	a resampling method technique is a applied
	none
Calibration statistics - report calibration statistics (for example, Calibration-in-the-large/slope, calibration plots) and their statistical significance (for example, Pvalues, confidence intervals). One can also apply resampling method (for example, bootstrapping, cross-validation)	a calibration statistic and its statistic significance are reported
	a resampling method technique is applied
	none
Prospective study registered in a trial database - provides the highest level of evidence supporting the clinical validity and usefulness of the radiomics biomarker	yes no
Validation - the validation is performed without retraining and without adaptation of the cut-off value, provides crucial information with regard to credible clinical performance	☐ No validation
	validation is based on a dataset from the same institute
	validation is based on a dataset fror another institute
	validation is based on two datasets two distinct institutes
	the study validates a previously published signature
	validation is based on three or more datasets from distinct institutes
Comparison to 'gold standard' - assess the extent to which the model agrees with/is superior to the current 'gold standard' method (for example, TNM-staging for survival prediction). This comparison shows the added value of radiomics	○ yes
	no
Potential clinical utility - report on the current and potential application of the model in a clinical setting (for example, decision curve analysis).	yes
	O no
Cost-effectiveness analysis - report on the cost-effectiveness of the clinical application (for example, QALYs generated)	yes no
Open science and data - make code and data publicly available. Open science facilitates knowledge transfer and reproducibility of the study	scans are open source
	region of interest segmentations are open source
	the code is open sourced
	✓ radiomics features are calculated or set of representative ROIs and the calculated features and representative Roin