
Zigzag-HMC explores the energy space more effi-

ciently than BPS

In our experience, BPS tends to generate samples with high auto-correlation

between their respective energy function evaluations − log π(x). In other

words, it slowly traverses the target distribution’s energy contours even when

the marginal dimensions all appear to demonstrate good mixing. A similar

behavior has also been reported by [2], who introduce a velocity refreshment

to address the issue. As we demonstrate below, however, even velocity

refreshments cannot fully remedy BPS’s slow-mixing on the energy space.

We apply BPS and Zigzag-HMC to a 256-dimensional standard normal

truncated to the positive orthant (all xi > 0). We run both samplers for

2000 iterations where per-iteration travel time is one unit time interval and

repeat the experiments for 10 times with varying initial values. For BPS we

include Poisson velocity refreshments to avoid reducible behavior and set

the refreshment rate to an optimal value 1.4 [3]. At every iteration we re-

fresh Zigzag-HMC’s momentum by redrawing it from the marginal Laplace

distribution. Both samplers have no problem sampling from the target dis-

tribution and the minimal ESS across all dimensions are 158± 25 (mean ±

SD) for BPS and 207 ± 21 for Zigzag-HMC, estimated from the last 1000

samples of the MCMC chains across 10 runs. As a sanity check, the aver-

age sample mean and variance are (0.800, 0.365) for BPS and (0.798, 0.363)

for Zigzag-HMC, close to the analytical values — the univariate marginal

distribution of our truncated standard normal is a truncated normal with

mean 2/
√
2π ≈ 0.798 and variance 1− 2/π ≈ 0.363 [4].
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However, Zigzag-HMC returns a clear win over BPS in the mixing of

joint density (Figure 1). The sampling inefficiency for − log π(x) is less

of a problem if one only needs to sample from a truncated normal with

a fixed covariance matrix, but we are keenly interested in sampling the

covariance matrix as a target of scientific interest. In this context, inefficient

traversal across energy contours harms the sampling efficiency for all model

parameters.
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Figure 1: Trace plot of the log density of a 256-dimensional truncated stan-
dard normal sampled by BPS and Zigzag-HMC for 1000 MCMC iterations.

We can provide an intuition for BPS’s slow movement in energy space.

Assume the d-dimensional parameter at the tth MCMC iteration is x(t) =

(x1(t), . . . , xd(t)) ∈ Rd, t = 1, . . . , T , with T being the total number of

iterations. For a truncated standard normal, its log density log π(x) ∝∑d
i x

2
i , and a high auto-correlation suggests log π(x) changes little between

successive iterations, that is, the squared jumping distances

JD =

[
d∑
i

x2i (t+ 1)−
d∑
i

x2i (t)

]2

, t = 0, . . . , T − 1
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are small. We then decompose JD into two components

JD = J1 + J2,

J1 =

d∑
i

[
x2i (t+ 1)− x2i (t)

]2
,

J2 =
d∑

j ̸=k

[
x2j (t+ 1)− x2j (t)

] [
x2k(t+ 1)− x2k(t)

]
, t = 0, . . . , T − 1,

(1)

where J1 measures the sum of the marginal travel distances and J2 the

covariance among them. We compare JD, J1 and J2 between BPS and

Zigzag-HMC in the aforementioned experiments. Clearly seen in Table 1,

BPS yields a much lower JD than Zigzag-HMC because its J2 is largely

negative, suggesting strong negative correlation among the coordinates.

Table 1: Squared jumping distance (JD) of log π(x) sampled by the bouncy
particle sampler (BPS) and Zigzag Hamiltonian Monte Carlo (Zigzag-HMC).
We report the empirical mean of J1 and J2 in their means and standard
deviations (SD) across ten independent simulations with T = 1000 after
burn-in samples. Both samplers have a per-iteration travel time 1.

BPS Zigzag-HMC

Quantity mean SD mean SD

JD 8.3 0.6 583 21.7

J1 521 16.3 564 2.6

J2 -513 16.0 18.6 20.9
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