Table S1. Details about all simulated systems. Systems for which the uniprot ID is provided means that the available AlphaFold (AF) model was used. All oligomers were predicted with AF multimer.

ID	System (number of chains)	Organism	Source (Uniprot ID, PDB code or AlphaFold)	Total # of DOPC lipids	Total events	MD run length
1	TMEM16K (2)	H. sapiens	PDB: 50C9	1000	251	20 µs
2	TMEM16K (2)	H. sapiens	PDB: 6R65	1000	278	20 µs
3	TMEM16K (2)	H. sapiens	PDB: 6R7X	1000	10	20 µs
4	TMEM16K (2)	H. sapiens	PDB: 6R7Y	1000	7	20 µs
5	TMEM16K (2)	H. sapiens	PDB: 6R7Z	1000	28	20 µs
6	TMEM16F (2)	M. musculus	PDB: 8B8Q	800	27	20 µs
7	TMEM16A (2)	M. musculus	PDB: 7ZK3	800	29	20 µs
8	TMEM41B (1)	H. sapiens	ID: Q5BJD5	600	22	20 µs
9	VMP1 (1)	H. sapiens	ID: Q96GC9	600	24	20 µs
10	TMEM41B - VMP1 (2)	H. sapiens	ID: Q5BJD5 ID: Q96GC9	800	31	20 µs
11	ATG9 (3)	S. pombe	PDB: 7D0I	1200	175	20 µs
12	ATG9A (3)	H. sapiens	PDB: 6WQZ	1200	93	20 µs
13	VDAC1 (1)	H. sapiens	PDB: 6G6U	600	24	20 µs
14	VDAC1 (2)	H. sapiens	PDB: 6G6U	800	161	20 µs
15	VDAC2 (1)	D. rerio	PDB: 4BUM	800	25	20 µs
16	VDAC2 (2)	D. rerio	PDB: 4BUM	800	231	20 µs
17	VDAC3 (1)	H. sapiens	ID: Q9Y277	800	24	20 µs
18	VDAC3 (2)	H. sapiens	ID: Q9Y277	800	319	20 µs
19	Rhodopsin (1)	B. taurus	PDB: 4A4M	800	19	20 µs
20	Rhodopsin (2)	B. taurus	PDB: 4A4M	800	39	20 µs
21	MCP1 (1)	S. cerevisiae	ID: Q12106	600	26	20 µs
22	MCP1 (2)	S. cerevisiae	ID: Q12106	800	33	20 µs
23	Xk (1)	H. sapiens	ID: P51811	800	9	20 µs
24	Xkr8 (1)	H. sapiens	PDB: 7DCE	800	11	20 µs
25	Xkr9 (1)	R. norvegicus	PDB: 7P16	800	8	20 µs
26	GlpG (1)	E. colii	PDB: 3B45	600	3	20 µs

27	Spns1 (1)	H. sapiens	ID: Q9H2V7	800	3	20 µs
28	MFSD2A (1)	H. sapiens	PDB: 70IX	800	5	20 µs
29	ABCB1 (1)	H. sapiens	PDB: 7A69	1000	4	20 µs
30	ABCB4 (4)	H. sapiens	PDB: 6S7P	800	9	20 µs
31	ABCB11 (11)	H. sapiens	PDB: 6LR0	800	8	20 µs
32	ABCG40 (1)	A. thaliana	ID: Q9M9E1	1200	2	20 µs
33	MsbA (2)	E. colii	PDB: 7PH4	800	1	20 µs
34	PgIK (2)	C. jejuni	PDB: 5C73	800	15	20 µs
35	PgIK (2)	C. jejuni	PDB: 5C76	1000	18	20 µs
36	PgIK (2)	C. jejuni	PDB: 5C78	1000	19	20 µs
37	SERCA2b (1)	H. sapiens	PDB: 7E7S	800	9	20 µs
38	DGGGP (1)	M. jannaschii	PDB: 6M31	800	1	20 µs
39	DGGGP (2)	M. jannaschii	PDB: 6M31	800	1	20 µs
40	Drs2p (1)	S. cerevisiae	PDB: 6ROH	1200	8	20 µs
41	Drs2p (1)	S. cerevisiae	PDB: 6ROI	1200	7	20 µs
42	Drs2p (1)	S. cerevisiae	PDB: 6ROJ	1000	3	20 µs
43	VAMP2 (1)	H. sapiens	ID: P63027	600	0	20 µs
44	VAMP2 (2)	H. sapiens	ID: P63027	1000	2	20 µs
45	YidC (1)	B. halodurans	PDB: 3WO6	600	16	20 µs
46	YidC R72A (1)	B. halodurans	PDB: 3WO6	800	8	20 µs
47	YidC (1)	B. halodurans	PDB: 3WO7	800	10	20 µs
48	MisCB (1)	B. subtilis	ID: P54544	800	33	20 µs
49	Oxa1 (1)	S. cerevisiae	ID: P39952	800	45	20 µs
50	OXA1L (1)	H. sapiens	PDB: 6ZM5	800	18	20 µs
51	OXA1L-peptide (2)	H. sapiens	PDB: 6ZM5	800	0	20 µs
52	Cox18 (1)	S. cerevisiae	ID: P53239	800	47	20 µs
53	Alb3 (1)	A. thaliana	ID: Q8LBP4	800	24	20 µs
54	Emc1 (1)	S. cerevisiae	PDB: 6WB9	800	0	20 µs
55	Emc3 (1)	S. cerevisiae	PDB: 6WB9	800	113	20 µs
56	Emc4 (1)	S. cerevisiae	PDB: 6WB9	800	115	20 µs
57	Emc5 (1)	S. cerevisiae	PDB: 6WB9	800	0	20 µs
58	Emc6 (1)	S. cerevisiae	PDB: 6WB9	800	1	20 µs

59	EMC complex (8)	S. cerevisiae	PDB: 6WB9	1000	170	20 µs
60	Get1 (1)	S. cerevisiae	ID: P53192	800	56	20 µs
61	Get1 (1) F113L W147L W189L	S. cerevisiae	ID: P53192	600	85	20 µs
62	Get1 (1) F113L G120L W147L G185L W189L	S. cerevisiae	ID: P53192	600	22	20 µs
63	Get1 (1) K16L Q19L R104L K116L W189L N193L N196L Q199L	S. cerevisiae	ID: P53192	800	36	20 µs
64	Get1 (1) T109L K116L K121L W147L Y149L S183L G185L W189L N193L N196L	S. cerevisiae	ID: P53192	800	0	20 µs
65	Get2 (1)	S. cerevisiae	ID: P40056	800	7	20 µs
66	Get1 - Get2 (2)	S. cerevisiae	ID: P53192 ID: P40056	800	71	20 µs
67	GET complex (4)	S. cerevisiae	ID: P53192 ID: P40056	800	142	20 µs
68	GET complex (4) R148L K328L R416L K428 K433L E511L	S. cerevisiae	ID: P53192 ID: P40056	800	176	20 µs
69	GET complex (4) T421L K428L K433L W459L Y461L S495L G497L W501L N505L N508L	S. cerevisiae	ID: P53192 ID: P40056	800	22	20 µs
70	GET complex (4) T421L K428L G432L K433L G458L W459L Y461L S495L G497L W501L N505L N508L	S. cerevisiae	ID: P53192 ID: P40056	800	22	20 µs
71	WRB (1)	H. sapiens	PDB: 6SO5	800	7	20 µs
72	CAML (1)	H. sapiens	PDB: 6SO5	800	2	20 µs
73	WRB - CAML (2)	H. sapiens	PDB: 6SO5	800	22	20 µs
74	WRB - CAML (4)	H. sapiens	PDB: 6SO5	800	55	20 µs
75	TRC complex (6)	H. sapiens	PDB: 6SO5	800	39	20 µs
76	TMCO1 (1)	H. sapiens	PDB: 6W6L	600	70	20 µs
77	C20orf24 (1)	H. sapiens	PDB: 6W6L	600	14	20 µs
78	GEL complex (2)	H. sapiens	PDB: 6W6L	800	80	20 µs
79	Nicalin (1)	H. sapiens	PDB: 6W6L	600	0	20 µs

80	NOMO (1)	H. sapiens	PDB: 6W6L	600	0	20 µs
81	TMEM147 (1)	H. sapiens	PDB: 6W6L	600	12	20 µs
82	BOS complex (3)	H. sapiens	PDB: 6W6L	800	19	20 µs
83	PAT complex (2)	H. sapiens	ID: Q9Y284 PDB: 6W6L	800	5	20 µs
84	Atp13a1 (1)	H. sapiens	ID: Q9HD20	800	26	20 µs
85	Atp13a1 (1)	M. musculus	ID: Q9EPE9	800	20	20 µs
86	Shr3 (1)	S. cerevisiae	ID: Q02774	800	3	20 µs
87	Hrd1 (1)	S. cerevisiae	PDB: 6VJZ	800	22	20 µs
88	Der1 (1)	S. cerevisiae	PDB: 6VJZ	800	1	20 µs
89	Hrd1-Der1 (2)	S. cerevisiae	PDB: 6VJZ	800	28	20 µs
90	ERAD complex (4)	S. cerevisiae	PDB: 6VJZ	800	32	20 µs
91	Sec61 α - Sec61 γ (2)	C. familiaris	PDB: 6Z3T	800	98	20 µs
92	SEC61 complex (3)	H. sapiens	PDB: 8DNV	800	26	20 µs
93	SEC61 complex (3)	H. sapiens	PDB: 8DNW	800	42	20 µs
94	Sec61 α (1)	H. sapiens	PDB: 8B6L	800	46	20 µs
95	Sec61 β (1)	H. sapiens	PDB: 8B6L	800	0	20 µs
96	Sec61 γ (1)	H. sapiens	PDB: 8B6L	800	0	20 µs
97	SEC61 complex (3)	H. sapiens	PDB: 8B6L	800	13	20 µs
98	Trap α (1)	H. sapiens	PDB: 8B6L	800	0	20 µs
99	Trap β (1)	H. sapiens	PDB: 8B6L	800	0	20 µs
100	Trap γ (1)	H. sapiens	PDB: 8B6L	800	20	20 µs
101	Trap δ (1)	H. sapiens	PDB: 8B6L	800	0	20 µs
102	Trap β - Trap δ - Trap γ (3)	H. sapiens	PDB: 8B6L	800	4	20 µs
103	TRAP complex (4)	H. sapiens	PDB: 8B6L	800	7	20 µs
104	SEC61 complex - TRAP complex (7)	H. sapiens	PDB: 8B6L	1000	26	20 µs
105	RPN1 (1)	H. sapiens	PDB: 8B6L	800	0	20 µs
106	RPN2 (1)	H. sapiens	PDB: 8B6L	1200	0	20 µs
107	OST4 (1)	H. sapiens	PDB: 8B6L	600	1	20 µs
108	OST48 (1)	H. sapiens	PDB: 8B6L	800	1	20 µs
109	DAD1 (1)	H. sapiens	PDB: 8B6L	600	32	20 µs
110	STT3a (1)	H. sapiens	PDB: 8B6L	800	50	20 µs

111	TMEM258 (1)	H. sapiens	PDB: 8B6L	600	3	20 µs
112	OSTC (1)	H. sapiens	PDB: 8B6L	800	132	20 µs
113	OSTA complex (8)	H. sapiens	PDB: 8B6L	1600	35	20 µs
114	SEC61 complex - OSTA complex (11)	H. sapiens	PDB: 8B6L	1600	35	20 µs
115	SEC61 complex - TRAP complex - OSTA complex (15)	H. sapiens	PDB: 8B6L	1800	72	20 µs
116	Tom5 (1)	S. cerevisiae	PDB: 6UCU	800	0	20 µs
117	Tom6 (1)	S. cerevisiae	PDB: 6UCU	800	0	20 µs
118	Tom7 (1)	S. cerevisiae	PDB: 6UCU	800	0	20 µs
119	Tom22 (1)	S. cerevisiae	PDB: 6UCU	800	0	20 µs
120	Tom40 (1)	S. cerevisiae	PDB: 6UCU	800	30	20 µs
121	TOM complex (5)	S. cerevisiae	PDB: 6UCU	800	56	20 µs
122	TOM complex (10)	S. cerevisiae	PDB: 6UCU	1200	119	20 µs
123	BamA (1)	E. colii	PDB: 6QGW	800	30	20 µs
124	TamA (1)	E. colii	PDB: 4C00	800	112	20 µs
125	Oep80 (1)	A. thaliana	ID: Q9C5J8	800	26	20 µs
126	Sam50 (1)	S. cerevisiae	PDB: 7BTW	600	125	20 µs
127	Sam50 (1)	S. cerevisiae	PDB: 7BTX	800	84	20 µs
128	Sam50 - Sam50 (2)	S. cerevisiae	PDB: 7BTW	800	76	20 µs
129	Sam50 - Mdm10 (2)	S. cerevisiae	PDB: 7BTY	800	54	20 µs
130	Sam50 - Tom40 (2)	S. cerevisiae	PDB: 7E4H	800	77	20 µs
131	SAM complex (3)	S. cerevisiae	PDB: 7BTX	800	54	20 µs
132	Tim22 (1)	S. cerevisiae	PDB: 6LO8	800	127	20 µs
133	Tim18 (1)	S. cerevisiae	PDB: 6LO8	800	56	20 µs
134	Tim54 (1)	S. cerevisiae	PDB: 6LO8	800	5	20 µs
135	Sdh3 (1)	S. cerevisiae	PDB: 6LO8	800	15	20 µs
136	TIM22 complex (10)	S. cerevisiae	PDB: 6LO8	1000	246	20 µs
137	Tim22 (1)	H. sapiens	PDB: 7CGP	800	49	20 µs
138	TIM22 complex (15)	H. sapiens	PDB: 7CGP	1200	60	20 µs
139	Tim23 (1)	S. cerevisiae	PDB: 8SCX	800	2	20 µs
140	Tim17 (1)	S. cerevisiae	PDB: 8SCX	800	250	20 µs
141	Tim17	S. cerevisiae	PDB: 8SCX	800	127	20 µs

	D17L, D76L, E126L (1)					
142	Mgr2 (1)	S. cerevisiae	ID: Q02889	800	27	20 µs
143	Tim17 - Mgr2 (2)	S. cerevisiae	PDB: 8SCX ID: Q02889	800	7	20 µs
144	Tim17 - Mgr2 - Tim23 (3)	S. cerevisiae	PDB: 8SCX ID: Q02889	800	29	20 µs
145	Tim17 - Tim23 - Tim44 - Mgr2 (4)	S. cerevisiae	PDB: 8SCX ID: Q02889	800	21	20 µs
146	TIM23 complex (3)	S. cerevisiae	PDB: 8SCX	1000	157	20 µs
147	Tim17 (1)	H. sapiens	ID: Q99595	800	213	20 µs
148	Tim17 D16L, D77L, E127L (1)	H. sapiens	ID: Q99595	800	124	20 µs
149	Tim23 (1)	H. sapiens	ID: 014925	800	30	20 µs
150	Tim17 - Tim23 (2)	H. sapiens	ID: Q99595 ID: O14925	800	182	20 µs
151	Tim50 (1)	H. sapiens	ID: Q3ZCQ8	1200	0	20 µs
152	TIM23 complex (3)	H. sapiens	ID: Q99595 ID: O14925 ID: Q3ZCQ8	1000	170	20 µs
153	MTCH1 (1)	H. sapiens	ID: Q9NZJ7	600	129	20 µs
154	MTCH2 (1)	H. sapiens	ID: Q9NZJ7	800	126	20 µs
155	MTCH2 Q29L, H142L, D189L, N242L (1)	H. sapiens	ID: Q9NZJ7	800	93	20 µs
156	MTCH2-peptide (2)	H. sapiens	ID: Q9NZJ7	800	2	20 µs
157	SLC25A46 (1)	H. sapiens	ID: Q96AG3	800	22	20 µs
158	SLC26A9 (2)	H. sapiens	PDB: 7CH1	1000	35	20 µs
159	SLC25A17 (1)	H. sapiens	ID: 043808	800	20	20 µs

Figure S1. 3D structure of experimentally tested proteins.

Figure S2. Oligomerization influences lipid scrambling. Comparison of lipid scrambling activity between monomeric and dimeric forms of selected scramblases. The blue shaded region represents the behavior for a scrambling-positive protein and the red area for a scrambling-negative protein. AlphaFold structures are denoted by the * symbol, oligomerization state is in parenthesis.

Figure S3. Extended version of insertase complexes in the mitochondria. Lipid scrambling activity of individual components and selected complexes for the major mitochondrial insertases investigated. The blue shaded region represents the behavior for a scrambling-positive protein and the red area for a scrambling-negative protein. AF structures are denoted by the * symbol, oligomerization state is in parenthesis.

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.01.555937; this version posted September 1, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under the preprint in perpetuity. It is m

Figure S4. 3D structures of mitochondrial complexes TOM, SAM and HsTIM22.

Figure S5. 3D structures of mitochondrial complexes *Sc*TIM22, *Sc*TIM23, *Hs*TIM23 and SLC proteins MTCH2, MTCH1, SLC25a46 and SLC25a17.

Figure S6. Extended version of insertase complexes in the endoplasmic reticulum. Lipid scrambling activity of individual components and selected complexes for the major ER insertases investigated. The blue shaded region represents the behavior for a scrambling-positive protein and the red area for a scrambling-negative protein. AlphaFold structures are denoted by the * symbol, oligomerization state is in parenthesis.

Figure S7. 3D structures of ER complexes EMC, GET and TRC.

Figure S8. 3D structures of ER complexes GEL, PAT, ERAD, Atp13a1 and BOS complex.

Figure S9. 3D structure of *Hs*SEC61-TRAP-OSTA complex.

Figure S10. Mutational analysis of lipid scrambling in Get1 and GET complex. a. Scrambling activity calculations from CG-MD simulations of the wild type and various mutants of the ScGet1 subunit. 10 mutations (10L) are required to completely ablate lipid scrambling activity in ScGet1 b. Left. Scrambling activity calculations from CG-MD simulations of the wild type and various mutants of the ScGET complex. Neither the same 10L mutations on Get1 and a new 12L mutations were able to ablate lipid scrambling activity in silico in the ScGET complex. Right. Lipid scrambling activity of wt and L10 mutant GET. The scramblase assay for Get2-1sc mutant was carried out with FluoroMax+ spectrofluorometer (HORIBA). For each reaction, 50uL of the proteoliposomes were added to 1950uL of the reconstitution buffer. The sample was vigorously stirred and measured for fluorescence at 460/538 nm for 50-70 seconds to establish a stable baseline. 50uL of 1.5mg/mL fatty acid-free BSA was added, and fluorescence data were collected for another 200s. Both the WT complex and the mutant version with 10 mutations in the translocation channel (T421L/K428L/K433L/W459L/Y461L/S495L/G497L/W501L/N505L/N508L in Get1) scramble NBD-PC. a-b. The total number of mutations is in parentheses.

reconstitutions. Proteins for in vitro reconstitution were purified by size exclusion chromatography. Traces are shown (black) along with traces of the molecular weight standards (dotted grey); fractions used for reconstitutions are indicated (dotted black lines). Note that the elution volume of each protein reflects its size including detergent micelle. SDS-PAGE analysis of the purified protein is to the right of each chromatographic trace.