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A. The training dataset 

To estimate the model parameters of the CS1 and MPC2 models, we used a collection of 189 families that   

were recruited through at-risk patients at MDACC from 1944 to 19823–5. These patients, called probands, 

were diagnosed with pediatric sarcoma before age 16 with at least three years of survival following cancer 

diagnoses. This dataset is ideal for model training because it was not collected specifically based on LFS 

criteria, hence not biased toward the classic LFS pedigree structure. Once the eligible probands had been 

identified through a retrospective chart review, additional phone interviews and annual follow-ups were 

conducted with the probands and their blood relatives to collect information on their family history, including 

but not limited to gender, vital status, date of birth, date of death if deceased, type of tumor and age at cancer 

diagnosis for all known family members. On average, three family members were contacted for each family 

to complete data collection. The provided information was thoroughly checked by study researchers before 

entering into the database: all reported deaths and cancers were confirmed with death certificates and medical 

records, and only invasive cancers, confirmed by either records or validated   through   multiple   family   

members,   were   included   in   the   finalized   dataset.  Mutation  carrier status  was  defined  by  PCR  

screening  of  exons  2–11  of  the  TP53  gene  from  peripheral  blood  cell samples of probands and additional 

family members that consented into the study. 

B. The CS model 

In this section, we provide some important mathematical details of the CS model1. Let 𝑖 ∈ {1, … , 𝐼} 

denote the families, and 𝑗 ∈ {1, … , 𝑛!} denote the individuals in the 𝑖-th family, where 𝑛! is the 

total number of family members. In addition, we denote by 𝑘 ∈ {1,… , 𝐾} the cancer types. We 

model the hazard function of the 𝑘-th cancer type using frailty modeling6 as follows 

𝜆".𝑡0𝑿, 𝜉!,"3 = 𝜉!,"𝜆$,"(𝑡) exp(𝜷"%𝑿) , 𝑘 = 1,… , 𝐾 



Here 𝑿 is the vector of patient-specific covariates. The choice of 𝑿 is flexible depending on the 

research questions and the available datasets. For our application, we set 𝑿 = {𝐺, 𝑆, 𝐺 × 𝑆}%, 

where 𝐺 denotes the germline TP53 mutation status (1 for deleterious mutation and 0 for wildtype) 

and 𝑆 denotes the gender (1 for male and 2 for female). We model the frailty term of the 𝑖-th 

family, 𝜉!,", via a gamma distribution that has the same shape and scale parameters: 

𝜉&," , … , 𝜉'," 	~	𝐺𝑎𝑚𝑚𝑎(𝜐" , 𝜐") independently. The importance of 𝜉!," in accounting for within-

family correlations has been validated in a previous simulation study1. The cumulative baseline 

hazard, Λ$,"(𝑡) = ∫ 𝜆$,"(𝑢)	𝑑𝑢
(
$ , is modeled via Bernstein polynomials, which are often used to 

approximate functions with constraints such as monotonicity7. Denoting by 𝑀 the degree of a 

Bernstein polynomial, it can be shown that8 

𝜆$,"(𝑡) ≈ I 𝛾),"𝑓*(),,-).&)(𝑡)
,

)0&

 

where 𝑓*(),,-).&)(𝑡) denotes a Beta density with parameters 𝑚 and 𝑀 −𝑚 + 1. Typically, we 

choose 𝑀 to be a small integer (e.g., 𝑀 = 5) . It has been shown that Bernstein polynomials 

produced better performance than other choices of baseline hazard such as exponential, Weibull 

and piecewise functions1.  

We denote by 𝜽 = {𝜷, 𝜸, 𝝂} the vector of all model parameters, where 𝜷 =

{𝜷": 𝑘 = 1,… , 𝐾}, 𝝂 = {𝜈": 𝑘 = 1,… , 𝐾} and 𝜸 = T𝛾),": 𝑚 = 1,… ,𝑀; 	𝑘 = 1,… , 𝐾V. In addition, 

we write 𝝃! = {𝜉!,": 𝑘 = 1,… , 𝐾}. For the 𝑗-th individual in the 𝑖-th family, we observe cancer 

history 𝒉!1 = {𝑡!1 , 𝑧!1}, where 𝑡!1 and 𝑧!1 indicate the age at diagnosis and cancer type of the first 

primary cancer, and covariates 𝒙!1 = {𝑔!1 , 𝑠!1 , 𝑔!1 × 𝑠!1}%, where 𝑔!1 and 𝑠!1 denote the TP53 

mutation status and sex, respectively. For individuals with no cancer occurrence, 𝑡!1 is the 



censoring time, and 𝑧!1 = 0. Up to a constant of proportionality, the individual likelihood 

contribution is given by 

𝑃[𝒉!1|𝒙!1 , 𝜽, 𝝃!] ∝cT𝜆".𝑡!10𝒙!1 , 𝜽, 𝝃!3V
2!"# × expT−Λ".𝑡!10𝒙!1 , 𝜽, 𝝃!3V

3

"0&

 

where Δ!1" = 1 if d!1 = 𝑘 and 0 otherwise, and Λ"(𝑡|𝒙, 𝜽, 𝝃!) = ∫ λ"(𝑢|𝒙, 𝜽, 𝝃!)	𝑑𝑢
(
$  is the cancer-

specific cumulative hazard. Computation of the likelihood contribution of the 𝑖-th family is not 

straight-forward, and will be discussed in Section D. 

While the model can accommodate any number of cancer types, we restrict our attention 

to sarcoma, including soft tissues and osteosarcoma (𝑘 = 1), breast cancer (𝑘 = 2), and all other 

cancer types combined (𝑘 = 3). We also consider mortality (𝑘 = 4) as another source of competing 

risk, whose hazard function, 𝜆4(t), is modeled identically. Since there are no male patients with 

breast cancer in the Pediatric Sarcoma cohort, we do not include gender as a covariate in the 

modeling of 𝜆5(t).  

C. The MPC model 

In this section, we outline the essential part of the model. For a full description of the MPC model, 

we refer the readers to Shin et al (2020)2. Let 𝐿 be the number of primary cancers. In statistics, 

MPC can be regarded as recurrent events9. Thus, we model cancer occurrences in patients using a 

non-homogenous Poisson process with intensity 

𝜆(𝑡|𝑿(𝑡), 𝜉!) = 𝜉!𝜆$(𝑡)exp.𝜷%𝑿(𝑡)3. 

The non-homogeneity of the Poisson process aligns with the fact that cancer risks vary 

significantly with age10. Although the choice of covariates is flexible, we use covariate vector 



𝑿(𝑡) = {𝐺, 𝑆, 𝐺 × 𝑆, 𝐷(𝑡), 𝐺 × 𝐷(𝑡)}% in our application, where 𝐺 and S denote the genotype and 

gender respectively as before, and 𝐷(𝑡) is a periodically fixed indicator variable that indicates 

whether a patient has developed a primary cancer before time 𝑡. The purpose of 𝐷(𝑡) is to allow 

for the dependence of the subsequent primary cancers on the characteristics of the first one, which 

has been widely observed in many studies11–13. Following the CS model, we assume 

𝜉&, … , 𝜉' 	~	𝐺𝑎𝑚𝑚𝑎(𝜈, 𝑣) independently, and the baseline intensity is approximated as follows8 

𝜆$(𝑡) ≈ I 𝛾)𝑓*(),,-).&)(𝑡)
,

)0&

, 

where 𝑓*(),,-).&)(𝑡) denotes a Beta density with parameters 𝑚 and 𝑀 −𝑚 + 1. 

We denote by 𝜽 = {𝜷, 𝜸, 𝜈} the vector of all model parameters, where 𝜸 =

{𝛾): 𝑚 = 1,… ,𝑀}. For the 𝑗-th individual in the 𝑖-th family, let 𝐿!1 be the number of cancer 

occurrences. We observe cancer history 𝒉!1 = {𝒕!1 , 𝒛!1 , 𝑐!1}, where 𝒕!1 = {𝑡!1,6: 𝑙 = 1,… , 𝐿!1}% and 

𝒛!1 = {𝑧!1,6: 𝑙 = 1,… , 𝐿!1}% are 𝐿!1-dimensional vectors that contain the ages at diagnosis and 

cancer types of the primary cancers, and 𝑐!1 is the censoring time. For individuals with at least one 

primary cancer, we define 𝑑!1(𝑡) = 1 if 𝑡 > 𝑡!1,& and 0 otherwise. For individuals with no cancer 

occurrences, 𝑑!1(𝑡) = 1 for all 𝑡 ∈ [0, 𝑐!1]. Then, the vector of covariates is given by 

𝒙!1(𝑡) = {𝑔!1 , 𝑠!1 , 𝑔!1 × 𝑠!1 , 𝑑!1(𝑡), 𝑔!1 × 𝑑!1(𝑡)}%, where 𝑔!1 and 𝑠!1 denote the TP53 mutation 

status and sex, respectively, as before. For convenience, we let 𝑡!1,$ = 0. Up to a constant of 

proportionality, the individual likelihood contribution is given by 

𝑃q𝒉!10𝒙!1(𝑡), 𝜽, 𝜉!r ∝ scλ.𝑡!1,60𝒙!1.𝑡!1,6-&3, 𝜽, 𝜉!3

7!"

60&

t × 



𝑒𝑥𝑝 s−IΛ.𝑡!1,60𝒙!1(𝑡!1,6-&), 𝜽, 𝜉!3

7!"

60&

t × exp x−Λy𝑐!1z𝒙!1(𝑡!1,7!"), 𝜽, 𝜉!{| 

where Λ.𝑡0𝒙!1(𝑢), 𝜽, 𝜉!3 = ∫ λ.𝑣0𝒙!1(𝑢), 𝜽, 𝜉!3	𝑑𝑣
(
8 . 

While our model can work with any number of primary cancers, we only model up to the 

second primary (i.e., 𝐿 = 2) due to the limited occurrences of a third primary cancer and beyond.  

D. Model estimation 

The process of estimating the model parameters is likelihood-based, and similar, albeit not 

identical, for the CS and MPC models. In previous sections, we have computed the individual 

likelihood contribution of a family member. Computation of the family-wise likelihood, however, 

is not straightforward since most family members do not undergo genetic testing and are thus 

related through missing genotypes. In this case, knowledge of a family member’s genotype is 

informative about other family members, hence we cannot consider the individuals as being 

independent. For this reason, the family-wise likelihood cannot be simply computed as the product 

of the individual likelihood contributions from all the family members. We consider a family with 

𝑛 family members. Let 𝑯 = {𝐻&, … , 𝐻9} be the cancer history and 𝑮 = {𝐺&, … , 𝐺9} be the family’s 

genotype data. We partition 𝑮 = 𝑮:;< ∪ 𝑮:;<= , where 𝑮:;< denotes the observed part of the 

genotype data (i.e., 𝑮:;<=  denotes the missing part). We use the Elston-Stewart peeling algorithm14 

to compute the family-wise likelihood 𝑃[𝑯|𝑮:;<] recursively in a way that accounts for the 

pedigree structure (Supplementary Figure 1). Given a pivot member, the algorithm splits the 

pedigree tree into two disjoint groups: (i) the anterior, which consists of family members that are 

related to the pivot through the children and spouse, and (ii) the posterior, which consists of those 

that are related to the pivot through the parents. These groups are connected only through the pivot, 



hence conditionally independent given the pivot’s genotype. If the pivot member has unknown 

genotype, it can be shown that 

𝑃[𝑯|𝑮:;<] = I 𝑃q𝑯>
-0𝐺>, 𝑮:;<r𝑃q𝐻>0𝐺>r𝑃q𝑯>

.0𝐺>, 𝑮:;<r
?$∈{$,&}

 

where 𝐺> denotes the genotype of the pivot, 𝑯>
- denotes the cancer history of the anterior, and 𝑯>

. 

denotes the cancer history of the posterior. If the pivot member has confirmed genotype, we can 

simply remove the summation in the expression above. The term 𝑃q𝐻>0𝐺>r is the individual 

likelihood contribution of the pivot member, which is available in closed form for both the CS and 

MPC models. To compute the anterior and posterior likelihoods, the algorithm follows the same 

steps (i.e., randomly pick a pivot member within each group, and split the group into two smaller 

subgroups). Eventually, the computation boils down to individual likelihoods, which can be readily 

computed from the proposed models.  

[Supplementary Figure 1] 

Another major challenge is to correct for ascertainment bias, which arises because we sample the 

patients from high-risk clinics to ensure good sample size. To overcome this problem, we adopt 

the ascertainment-corrected joint (ACJ) likelihood approach15. Let 𝒜 be the ascertainment 

indicator (i.e., 𝒜 = 1 if a family is ascertained and 0 otherwise). Under some reasonable 

assumptions, it follows that 

𝑃[𝑯, 𝑮:;<|𝒜 = 1] ∝
𝑃[𝑯|𝑮:;<]
𝑃[𝒜 = 1]  

Thus, given the family-wise likelihood from the peeling algorithm, we inversely scale it by the 

ascertainment probability. Calculations of the ascertainment probability depend on the training 



dataset. Each family in the Pediatric Sarcoma dataset starts with a proband, who was diagnosed 

with pediatric sarcoma at MD Anderson Cancer Center. Due to suspicion of a hereditary cancer 

syndrome that ran through the family, data collection was then extended to other family members 

through phone interviews and extended follow-ups. Hence, in both models, we calculate the 

ascertainment probability as the likelihood contribution of the proband.  

Once the ACJ likelihoods has been computed for all the families, the overall likelihood of 

the dataset is simply given by their product since the families can be considered independent. We 

use the Metropolis-Hasting-within-Gibbs algorithm to generate 100,000 posterior samples, with 

the first 10,000 discarded as burn-in. The model parameters are then estimated as the means or 

medians of the remaining posterior samples.  

E. Computation of carrier probability 

Given a counselee with unknown genotype 𝐺$ and history 𝑯 = {𝐻&, … , 𝐻9} of the 𝑛 family 

members, our goal is to estimate P[𝐺$|𝑯]. To do this, we follow our previous study16 and set the 

prevalence of pathogenic TP53 mutations in the general population to be 0.0006. Assuming the 

Hardy-Weinberg equilibrium, it follows that the prevalence of wildtype (𝐺$ = 0), heterozygous 

mutation (𝐺$ = 1) and homozygous mutation (𝐺$ = 2) are 0.9988, 0.0005996 and 3.6e-07, 

respectively. Our models compute the posterior probabilities 𝑃[𝐺$ = 𝑔|𝑯], 𝑔 ∈ {0,1,2}, via the 

Bayes rule based on Mendelian transmission as follows 

𝑃[𝐺$|𝑯] =
𝑃[𝐺$]𝑃[𝑯|𝐺$]

∑ 𝑃[𝐺$]𝑃[𝑯|𝐺$]?%
 

where  



𝑃[𝑯|𝐺$] = I 𝑃[𝑯|𝐺$, 𝐺&, … , 𝐺9]𝑃[𝐺&, … , 𝐺9|𝐺$]
?&,…,?'

 

										= I �c𝑃q𝐻10𝐺1r
9

10$

� 𝑃[𝐺&, … , 𝐺9|𝐺$]
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We can assume that the family members are conditionally independent given all the confirmed 

genotypes, hence the family-wise likelihood 𝑃[𝑯|𝐺$, 𝐺&, … , 𝐺9], factorizes into a product of the 

individual likelihoods 𝑃q𝐻10𝐺1r, 𝑗 ∈ {1, … , 𝑛}, whose analytical expressions in the CS and MPC 

models have been given in Section B and Section C, respectively. Assuming Mendelian 

transmission, computation of 𝑃[𝐺&, … , 𝐺9|𝐺$] can be very complex for large families. To 

overcome this computational issue, we employ the peeling algorithm14, which has been discussed 

in Section D, to calculate 𝑃[𝑯|𝐺$] recursively in an efficient way.  

F. Parameter estimates of the CS and MPC models 

Following the procedure described in Section 3, we fitted the CS and MPC models to the Pediatric 

Sarcoma dataset. Supplementary Table 1 and Supplementary Table 2 show estimates of the 

regression coefficients.  

[Supplementary Table 1] 

[Supplementary Table 2] 

G. The prospective cohort at MD Anderson Cancer Center 

This is a research cohort that was collected at MD Anderson Cancer Center (MDACC) from year 

2000 to 2015. It consists of prospectively followed families, each of which was recruited through 

a family member that was considered to be at high risks of deleterious germline TP53 mutations 



based on the classic LFS criteria17 or the Chompret criteria18–20. These family members, called the 

probands, were identified by trained personnel in the Department of Genetics via one of the 

following channels: (1) surgery schedules, (2) ClinicStation, (3) patient census, (4) patient clinics, 

(5) patient-study areas and referrals from inside or outside MDACC, and (6) self-referrals. Upon 

approval by the principal investigator, the probands were invited to participate in the study. The 

data collection procedure was expanded to the probands’ family members in a similar way to the 

Pediatric Sarcoma dataset, resulting in an extensive cohort of 11,186 individuals spanning across 

429 families. We will refer to this dataset as the MDACC prospective cohort. Summary of the 

dataset is displayed in Supplementary Table 3. 

[Supplementary Table 3] 

H. Comparison of MDACC prospective and CCG datasets 

The MDACC prospective cohort was previously used to validate the risk predictions of the CS and 

MPC models1,2. While the validation studies led to successful results, there are fundamental 

differences between research and clinical cohorts. Supplementary Table 4 highlights the 

differences between the two datasets. As in the case of the Pediatric Sarcoma dataset, we notice 

that the MDACC prospective cohort consists of families that have over 100 family members due 

to the rigorous data collection protocols (e.g., phone interviews, regular follow-ups). Furthermore, 

it is clear that the MDACC prospective cohort has complete ages at last contact and ages at cancer 

diagnoses across all family members.  

[Supplementary Table 4] 
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Supplementary tables/figures 

 

 

Supplementary Figure 1: Illustration of the peeling algorithm, which uses recursion to compute the family-wise 

likelihood while accounting for the familial structure. 

 

 

 

 

 

 

 

 



Cancer type Parameter Mean Standard 

deviation 

2.5% 97.5% 

Breast 𝛽?  3.560 0.561 2.541 4.544 

Sarcoma 𝛽?  2.464 0.895 0.675 4.182 

𝛽D -3.677 1.077 -6.176 -1.902 

𝛽?×D 0.971 0.548 -0.110 2.040 

Other cancers 𝛽?  1.576 0.769 0.072 3.072 

𝛽D -0.993 0.186 -1.366 -0.647 

𝛽?×D 0.559 0.574 -0.620 1.628 

Supplementary Table 1: Mean estimates and 95% credible interval of the regression coefficients 𝜷( in the CS model 

 

Parameter Median Standard 

deviation 

2.5% 97.5% 

𝛽?  3.516 0.256 3.068 3.953 

𝛽D 0.027 0.115 -0.189 0.232 

𝛽?×D -0.332 0.246 -0.809 0.139 

𝛽F(() -0.380 0.363 -1.152 0.259 

𝛽?×F(() 0.716 0.429 -0.070 1.601 

Supplementary Table 2: Median estimates and 95% credible interval of the regression coefficients 𝜷 in the MPC 

model 

 

 



 MDACC prospective 

 Wildtype Mutation Unknown Total 

Male     

  Healthy 119 41 4,448 4,601 

  SPC 58 50 747 855 

  MPC 33 39 60 132 

  Subtotal 210 130 5,255 5,595 

Female     

  Healthy 144 32 4,116 4,292 

  SPC 113 76 798 987 

  MPC 114 97 101 312 

  Subtotal 371 205 5,015 5,591 

Total 581 335 10,270 11,186 

 

Supplementary Table 3: Categorization of family members in the MDACC prospective dataset by gender, number of 

primary cancers and mutation status. SPC = single primary cancer, MPC = multiple primary cancer 

 

 

 

 

 

 



 MDACC 

prospective 

CCG 

Number of families   

      All family members   

Complete data  429 (100%) 10 (8%) 

Missing ages at last contact only  0 (0%) 46 (37%) 

Missing ages at cancer diagnosis only 0 (0%) 0 (0%) 

Missing both ages at last contact and 

ages at cancer diagnosis 

0 (0%) 68 (55%) 

Total 429 124 

Chi-squared test P < 0.001 

      First-degree relatives and spouse only   

Complete data  429 (100%) 68 (55%) 

Missing ages at last contact only  0 (0%) 41 (33%) 

Missing ages at cancer diagnosis only 0 (0%) 10 (8%) 

Missing both ages at last contact and 

ages at cancer diagnosis 

0 (0%) 5 (4%) 

Total 429 124 

Chi-squared test P < 0.001 

Number of individuals   

      All family members   

Complete data 11,186 (100%) 1,748 (53%) 

Missing ages at last contact only 0 (0%) 1,339 (41%) 



Missing ages at cancer diagnosis only 0 (0%) 138 (4%) 

Missing both ages at last contact and 

ages at cancer diagnosis 

0 (0%) 72 (2%) 

Total 11,186 3,297 

Chi-squared test P < 0.001 

      First-degree relatives and spouse only   

Complete data  2,654 (100%) 487 (79%) 

Missing ages at last contact only  0 (0%) 105 (17%) 

Missing ages at cancer diagnosis only 0 (0%) 19 (3%) 

Missing both ages at last contact and 

ages at cancer diagnosis 

0 (0%) 2 (< 1%) 

Total  2,654 613 

Chi-squared test P < 0.001 

Number of individuals per family   

      Min 3.00 1.00 

      5% percentile 6.00 1.00 

      10% percentile 9.80 4.00 

      25% percentile 14.00 16.00 

      Median 22.00 26.50 

      Mean 28.63 26.59 

      75% percentile 34.00 36.00 

      90% percentile 54.00 48.00 

      95% percentile 77.60 53.85 



      Max 151.00 75.00 

Supplementary Table 4: Comparison of a research cohort (MDACC prospective) and a clinical cohort (CCG) on the 

extent of missing ages at last contact and missing ages at cancer diagnoses at both family and individual levels. 

Summary statistics for the number of individuals per family are reported to contrast the depth of data collection 

procedures in research and clinical cohorts as they happen in the unit of families 

 


