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Supplementary Note 1: Characterizations

The uniaxial tension tests are performed with a universal test machine (Insight 10, MTS
Systems Corp., Eden Prairie, MN, USA) with a cross-head speed of 5 mm/min. Dynamic
thermomechanical properties are conducted on a DMA machine (Q800, TA Instruments,
New Castle, DE, USA) with a temperature ramped at a rate of 10°C/min. The shape
memory behavior of Bl and B2 are conducted by following method. For hot
programming, the sample was stretched to 100% with the rate of 10%/min at 100°C and
the temperature was then decreased to 25°C with the rate of 10°C/min and held
isothermally for 5 mins before remove the load. The recovery was conducted by increase
the temperature to 100°C at 10°C/min and isothermal for 5 mins. For cold programming,
the sample was stretched to 100% with the rate of 10%/min at 25°C and held for 5 mins
before remove the load. The recovery was then conducted by increase the temperature to
100°C at 10°C/min. More material properties of the ink and g-DLP printed materials were

reported in our previous paper.[1]
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Supplementary Figure 1. Strain-stress curves of B1 and B2 tested at 80 °C.



Supplementary Figure 2. (A) Bl and B2 sample as printed; (B) B1 and B2 sample after
cold-drawing processing; (C) Bland B2 sample after 50°C heat treatment, only B2
recovered; (D) after 80°C heat treatment, Bl recovered. Movie was provided as

Supplementary Movie 1.
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Supplementary Figure 3. Force-displacement curves of the g-DLP printed hinge

modules.
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Supplementary Figure 4. H13 hinge cold-draw performance for various cycles and

recover to initial state after 40 cycles.
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Supplementary Figure 5. (A) Design of hinge structure in a shape morphable pipe; B)
the cross section of the printed sample; (C) shape changing of the printed pipe after cold-
draw programming; (D) temperature response of the pipe performed in 25 and 80°C.

Experimental movie was provided as Supplementary Movie 7.
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Supplementary Figure 6. (A) Formulation of an alternative g-DLP ink, R and R’
represent polyol and diisocyanate segment; strain-stress curves of g-DLP printed with the
alternative resin of (B) stiff thermoset state printed with a light intensity of 23.6 mW/cm?
and (C) rubbery organogel state printed with a light intensity of 3.1 mW/cm?; (D) cold

draw performance of the printed hinge structure.
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Supplementary Figure 7. Shape memory behaviors of (A) B1 and (B) B2 for ten cycles.



Supplementary Note 2: Finite element modeling

2.1 Constitutive model

The rubbery material B3 is modeled as an incompressible neo-Hookean solid as it is
elastic in the studied temperature range (25-100 °C). The cold-draw and shape memory
behaviors of the glassy material (Bl and B2) are captured using an incompressible,
stress- and temperature-dependent, multi-branch viscoelastic model, which consists of
one equilibrium branch (neo-Hookean model assumed) and multiple nonequilibrium
branches (modeled by visco-hyperelastic Maxwell elements) in parallel. In this model,

the Cauchy stress ¢ is

o(t)=-pl+o,, (b, +deV[ (I é“(f ] Zc(bs)Ff%]Ff} (1)

where F is the deformation gradient, b = FF” is the left Cauchy-Green tensor, the
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subscript “s” denotes the deformation from time 0 to ¢ or 5. 6. is the instantaneous

Cauchy stress due to mechanical deformations and follows the neo-Hookean strain-
energy potential. dev(-)s(-)—(l/3)(l:(-))l is the deviatoric operator. p is an

undetermined pressure depending on the boundary conditions. {(#) is the relaxation

modulus ratio following the Prony series

¢(r)=g., +Zg, exp[—%} £(t Z = exp(—i]
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with g, = E,=E, + Z E,

where Eeq is the modulus of the equilibrium branch, E; the instantaneous modulus of
branch i, Eiss the total instantaneous modulus; they are taken to be small-stress moduli
and assumed to be temperature-independent. 7 denotes a reference relaxation time of the

branch i.



The shift factor, a(), written as a function of time ¢ in Eq.(1) for brevity, is taken to

not only depend on temperature but also stress at time ¢. Therefore, o can be written as[2]
o =-aa (3)

where ar denotes the temperature-dependent shift factor, as the stress-dependent shift
factor.
The temperature-dependent shift factor or is taken to follow the Williams-Landel-
Ferry (WLF) approximation for 7>Ty, i.¢.,
¢(r-1,)

G +(r-1,) @

lg(a;)=

and the Arrhenius form for 7<Ty, i.e.,

AF |1 1
In(a,)=—""% ————|. 5
(@) -4 2L g
In Egs.(4)-(5), C1, C2, and AF/k» are material constants, 7' is the current temperature, 7rer
represents a structural transition temperature. 7 and Trrare in Kelvin scale. Note that ar =

1 at T:Tref.

The stress-dependent shift factor o is taken to follow[2]

E. M
1n(as)=—k—STT (6)
b

with M =, |—M":M" (7)

where M is the equivalent shear stress, M is the Mandel stress, M’=dev(M), Es is the
activation energy, and s is the athermal shear strength. To capture the softening effects, s

evolves through

&zho(l—ilj?v, s =s, when y" =0, (8)
s

sat

where so is the initial value of s, ssa is the saturation value of s, 4o is a prefactor, 9" is the
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viscous strain, and y” is the viscous flow rate. For a specific branch, y’ =M / ( ,ul.r,.),

with i denoting the instantaneous shear modulus andz, = a7 the relaxation time. Thus,

TzR

can be interpreted as the relaxation time under small stress and at the reference
temperature 7. Here, to capture essential physics while facilitating the numerical

implementation, we use

M

Hins®To
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7/:

©)

to define an effective viscous flow rate, instead of that of a specific branch. pins=FEins/3

due to the incompressibility. 7o is treated as a fitting parameter.

2.2 Numerical implementation

We implement the material model into Abaqus through the built-in viscoelastic
model in which the Prony-series and user-defined shift factor can be specified. The
Prony-series parameters are specified as those under small stress and at the reference
temperature T (at which a=1). The shift factor Eq.(3) is implemented through user
subroutines USDFLD and UTRS. USDFLD is invoked to access stress values of an
integration point and update a5 following Eqgs.(6)-(9), which will be passed into UTRS to
update ar and finally a. The updates are in an explicit (or forward Euler) manner.

We also implement the material model into a MATLAB script for the uniaxial
tension to assist the parameter identification. We derive the following integration
algorithm for the stress updates. The stress at an arbitrary time ¢, i.e., Eq.(1), can be

rewritten as

o(t)=—pl+o?. (b,)—dev{i%Tﬂ(r)}

=l ¢;

(10)
! [ dé -1._D r ds
_[Oexp( .L a(g)z_Rij Gins (bv)Fv a(S)J

i
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Then, the stress at #+J¢ can be updated as

ins R
=l &;

o(t+5t)=-pl+o, (bH&)—dev[ y &Tm(t+§t)} (11)

where

expf-égJaFo;(bgaFT
ot i

2a(1) . a(t)
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a(t+§t)6ms( t+ht)

'

T, (t+6t)= exp(—5—IJ SFT, (t)5F" +

R
i

(12)

5t dx ot| 1 1
St'= ~ < OF=F__F"
J (a0)+a0+5ﬁj ot

The trapezoidal integration rule has been used to derive Eq.(12).

2.3 Parameter identification

The SMP parameters including Eeq, Ei, %, C1, C2, and AFc/ky are identified using
DMA results from multi-temperature and multi-frequency tests.[3] Temperature ramps
from 10°C to 130°C in 5°C increment. At each temperature, the material is kept
isothermal and stress-free for 5 min and then subjected to a cyclic loading at multiple
frequencies (0.1Hz~20Hz). The SMP parameters are identified in two steps. First, the
storage modulus E' versus test frequency @ data at different temperatures can be shifted
to a master curve at Ty obtaining discrete data points of a(7). Performing nonlinear
numerical fitting to these data points using Eqs.(4)-(5) yields the material constants Ci,
(2, and AFc/ky (see Supplementary Figure 8a for B1 and 9a for B2). Second, with the
multi-branch model, the storage modulus £' and loss modulus E" can be written as
" Ei[an'iRoc(T)}2

E'= eq 2
pa 1+[a>rfa(T)]

(13)

10



. Ewtr'a(T)
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E"= 2
=) 1+[a)riRa(T)}

(14)

Using Eqgs.(13) and (14), performing nonlinear numerical fitting to the shifted £' and E"
versus o data yields the material constants Eeq, Ei, 7% (see Supplementary Figure 8b for
B1 and 9b for B2). The obtained parameters are listed in Supplementary Table 1 and 2.

The cold-draw parameters so, Ssar, 40, 70, and Es/k» are identified using uniaxial tensile
data for different strain rates at room temperature. The parameters are roughly estimated
following the procedure of [2] and further optimized by numerical fitting. The obtained
parameters lead to simulated stress-strain curves in good agreements with the
experiments at multiple strain rates for the two glassy materials (Supplementary Figure
10). The obtained parameters are listed in Supplementary Table 1 and 2.

All parameters identified above are further used to simulate a complete process of the
cold-drawing (i.e., stretching, holding, releasing) and heat-recovering. The simulated
stress and strain curves, along with the temperature history, achieve good agreements

with the experiments for the two glassy materials (Supplementary Figure 11).
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Supplementary Figure 8. SMP parameter identification for the B1 material. Numerical
fitting of (A) shift factor versus temperature and (B) storage modulus and loss modulus

versus test frequency.
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Supplementary Figure 9. SMP parameter identification for the B2 material. Numerical
fitting of (A) shift factor versus temperature and (B) storage modulus and loss modulus

versus test frequency.
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Supplementary Figure 10. Cold-draw parameter identification for the glassy materials.
Experimental (solid lines) and FE simulated (dashed lines) uniaxial tensile stress versus

strain curves under multiple strain rates for the (A) B1 and (B) B2 materials.
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Supplementary Figure 11. Experimental (solid lines) and FE simulated (dashed lines)

cold-draw and subsequent heat-recover behaviors for the (A) B1 and (B) B2 materials.
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Supplementary Table 1. Material parameters for the B1 material.

Parameters for shift factor | Parameters for branches
T (C) 55 Eey(MPa) 0.0704
Ci 5.62
Ei (MP R
C(°C) 5477 (MPa) ()
AF s 29867 36.170 1.00E-07
47.632 1.00E-06
Es/kp 4400
34.905 1.00E-05
ho 80.9
36.126 0.0001
S0 16.9
25.827 0.001
Ssat 90
21.716 0.01
70 7.2
7.6610 0.1
0.2406 0.33
1.2201 1
0.1498 3.33
0.3144 10
0.1895 100
0.0727 1000
0.0389 10000
0.0177 10000000
0.1951 100000000

16



Supplementary Table 2. Material parameters for the B2 material.

Parameters for shift factor

Parameters for branches

T (°C) 55
Ci 3.92
C2(°C)  55.08
AFJks  -22612

Eslkp 2422
ho 76.7
S50 13.6
Ssat 6.0
70 1.57

Ei (MPa) iR (s)
10.23584641 1.00E-07
10.23151324 1.00E-06
10.86287138 1.00E-05
10.26097638 0.0001
7.204209549 0.001
7.475551187 0.01
3.478733479 0.1
0.555568082 1
0.041392309 3.33
0.125989885 10
0.010127193 33.33
0.049276277 100
0.015853068 1000
0.190213505 100000000

Supplementary Note 3: Derivation of hinge folding angle

The folding angle (#) of the hinge depends on the mechanical properties and
geometric designs of two constituent materials (i.e., hinge dimension, fiber position and
dimension, etc.). To obtain the folding angle, we first derive the bending curvature using
the Euler-Bernoulli beam theory. Consider a composite hinge consisting of glassy fibers

and a rubbery matrix (Supplementary Figure 12).
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After stretch and release, let er



denote the temporarily fixed strain of the glassy fiber due to stretch, which is the
mismatch strain between two material phases. Then the longitudinal strain (perpendicular

to cross-section) for an arbitrary point of position y can be written as

£y ==& TEyp —KY' (15)

€, = Enp ~KY'
where evp is the longitudinal strain of a neutral plane (NP), representing the in-plane
stretching due to balance of forces; xy’ represents the bending strain due to balance of
moments, with x« denoting the curvature of NP (positive value means curling up) and
v’=y-ynp the relative position to NP (position ynp). It is seen that NP has zero longitudinal

strain due to bending. The balance laws for forces and moments are

L@@M+hgﬂﬂzo

(16)
LQ@yM+h&ﬂyM:O
where Erand En are the Young’s modulus of the fiber and matrix, respectively.
Inserting (15) into (16) gives the curvature x
E Ay —7,
K= m m(ym y/)ng . (17)
EfINPff +Em1NP7m
with relevant variables given by
E A
i
Eyp =—————¢& 18
" E, A +EA, " (18)
[ [
3 / 3 m
= s Vm = 19
Vs 1 y ) (19)
2 2
Ly =], (=yw) dd Ly, =] (y=2y) dd (20)
y :EfA.f)?f+Em m.)_}m (21)
M EA+E,A,
A =wit A, =wl,—wi, (22)

18



where enp is the axial strain (perpendicular to cross-section) of a neutral plane due to

force balance. 4r and A are the total area of the fiber and matrix in the cross-section, )_/f

and ), the corresponding area-mean y position, and Inrs and Ivrm the second area

moment of the fiber and matrix with respect to the neutral plane, respectively. wy, wo, #,
and fo are geometric parameters as shown in Supplementary Figure 12. With the help of

(18)-(22), x can be analytically evaluated using (17).

y
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Supplementary Figure 12. Schematic of a bent hinge (top) and a general cross-section

design (bottom).

Neglecting the boundary effects between the hinge and panels, the folding angle can

be given by
0=kl (l+¢&y) (23)

where [ is the initial length of hinge.

The analytical prediction of folding angle relies on &¢r as an explicit function of
applied strain g, and visco-plasticity of the material, which is hard to obtain due to the
complex constitutive behavior of the glassy material. However, for the glassy material

used here, an empirical form is easily obtained by fitting the experimental data, i.e.,
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& =&p 1y, with 1, =—0.27¢; +0.51¢, +0.71 being the fixity as shown in Figure 2C of

main text. Using this empirical formula and Eqgs.(23), the theoretical prediction of the
strain-angle relation achieves good agreement with FEA and experiment (Figure 2C of

main text).
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