Understanding the mechanism of red light-induced melatonin biosynthesis facilitates the engineering of melatonin-enriched tomatoes

Zixin Zhang and Yang Zhang et al.

Supplementary Figures

Fig. S1 Screening of key structural genes for melatonin synthesis.

(a) The expression analysis heat map of melatonin synthase gene obtained by screening from MMN Database. (b) Correlation analysis between melatonin content and structural genes. (c) Identification of melatonin synthase gene by RT-qPCR. Data are represented as Mean \pm SD (n=3). One biological replicate is the pool of 10-12 fruit from the same seedling. (associated with Fig. 1)

Fig. S2 Peak time of melatonin and its intermediates detected by LC/MS.

Fig. S3 Molecular weight mass spectra of melatonin and its intermediates detected by LC/MS.

Fig. S4 The MSII spectrum of melatonin and its intermediates detected by LC/MS.

Fig. S5 Standard curve of melatonin and its intermediates.

Fig. S6 The extracted ion chromatogram (XIC) of melatonin and its intermediates detected by LC/MS in instantaneously transformed samples. (associated with Fig. 1c).

Fig. S7 Tissue expression quantification of four melatonin biosynthetic genes (*SISNAT, SIASMT7, SIASMT5, SICOMT2*). Data are represented as Mean \pm SD (n=3). In which 10-12 individual issues were pooled as one biological replicate.

Fig. S8 The expression profile of four melatonin biosynthetic genes (*SISNAT, SIASMT7, SIASMT5, SICOMT2*) in MMN ³⁴ and TEA databases ³⁵.

Fig. S9 The proteins' subcellular localization in *Arabidopsis* protoplasts.

Fig. S10 Genotyping of the overexpressing and RNAi interfering T_0 lines for four melatonin biosynthetic genes (*SISNAT, SIASMT7, SIASMT5, SICOMT2*). PC represents the positive control, which was performed by the construction plasmid, and NC1 and NC2 refers to negative control, NC1 was a template from WT, NC2 was a template from the ddH₂O. The respective detection primers are at the bottom of each map. (associated with Fig. 2a). Source data are provided as a Source Data file.

Fig. S11 Transcript level of four melatonin biosynthetic genes (*SISNAT, SIASMT7, SIASMT5, SICOMT2*) in the overexpressing and RNAi interfering T_0 lines. Data represent the mean ± SD (n=3). The expression level of one T_0 fruit at Br+3 was calculated as one biological replicate. (associated with Fig. 2a).

Fig. S12 The extracted ion chromatogram (XIC) of melatonin detected by LC/MS in stable transgenic tomato. (associated with Fig. 2a). Source data are provided as a Source Data file.

Fig. S13 The purification of SICOMT2, SIASMT7, SIASMT5 and SISNAT. (associated with Fig. 2b). Source data are provided as a Source Data file.

Fig. S14 Content of 5-methoxytrytamine (4) in the fruit of WT and T1 transgenic lines. 5-methoxytrytamine (4) content of WT and T1 RNAi fruits at the Br+3 stage. Data is represented as Mean ± SEM (n=3). 10-12 tomato fruits from the same seedling were pooled (***P=0.0003, biological replicate. SIASMT7 as one 4#), (***P=0.0003, (***P=0.0002, SIASMT7 10#), SIASMT7 18#), (*P=0.0072, SICOMT2 4#), ns indicates not significant (P>0.05). * indicates significant difference from WT analyzed by two-sided Student' st test.(associated with Fig. 3b).

Fig. S15 The extracted ion chromatogram (XIC) of melatonin detected by LC/MS in wild-type and transgenic tomato fruit under control light ¹ and red light supplement (RLS). (associated with Fig. 3c). Source data are provided as a Source Data file.

Fig. S16 The extracted ion chromatogram (XIC) of N-acetylserotonin (5) and 5-methoxytryptamine (4) detected by LC/MS in wild-type tomato fruit under control light ¹ and red light supplement (RLS). (associated with Fig. 3b). Source data are provided as a Source Data file.

Fig. S17 Interactions of SIPIF4 proteins and the promoters of *SICOMT2.* (a) A schematic of the promoter of SIASMT5. (b) Interactions of SIPIF4 proteins and the G-BOX fragment of proSICOMT2 (P1, P3) and the 2000bp sequence of proSIASMT5 in yeast cells. (c) Interactions of SIPIF4 protein and the *proSIASMT5* confirmed with dual luciferase reporter assays in *Nicotianabenthamiana* leaves. 35S::+*proSIASMT5* were used as controls. (d)Transient expression analysis in protoplasts of tomato. LUC/REN is the average ratio of the bioluminescence of firefly luciferase to that of Renilla luciferase. Data is represented as Mean ± SEM (n=3). No significant difference was observed. (associated with Fig. 4).

Fig. S18 Western-Blot analysis of the expression of SIPIF4-3×FLAG recombinant protein. Detection of the FLAG-tag in the FLAG fusion expression target protein SIPIF4 in the WT and transgenic lines of 35S::*SIPIF4* for ChIP-qPCR assays. Total protein extracts were immunoprecipitated with an anti-FLAG antibody. The target protein band is 95Kd. (associated with Fig. 4i).

Fig. S19 Identification of *SIPIF4* **overexpression and RNAi plants.** Genotyping overexpression and RNAi T₀ lines of *SIPIF4*. PC represents the positive control, which was performed by the construction plasmid, and NC1 and NC2 refer to the negative control, NC1 was a template from WT, and NC2 was a template from the ddH₂O. The respective detection primers are at the bottom of each map. (b) The transcript level of *SIPIF4* in T₀ overexpression and RNAi lines. The expression level of one tomato fruit at Br+3 was calculated as one biological replicate. Data represent the mean \pm SD (n=3). ***P < 0.001, (Student's *t* test). (associated with Fig. 3b). Source data are provided as a Source Data file.

Fig. S20 The extracted ion chromatogram (XIC) of melatonin detected by LC/MS in wild-type and RNAi-*SIPIF4* transgenic tomato fruit under control light ¹ and red light supplement (RLS). (associated with Fig. 4i). Source data are provided as a Source Data file.

Fig. S21 The expression trend of *SIPHYB2* and *SIPIF4* in different fruit development stages in the MMN database ³⁴ is the opposite. (associated with Fig. 5).

Fig. S22 Quantitative analysis of luminescence intensity showing the interaction between SlphyB2 and SlPIF4 in *Nicotiana benthamiana* leaves. (associated with Fig. 5b).

Fig. S23 Red light response of the degradation of SIPIF4 by SlphyB2. (a) Constructed plasmid map. (b) SDS-PAGE detects the total protein loading. (c) Western blot detection of ubiquitination degradation of SIPIF4 mediated by SlphyB2. (associated with Fig. 5d). Source data are provided as a Source Data file.

Fig. S24 The detection by western blot of total protein in WT and transgenic plants of RNAi-*SIPHYB2.* (a) SDS-PAGE detects the total protein loading. The black arrow marks the position of the SIPIF4 protein as calculated according to the size of the protein. (b) Full immunoblot image of western-Blot detecting for degradation of SIPIF4 protein. R1 and R2 are two technical replicates. (associated with Fig. 5b). Source data are provided as a Source Data file.

Fig. S25 Identification of SIPHYB2 RNAi lines.

(a) Genotyping T₀ *SIPHYB2* RNAi lines. NC refers to the negative control, NC was a template from WT. The detection primers are at the bottom of the gel. (b) The transcript level of *SIPHYB2* in T₀ RNAi lines. The expression level of one tomato fruit at Br+3 was calculated as one biological replicate. Data represent the mean \pm SD (n=3). **P < 0.01, (Student's *t* test). ns indicates not significant (P>0.05). (associated with Fig. 5e, f). Source data are provided as a Source Data file.

Fig. S26 The extracted ion chromatogram (XIC) of melatonin detected by LC/MS in wild-type and RNAi-*SlPHYB2* transgenic tomato fruit under control light ¹ and red light supplement (RLS). (associated with Fig. 5f). Source data are provided as a Source Data file.

Fig. S27 The extracted ion chromatogram (XIC) of melatonin detected by LC/MS in wild-type and T2 CRISPR (CR) tomato fruit. (associated with Fig. 7). Source data are provided as a Source Data file.

Fig. S28 The DNA methylation rate of *SICOMT2* **at the green stages (30DPA, 40DPA) and ripening stages (49DPA, 55DPA).** DPA (days after anthesis).

Reference

 Clough, S.J.A.B., A.F. Floral Dip: A Simplified Method for Agrobacterium-Mediated Transformation of *Arabidopsis thaliana*. *Plant J.* 16, 735-743 (1998).

Supplementary Tables

Gene	Primers' na	me Sequence (5'-3')
	SIT5H-F	ATGGAAGCATCAATTCTACAGCT
SIT5H		AC
	SIT5H-R	TTACAACTTGTTGATGGTTGGA
		ACAAG
	SITDC280-F	ATGGGAACCCTTAATTCAAATA
SITDC280		ACAAC
	SITDC280-R	CTAAAACACAATTTTTTCTGAGC
		AAATCAT
SITDC860	SITDC860-F	ATGGGAAGCCTTGATTCCAA
	SITDC860-R	TTAAAACACACTTTTTTCTCAGC
		AAACC
	SISNAT-F	ATGCAAACTCTCCACTTAGTATC
SISNAT		CAC
	CICNAT D	CTAATACATGGGGTACCAGAACA
	SISTATI K	TTCC
	SIAMST7-F	ATGGCCAGTAACAACAATATTT
SIAMST7		GT
	SIAMST7-R	TCTCTTTTGAAGCATAAGTAATC
		СТСА
	SIAMST5-F	ATGGCATTGCCTAATAATATTGG
SIAMST5		AGAC
	SIAMST5-R	ATCAAGGGTAAACCTCAATAAC
		AGACC
SICOMT2	SICOMT2-F	ATGGAGAATGCAAATGGGGAAC
	SICOMT2-R	CATGACTTGTGAAATTCAAGAA
		TC
SlphyB2	SlphyB2-F	ATGGCTTCTGGGAGTGGA
	SlphyB2-R	TTGAATCAGCATTGGTAGTTGA

Table S1. The primers used for gene cloning

		AGG
SIPIF4	SlPIF4-F	ATGGGATTTGATCATGAGC
	SlPIF4-R	AGTGGCAGGTGCATTACTA
Solyc10g00	8120-F	ATGGTTGTGCCAATTGTTGG
8120.3	8120-R	TTAAGGATAAACCTCAATTAGT
		GACCTTAATCC
Solyc02g07	530-F	ATGGAAACAAATAATAATGTTG
7530.3	530-R	AGAGAGC
		TTAAGGGAAAACTTGAATGAGG
		GAC
Solyc06g06	510-F	ATGGCCAATAAGAAGAACAACA
4510.2	510-R	Т
		TTTAAGGATAAACTTCCATTAG
		AGACCT

Gene	Primer	Sequence (5'-3')
SIT5H	SIT5H-RT-F	TCGGCCAAATTCCGACTCTA
	SIT5H-RT-R	GAGCAACCGAAGGAGAGGTA
SITDC280	SITDC280-RT-F	TTTCACTCGTGTGCTTTCGG
	SITDC280-RT-R	TATCCTCAGTGAACGTCGCA
SITDC860	SITDC860-RT-F	TATGGCTCGTCATGCGTAGT
	SITDC860-RT-R	GGCACGACAACTTCAAACCT
SISNAT	SISNAT-RT-F	TCAGGGACAAGGACTTGGAA
	SISNAT-RT-R	TTCCCTCTGGATCAGGTTCA
SIAMST7	SlAMST7-RT-F	GACGTCATTGGTGGACATCG
	SIAMST7-RT-R	TGCGTTGGCATGAGGAATTT
SIAMST5	SIAMST5-RT-F	CGAAGCTATGGGATGTGACG
	SIAMST5-RT-R	CCTTCCAAGCCTTCAACCAC
SICOMT2	SICOMT2-RT-F	TGTCTGGAGTTTCTGTGCCA
	SICOMT2-RT-R	CAACCACCTCAGGCAAATCA
SlphyB2	SlphyB2-RT-F	TGCCGTTGATGTTGAAGGTC
	SlphyB2-RT-R	GCGCAGTTGTCTGTGATTCT
SIPIF4	SlPIF4-RT-F	TGCAACTGCAGATGATGTGG
	SlPIF4-RT-R	GTAGTGTTGGACACCAGGGA
Solyc10g00	8120-RT-F	TGCCTCATGTAGTTGAAGGACT
8120.3	8120-RT-R	TTCCTTGCTGGGTATCGCTT
Solyc02g07	530-RT-F	GGCACTGGCGTTATAGCTAAGAC
7530.3		
	530-RT-R	GAGGGACCTTAGTCCAAGGAGA
		GG
Solyc06g06	510-RT-F	TCTCTGACCTCATTGCTGCTTTG
4510.2		С
	510-RT-R	CATTGCTACGGTGCCGGTTCC

Table S2. The primers used for qRT-PCR

Empty Primers'		Sequence $(\Gamma', 2')$	
vector	name	Sequence (5 - 5)	
pGreen	0800-proS	F: CTCGAGGTCGACGGTATCGATAAGCTTTAATTAATCATGATT	
	ICOMT2	R: GGGCTGCAGGAATTCGATATCAAGCTTGGCTTCTCTATACTT	
II 0800-	0000 pros	F: CTCGAGGTCGACGGTATCGATAAGCTTTGATTCCTCTGTCTTG	
LUC	IASMT5	R: GGGCTGCAGGAATTCGATATCAAGCTTTTTTTTTTTGAGATG	
pCAMBI		F: GGATCCATGGGATTTGATCATGAGC	
A1302-	02-519164	R: GTCGACAGTGGCAGGTGCATTACTA	
GFP	02-SISNA	F: GGTACCATGCAAACTCTCCACTTAGTATCCAC	
	Т	R: GGATCCCTAATACATGGGGTACCAGAACATTCC	
	02-SIAMS	F: GAGCTCATGGCATTGCCTAATAATATTGGAGAC	
	T5	R: GTCGACATCAAGGGTAAACCTCAATAACAGACC	
	02-SIAMS	F: GGTACCATGGCCAGTAACAACAATATTTGT	
	T7	R: GGATCCTCTCTTTTGAAGCATAAGTAATCCTCA	
	02-SICOM	F: GAGCTCATGGAGAATGCAAATGGGGAAC	
	T2	R: GTCGACCATGACTTGTGAAATTCAAGAATC	
nCEVT/	GST-SlPIF	F: ATCGGATCTGGTTCCGCGTGGATCCATGGGATTTGATCATGAG	
μθελιά	4	R: GTCGACCCGGGAATTCCGGGGGATCCAGTGGCAGGTGCATTACT	
nD12AD	42AD-SlPI	F: CCTTATGATGTGCCAGATTATGCCTCTCCCGAATTCATGGGATT	
рб42Ар	F4	R: CCAAACCTCTGGCGAAGAAGTCCAAAGCTTCTCGAGAGTGGCA	
pDEST1	His-SlSNA	F: GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGCAAACTCTC	
7	Т	R: GGGGACCACTTTGTACAAGAAAGCTGGGTACTAATACATGGGG	
	His-SlASM	F: GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCCAGTAAC	
	T7	R: GGGGACCACTTTGTACAAGAAAGCTGGGTATCAAATATTCTTT	
	His-SlASM	F: GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCATTGCCT	
	T5	R: GGGGACCACTTTGTACAAGAAAGCTGGGTATCAAGGGTAAACC	
	His-SlCOM	F: GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAGAATGCA	
	T2	R: GGGGACCACTTTGTACAAGAAAGCTGGGTATCATGACTTGTGA	
pCAMBI	06-SIPIF4	F: GGATCCATGGGATTTGATCATGAGC	

Table S3. Primers of the vector construction

A1306

A1306		R: GTCGACAGTGGCAGGTGCATTACTA
	06-SISNA	F: GGTACCATGCAAACTCTCCACTTAGTATCCAC
	Т	R: GGATCCCTAATACATGGGGTACCAGAACATTCC
	06-SlAMS	F: GAGCTCATGGCATTGCCTAATAATATTGGAGAC
	Т5	R: GTCGACATCAAGGGTAAACCTCAATAACAGACC
	06-SlAMS	F: GGTACCATGGCCAGTAACAACAATATTTGT
	Τ7	R: GGATCCTCTCTTTTGAAGCATAAGTAATCCTCA
	06-SICOM	F: GAGCTCATGGAGAATGCAAATGGGGGAAC
	T2	R: GTCGACCATGACTTGTGAAATTCAAGAATC
	RNAi(1)-S	F: CGATGGTCTCACAACTGTGTTCAAGGAACATGTTGATGACG
	lPIF4	R: CGATGGTCTCACAGGAAGCTGGCTCACCATTTGCC
	RNAi(2)-l	F: CGATGGTCTCACCTGCAGGTCTAGTTTTTCT
	oop-SlPIF 4	R: CGATGGTCTCAGCCCGGGCTCTGTAACTAT
	RNAi(3)-S	F: CGATGGTCTCAGGGCAAGCTGGCTCACCATTTGCC
	lPIF4	R: CGATGGTCTCATACATGTGTTCAAGGAACATGTTGATGACG
	RNAi(1)-S	F: CAGTGGTCTCACAACATGCTGCATTTGAACAATCT
	lphyB2	R: CGATGGTCTCACAGGGCATTTTCACTATAAGCAAT
	RNAi(2)-l	F: CGATGGTCTCACCTGCAGGTCTAGTTTTTCT
	oop-Slphy B2	R: CGATGGTCTCAGCCCGGGCTCTGTAACTATC
	RNAi(3)-S	F: CAGTGGTCTCAGGGCGCATTTTCACTATAAGCAAT
	lphyB2	R: CAGTGGTCTCATACAATGCTGCATTTGAACAATCT
	RNAi(1)-S	F: CAGTGGTCTCACAACGCTGCCGTTGTCAACCTTCA
	ISNAT	R: CGATGGTCTCACAGGCTTGGAGATCATACACATCA
	RNAi(2)-l	F: CGATGGTCTCACCTGCAGGTCTAGTTTTTCT
pBWA(V)HS	oop-SlSNA T	R: CGATGGTCTCAGCCCGGGCTCTGTAACTATC
	RNAi(3)-S	F: CAGTGGTCTCAGGGCCTTGGAGATCATACACATCA
	ISNAT	R: CAGTGGTCTCATACAGCTGCCGTTGTCAACCTTCA
	RNAi(1)-S	F: CAGTGGTCTCACAACTATCACCAACAACAAGGAGA
	lASMT7	R: CGATGGTCTCACAGGAATCAGAAATCAACAAATTA
	RNAi(2)-l	F: CGATGGTCTCACCTGCAGGTCTAGTTTTTCT

oop-SlAS MT7	R: CGATGGTCTCAGCCCGGGCTCTGTAACTATC
RNAi(3)-S	F: CAGTGGTCTCAGGGCAATCAGAAATCAACAAATTA
lASMT7	R: CAGTGGTCTCATACATATCACCAACAACAAGGAGA
RNAi(1)-S	F: CAGTGGTCTCACAACATGTTTTTGTACAATTTTCC
lASMT5	R: CGATGGTCTCACAGGTTGAGCAGCAAGGACTTCAT
RNAi(2)-l	F: CGATGGTCTCACCTGCAGGTCTAGTTTTTCT
oop-SlAS MT5	R: CGATGGTCTCAGCCCGGGCTCTGTAACTATC
RNAi(3)-S	F: CAGTGGTCTCAGGGCTTGAGCAGCAAGGACTTCAT
lASMT5	R: CAGTGGTCTCATACAATGTTTTTGTACAATTTTCC
RNAi(1)-S	F: CGATGGTCTCACAACTGTGTTCAAGGAACATGTTGATGACG
ICOMT2	R: CGATGGTCTCACAACTGTGTTCAAGGAACATGTTGATGACG
RNAi(2)-l	F: CGATGGTCTCACCTGCAGGTCTAGTTTTTCT
oop-SICO MT2	R: CGATGGTCTCAGCCCGGGCTCTGTAACTAT
RNAi(3)-S	F: CGATGGTCTCAGGGCAAGCTGGCTCACCATTTGCC
ICOMT2	R: CGATGGTCTCATACATGTGTTCAAGGAACATGTTGATGACG

	ZMPL-D	Cas9-SISN	F: CAGTGGTCTCATGCAATCTGTTCAACTGTTCCATC
	M-Cas9	AT	R: CAGTGGTCTCAAAACTGCAACATCAGATCATGCAT
		Cas9-SlAS	F: CAGTGGTCTCATGCACAACGGGATGTTGGGCGAAA
		MT7	R: CAGTGGTCTCAAAACGTGCCGTGGCGATGGCTATC
		Cas9-SlAS	F: CAGTGGTCTCATGCAACGAACGGGGCTAGACTCAA
		MT5	R: CAGTGGTCTCAAAACCGTTCGCGAACCATTCACCG
		Cas9-proS	F: CAGTGGTCTCATGCATTACGTATGCTCACGAGCTA
		ICOMT2	R: CAGTGGTCTCAAAACGATGGTGCTGGAGCACGTAC
		pEAQ-812	F: GTCGACATGGTTGTGCCAATTGTTGG
		0	R: GAGCTCTTAAGGATAAACCTCAATTAGTGACCTTAATCC
		pEAQ-530	F: GTCGACATGGAAACAAATAATAATGTTGAGAGAGC
	R: GAGCTCTTAAGGGAAAACTTGAATGAGGGAC		

	mEAO E 10	F: GTATACATGGCCAATAAGAAGAACAACAT
peaq-510	R: GAGCTCTTTAAGGATAAACTTCCATTAGAGACCT	
pEAQ-H	pEAQ-SIT	F: GTCGACATGGAAGCATCAATTCTACAGCTAC
T-DES	5H-F	R: GAGCTCTTACAACTTGTTGATGGTTGGAACAAG
Т3	pEAQ-SIT	F: GTCGACATGGGAACCCTTAATTCAAATAACAAC
	DC280	R: GAGCTCCTAAAACACAATTTTTTCTGAGCAAATCAT
	pEAQ-SIT	F: GTCGACATGGGAAGCCTTGATTCCAA
	DC860	R: GAGCTCTTAAAACACACTTTTTCTCAGCAAACC
	pEAQ-SIS	F: GTCGACATGCAAACTCTCCACTTAGTATCCAC
	NAT	R: GAGCTCCTAATACATGGGGTACCAGAACATTCC
	pEAQ-SlA	F: GTCGACATGGCCAGTAACAACAATATTTGT
	SMT7	R: GAGCTCTCTCTTTTGAAGCATAAGTAATCCTCA
	pEAQ-SlA	F: GTCGACATGGCATTGCCTAATAATATTGGAGAC
	SMT5	R: GAGCTCATCAAGGGTAAACCTCAATAACAGACC
	pEAQ-SIC	F: GTCGACATGGAGAATGCAAATGGGGAAC
	OMT2	R: GAGCTCCATGACTTGTGAAATTCAAGAATC

Table S4. Partial display of sequencing results of yeast screenlibrary

ID	Note
Solyc06g074820.3	tonoplast intrinsic protein 1.1
Solyc06g036290.3	heat shock protein 90
	Protein phosphatase 2C (AHRD V3.3 ***
301yc03g032980.3	Q8RVG0_TOBAC)
	transmembrane "protein," putative (Protein of
Solyc08g067030.3	unknown "function," DUF642) (AHRD V3.3 ***
	AT5G11420.1)
Solyc09g092380.3	S-adenosyl-l-homocysteine hydrolase
Solvc07g053830 3	ADP,ATP carrier "protein," mitochondrial (AHRD
501yc07g055050.5	V3.3 *** ADT1_SOLTU)
Solyc02g085950.3	cell wall protein X77373
Solyc08g006890.3	Tubulin alpha chain (AHRD V3.3 *** TBA_PRUDU)
Solvc06g081980 1	Pyridoxal biosynthesis protein PDX1-like protein
50190005001900.1	(AHRD V3.3 *** T2DNB9_PHAVU)
Solyc07g043580.4	bHLH transcription factor 052 (PIF4)
Solvc01g0064303	Fatty acid desaturase (AHRD V3.3 ***
5019001800010010	M4QSE6_9ERIC)
Solvc04g049330.3	V-type proton ATPase subunit G (AHRD V3.3 ***
	A0A0B2RXB3_GLYSO)
Solvc06g059740.3	2 Alcohol dehydrogenase (AHRD V3.3 ***
	ADH_MALDO)
Solvc09g065590.3	auxin canalization protein (DUF828) (AHRD V3.3 ***
	AT3G22810.1)
Solyc09g010800.4	metallothionein II-like protein
Solvc06g071920 3	Glyceraldehyde-3-phosphate dehydrogenase (AHRD
	V3.3 *** C9DRQ8_SOLCH)
Solvc10g047410.1	Photosystem II CP43 reaction center protein (AHRD
	V3.3 *-* PSBC_SOLLC)
Solyc06g006080.3	thiamine biosynthesis protein ThiC

Solyc03g118780.3	Pathogenesis-related thaumatin family protein
Solyc09g007850.3	RNA binding protein (AHRD V3.3 *** 039209 ARATH)
Solyc10g048060.1	myosin XI D (AHRD V3.3* AT2G33240.5)
Solyc11g010230.2	Histone H3 (AHRD V3.3 *** K7VSQ3_MAIZE)
Solyc10g085880.1	Glycosyltransferase (AHRD V3.3 *** K4DF51_SOLLC)
Solyc09g097770.3	Glycine-rich protein (AHRD V3.3 *** D2K2T8_TOBAC)
Solyc08g067030.3	transmembrane "protein," putative (Protein of unknown "function," DUF642) (AHRD V3.3 *** AT5G11420.1)
Solyc09g092380.3	S-adenosyl-l-homocysteine hydrolase
Solyc07g043360.1	60S ribosomal protein L27 (AHRD V3.3 *** K4CEJ5_SOLLC)
Solyc01g087600.3	transmembrane "protein," putative (DUF288) (AHRD V3.3 *** AT2G41770.1)
Solyc02g082130.2	LOW QUALITY:Surfeit locus protein 6 (AHRD V3.3 *** AT5G05210.2)
Solyc12g035130.2	RNA helicase DEAD36
Solyc06g065230.3	N-acetyltransferase (AHRD V3.3 *** K7WTW4_SOLTU)
Solyc09g092380.3	S-adenosyl-l-homocysteine hydrolase