Supplemental Material

Table S1. murine studies on the effect of clonal hematopoiesis in heart failure.

First author	Cases	Controls	Additional	Outcome
(year)			interventions	
				Bone marrow transplantation
	Mice with bone			with Tet2-deficient or
	marrow radiation	Mice with		Dnmt3a loss-of-function
	followed by bone	bone marrow		mutated cells led to
	marrow	radiation		increased cardiac
	transplantation with	followed by		inflammation (IL-1, IL-6,
	Tet2 deficient (Tet2	bone marrow		CXCL1, CXCL2), hypertrophy
	+/- or <i>Tet2 -/-</i>) or	transplantation	Angiotensin II	and fibrosis and a decreased
Sano 10	Dnmt3a loss-of-	with control	in a subgroup	ejection fraction, compared
(2018)	function cells	cells	of mice.	to controls.
				Bone marrow transplantation
				with Tet2-deficient cells led
		Mice with		to decreased ejection
		bone marrow		fraction and increased
	Mice with bone	radiation		inflammation (IL-1, CXCL2,
	marrow radiation	followed by		CD45) and fibrosis in mice
	followed by bone	bone marrow		with TAC or ligation of the
	marrow	transplantation		LAD. The NLPR3-
	transplantation with	with control	Inhibition of	inflammasome inhibitor
	Tet2 deficient (Tet2	cells,	the NLRP3-	MCC950 reversed post-
	+/- or <i>Tet2 -/-</i>) cells,	additionally	inflammasome	infarction and pressure
	additionally these	these mice had	with MCC950	overload remodeling caused
Sano 11	mice TAC or ligation	TAC or ligation	in a subgroup	by the CHIP-driver mutation
(2018)	of the LAD.	of LAD.	of mice.	in <i>Tet2</i> .

Γable S1 (continued): murine studies on t	ne effect of clonal	hematopoiesis in	heart failure
---	---------------------	------------------	---------------

First author	Cases	Controls	Additional	Outcome
(year)			interventions	
First author (year) Sano ¹² (2019)	Cases Non-radiated mice with bone marrow transplantation from Jak2 (V617F) mutated mice, additionally these mice had TAC or ligation of the LAD.	Controls Non-irradiated mice with bone marrow transplantation from wild-type mice, additionally these mice had TAC or ligation of the LAD.	Additional interventions	OutcomeBone marrow transplantation with Jak2(V617F) mutated bone marrow cells led to increase cardiac inflammation (IL-1, IL-6, TNF- alpha) and fibrosis and a decreased ejection fraction in mice with TAC or ligation of the LAD. Jak2 (V617F) expressing HSPCs displayed a competitive advantage over Jak2 (wild-type) HSPCs that was highly restricted to the myeloid lineage and shown as an increase of mutated neutrophils and monocytes in the blood.Bone marrow transplantation with Tet2-deficient cells led to progressive expansion of Tet2-deficient HSPCs as well as expansion of Tet2- deficient bone marrow derived myeloid cells within the heart without an
				significant effect on yolk sac- derived cardiac-resident macrophages. Consecutively, there was a reduction in ejection fraction parallel to
				an increase in hypertrophy. Of note: this was the first study that showed a
	Non-radiated mice	Non-irradiated		detrimental effect of the
	with bone marrow	mice with		<i>Tet2</i> -driver mutation without
	transplantation	bone marrow		an external injury (LAD
14	from <i>let2</i> deficient	transplantation		ligation, IAC, or infusion with
vvang +*	$\frac{1}{T_{e}+2} = \frac{1}{2} $	$(T_{et}^{2} + /+)$ mice	None	angiotensin II) or Lair
Wang ¹⁴ (2020)	with bone marrow transplantation from <i>Tet2</i> deficient mice (<i>Tet2</i> +/- or <i>Tet2</i> -/-)	mice with bone marrow transplantation from wild-type (<i>Tet2</i> +/+) mice	None	<i>Tet2</i> -driver mutation without an external injury (LAD ligation, TAC, or infusion with angiotensin II) or <i>Ldlr</i> knockout.

Table S1	(continued): r	nurine studies or	n the effect of	clonal hemato	poiesis in hea	art failure
10010 01	(po.co.c	

First author	Cases	Controls	Additional	Outcome
(year)			interventions	
	Mice with bone marrow radiation followed by bone marrow transplantation with <i>ppm</i> 1d gain-of-	Mice with bone marrow radiation followed by bone marrow transplantation	Angiotensin II and the NLRP3- inflammasome inhibitor MCC950 in a	The ppm1d mutation reduced left ventricle fraction shortening at 4 weeks and lead to an higher fibrotic cardiac tissue area parallel to higher bone marrow-derived (CCR2) macrophages/monocytes with higher IL1-β and IL-6 expression. This was abrogated by CCR2 knock- out or by the NLRP3
Yura ¹⁵	function	with control	subgroup of	inflammasome inbibitor
(2021)	mutation	cells	mice.	MCC950.
	Non-radiated mice with bone marrow transplantation from <i>Trp53</i> heterozygous- deficient	Non-irradiated mice with bone marrow transplantation from <i>Trp53</i> homozygous wild type	Doxorubicin in	Doxorubicine led to expansion of <i>Trp53</i> - deficient HSPCs, myocardial neutrophil infiltration that produced IL-1 β , IL-6 and TNF- α (without increased monocyte infiltration), and worse left ventricle systolic function. Neutrophil
Sano ¹³	(Trp53+/-)	(Trp53+/+)	a subgroup of	depletion prevented
(2021)	donor mice	donor mice	mice.	cardiac dysfunction.

CD = cluster of differentiation; CHIP = clonal haematopoiesis of indeterminate potential; CCR2 = C-C chemokine receptor 2; CXCL = chemokine (X-C-X) motif ligand; DNMT3A = DNA (cytosine-5)-methyltransferase 3A; HSPCs = hematopoietic stem and progenitor cells; IL = interleukin; JAK2 = Janus Kinase 2; LAD = left anterior descending artery; LDLR = low density lipoprotein receptor; NLRP3 = NLR family pyrin domain containing 3; TAC = transverse aortic constriction; TET2 = Tet methylcytosine dioxygenase 2; TNF = tumor necrosis factor; Trp53 = transformation related protein 53.