
Supplementary Methods

Optimizations and parameter settings in the RIPPLES software

The RIVET backend uses a refactored implementation of RIPPLES, called ripples-fast,
which achieves 1–2 orders of magnitude speedup relative to the original implementation while
producing identical results. The key performance optimizations include (i) amortizing
computations of parsimony improvement for different breakpoint intervals, (ii) improving memory
locality of the algorithm, and (iii) achieving fine-grained parallelism through vectorized
instructions. (i) For every node in the mutation-annotated tree (MAT), ripples-fast starts by
maintaining a mutation count vector that stores the number of sites along different positions in
the genome at which the putative recombinant node differs from the reference. When
performing partial placements, this mutation count vector is directly used to find the parsimony
score improvement for each possible breakpoint interval. This eliminates the cost of traversal
from root to that node in the mutation-annotated tree (MAT) to find corresponding mutations at
that node. (ii) Since a single vector needs to be accessed at each node to find the parsimony
score improvement, this technique of using a mutation count vector per node also improves the
memory locality of the RIPPLES algorithm. (iii) Finally, because recombinants are relatively rare,
ripples-fast utilizes the SSE-based vector instructions available on Intel Processors to test
for the presence of putative recombination at multiple breakpoints in parallel. This is in addition
to the multithreaded and multiprocess parallelism that was already available in RIPPLES.

By default, RIVET uses sensitive search parameters for RIPPLES (i.e, setting
--branch-length 3 --num-descendant 5 --parsimony-improvement 3). These
parameters require that a node have a branch length of at least 3 mutations and a minimum of 5
descendant tips to be considered for recombination. Additionally, the partial placement
parsimony score should improve by at least 3 mutations for a node to be flagged as a potential
recombinant.

Estimating date of origin of recombinants and growth scores

Since recombinants discovered through RIPPLES correspond to internal nodes of the MAT, their
origin or sampling date is not directly available through sequence metadata. However, if the
sequence metadata, which contains the sampling date of each sequence in the MAT, is provided
as input by the user, RIVET also launches a parallel Chronumental process (Sanderson, 2021)
to build a time tree from the MAT. On RIVET’s frontend interface, users can sort the recombinant
list based on the origin date to quickly review recombinants that have been inferred to have
emerged recently.

Additionally, to help prioritize emerging recombinants of epidemiological interest for the
purposes of recombinant lineage identification and tracking, RIVET assigns each detected
recombinant a growth score and outputs a ranked list of putative recombinants. The
recombinant growth metric below, G(R), for a recombinant node with a set of descendants S is
defined below:

𝐺(𝑅) = 2−𝑚(𝑅).
𝑠∈𝑆
∑ 2−𝑚(𝑠)

In the equation above, and correspond to the number of months (30-day intervals)𝑚(𝑅) 𝑚(𝑠)

elapsed since the recombinant node was inferred to have originated and its descendant𝑅
sequence was sampled, respectively. The growth score above, G(R), is computed for each𝑠
detected recombinant R, and the final recombinant list is ranked based on descending growth
scores.

Efficient RIVET workflow parallelization on the Google Cloud Platform (GCP) and output
files

The entire RIVET backend pipeline is contained within a public Docker image that can be
massively parallelized across multiple servers on Google Cloud Platform (GCP). In a YAML
configuration file provided, the user can specify the number of instances and machine type to
run the RIVET job. By default, we run the workflow on two n2d-highcpu-32 instances. Upon
initiating, RIVET loads the input mutation-annotated tree (MAT) and conducts a parallel search
for long-branches that will be considered for the recombination search. The number of long
branches is then automatically partitioned uniformly across the specified number of GCP
instances. Each GCP instance searches its range of long branches in parallel for recombination
events. Immediately upon completion of the search phase, an automated filtration pipeline
begins on the instance to check for potential sequencing and bioinformatic quality issues with
each detected recombinant. Once every GCP instance has completed both the search and
filtration steps, RIVET aggregates the results from each instance locally, and ranks the
recombinant results.

RIVET’s frontend implementation details

The RIVET frontend is a Flask application (Grinberg, 2018) that loads and pre-processes the
output files generated by RIVET’s backend, which includes a tab-delimited recombinant results
file, a VCF file containing all the single-nucleotide variants (SNVs) of the trio sequences
(recombinant, donor, acceptor) and a tab-delimited descendants file containing a mapping of all
trio node ids to their respective set of descendants. RIVET utilizes cyvcf2 (Pedersen and
Quinlan, 2017), which is a Python library wrapper around htslib (Bonfield et al., 2021), to enable
fast parsing of the input trio VCF file. The RIVET web interface displays the recombination
results ranked by growth score in a table format where each row in the table is a detected
recombinant. To see the SNVs for a particular recombinant of interest, the user can select a
row to dynamically render an interactive visualization built using d3.js that displays the SNVs for
the selected recombinant and its two parents, with respect to the SARS-CoV-2 reference
(GenBank MN908947.3, RefSeq NC_045512.2). The plot shows all positions where at least
one of the trio sequences contains a variant, however the recombinant-informative sites are
highlighted where the recombinant matches the donor or the acceptor sequence, for clear
visualization of the inferred breakpoint intervals. By clicking the available buttons, any view of
the visualization can be downloaded in SVG format, for high-quality publication-ready figures, or
copied and pasted directly into lineage proposal GitHub Issues, for example. The SNV
visualization also contains several built-in interactive features, such as the ability to query and
download the descendants specific to a particular node in the trio by clicking the corresponding
track label. RIVET’s web interface provides integration with phylogeny viewer tools, namely
Nextstrain’s Auspice (Hadfield et al., 2018) and Taxonium’s Treenome browser (Sanderson,
2022; Kramer et al., 2023). To generate the Nextstrain Auspice view, RIVET selects a random
single subtree (default parameter is a subtree containing 10 descendants) from the MAT and
queries the UShER web API (UShER.bio) to return its corresponding subtree that can be
viewed in Auspice. For the Taxonium view, RIVET queries the Taxonium web API with the

https://genome.ucsc.edu/cgi-bin/hgPhyloPlace

selected recombinant and its parental sequences using a custom-built Taxonium JSONL
configuration file that is produced as an output of RIVET’s backend pipeline using
taxoniumtools (https://github.com/theosanderson/taxonium). The configuration file helps
highlight the selected trio of sequences in the global phylogeny and color the tips of the
phylogeny by their Pango lineage classification annotated in the MAT.

https://github.com/theosanderson/taxonium

Supplementary Tables

SupplementaryTable 1: RIVET backend runtime and cost estimates using two
n2d-highcpu-32 instances on the Google Cloud Platform (GCP) for different MATs.

Date (type) of
MAT

Number of
sequences
in the MAT

Number of unique
recombinants discovered

Ripples-fast
runtime

Total runtime
(including QC,
ranking etc.)

Estimated
compute cost

Pre-filter Post-filter

October 31,
2022 (Public)

6,427,951 1,413 421 20m 22s 45m 25s $2.06

November 30,
2022 (Public)

6,497,825 1,452 441 20m 19s 49m 17s $2.23

December 31,
2022 (Public)

6,612,971 1,473 455 17m 01s 43m 10s $1.97

January 31,
2023 (Public)

6,716,605 1,470 453 23m 35s 51m 10s $2.34

July 2, 2023
(Public)

7,667,784 1,727 426 25m 55s 57m 21s $2.39

July 2, 2023
(Full)

15,360,149 3,665 847 94m 43s 135m 47s $3.68

Supplementary Figures

Figure S1: Breakpoint intervals (in blue bars) of recombinants that passed all quality filters
along with a smoothed density plot of their midpoints (in black).

Figure S2: (A) Taxonium view of the 2023-07-02 public SARS-CoV-2 MAT highlighting the node
that is pre-annotated as the XBB root by the Pango curation team
(https://github.com/cov-lineages/pango-designation/issues/1058) that matches a
RIVET-inferred recombinant node, (B) its corresponding RIVET-based SNV plot.

https://github.com/cov-lineages/pango-designation/issues/1058

Supplementary References

Bonfield,J.K. et al. (2021) HTSlib: C library for reading/writing high-throughput sequencing data.
GigaScience, 10, giab007.

Grinberg,M. (2018) Flask Web Development: Developing Web Applications with Python O’Reilly
Media, Inc.

Hadfield,J. et al. (2018) Nextstrain: real-time tracking of pathogen evolution. Bioinformatics, 34,
4121–4123.

Kramer,A.M. et al. (2023) Treenome Browser: co-visualization of enormous phylogenies and
millions of genomes. Bioinformatics, 39, btac772.

Pedersen,B.S. and Quinlan,A.R. (2017) cyvcf2: fast, flexible variant analysis with Python.
Bioinformatics, 33, 1867–1869.

Sanderson,T. (2021) Chronumental: time tree estimation from very large phylogenies.
Sanderson,T. (2022) Taxonium, a web-based tool for exploring large phylogenetic trees. eLife,

11, e82392.

