iScience, Volume 26

Supplemental information

Siderophore-mediated iron partition

promotes dynamical coexistence

between cooperators and cheaters

Jiqi Shao, Nan Rong, Zhenchao Wu, Shaohua Gu, Beibei Liu, Ning Shen, and Zhiyuan Li

1 **Table S1. Symbos for our model, related to the STAR methods.**

9 **Table S2. The Routh-Hurwitz table for criterion, related to the STAR methods.**

10

11

13 **Table S3. Parameters used for different figures, related to Figure 1, Figure 2, Figure 3,**

14 **Figure 4, and the STAR methods.**

15

 Figure S1. Diagram of the Tilman's graphical tools on the classical consumer resource model, related to the STAR methods. In the chemical space expanded by two resources 21 R_1 and R_2 , The Tilman's graphical tool in analyzing resource competition model contains: (1) 22 resource supply point $[R_{1,\text{supply}}, R_{2,\text{supply}}]$ (black dot), which sets the maximal possible 23 concentration of R_1 and R_2 that can occur at steady state; (2) resource supply vector \vec{U} 24 (black arrow), which denotes the environmental supply rate of resources and \vec{U} = $d\left[\begin{array}{c} R_{1,\text{supply}} - R_1^* \\ R_2 \end{array}\right]$ 25 $d\begin{bmatrix} 1 & 0 & 0 \\ R_{2, \text{supply}} & -R_2^* \end{bmatrix}$ at steady state; (3) zero net growth isocline(ZNGI), or growth contour $\left\{ (R_1, R_2) \middle| \frac{dm_i}{dt} \right\}$ $\{(R_1, R_2)\big|\frac{am_i}{dt} = 0\}$, for each strain (strain A: red line; strain B: blue line), which shows the contour where growth rate equals to death or dilution rate; (4) consumption vector (red and 28 blue arrows for that of strain A $\vec{c_{\rm A}}$, and stain B $\vec{c_{\rm B}}$, respectively), which indicates the total consumption rate of resources for the species. When two species reach a steady state, $m_A^* \overrightarrow{C_A}+m_B^* \overrightarrow{C_B}+\overrightarrow{U}=\overrightarrow{0}$. The consumption vectors and growth contours in this figure show that

 each of species A and species B consumes more of the one resource which more limits its own growth rate, leading to stable coexistence.

 Figure S2. Cheaters accelerate the collapse of the system when invading partial cooperators, related to Figure 2. Consequence of the pure cheater invading the partial 41 cooperator $\vec{a} = (0.6, 0.2, 0.2)$ under various chemostat conditions. Light gray denotes chemostat conditions in which the partial cooperator cannot survive even on its own. Deep gray indicates regions where partial cooperators can exist on their own, yet the invasion of cheaters drives them to extinction. The yellow dots represent oscillatory dynamics, while the blue zone represents coexistence.

 Figure S3. Competition between two cooperators under different Fe supply, related to Figure 3, and the STAR methods. Similar as Figure 3 in the main text, but the system consists of two cooperators competing for iron. The strategies of the partial cooperator A is 53 $\vec{a}_A = (0.8, 0.1, 0.1)$, and the nearly-pure cooperator B is $\vec{a}_B = (0.99, 0.0, 0.01)$. (A) As the iron supply increases, the systems dynamics experiences extinction, oscillation, coexistence, and strain B excluding strain A, respectively. The interior of the reverse extension of the consumption vector covers the supply region where coexistence is possible, while the exterior is the region where exclusion occurs and the cooperator B survives alone. (B-E) Time-courses of the competition dynamics between strain A and strain B under increasing iron supply, as 59 shown in (A). (B): $R_{\text{iron,supply}} = 0.1$; (C): $R_{\text{iron,supply}} = 0.16$; (D): $R_{\text{iron,supply}} = 0.18$; (E): 60 $R_{\text{iron, supply}} = 0.25$.

 Figure S4. The invasion from another species with non-overlapping siderophores, related to Figure 4. To assess a species' resistance to invasion by other species with different forms of siderophores, we modeled a second species with the same parameters but non- sharable siderophore. To assist the differentiation, we refer to the native species as species 1 and the invading species as species 2. (A) The minimum population required for all strategies of species 2 to invade a native species 1 under the partial cooperator strategy $(\vec{a}_1 = (0.6, 0.2, 0.2))$. (B) The minimum population required for all strategies of species 2 to 71 invade a native species 1 under the self-supplier strategy $(\vec{a}_1 = (0.6, 0.4, 0))$. (C) The minimum 72 population required for a species 2 under the partial cooperator strategy($(\vec{a}_2 = (0.6, 0.2, 0.2))$ to invade all strategies of species 1. (D) The minimum population required for a species 2 74 under the self-supplier strategy (\vec{a}_2 =(0.6, 0.4, 0)) to invade all strategies of species 1.

-
-
-

 Figure S5. The impact of consumption, production, and recycle rate of public siderophores on strategies' interaction consequences with the pure cheater, related to Figure 4, and the STAR methods. To quantify the effects of siderophores' production cost 82 (represented by ϵ) and recycle rate (represented by p) on its coexistence with the cheater, 83 here we set up different combinations of ϵ and p to reproduce Figure 4A. Along the x-axis, 84 decreasing the production cost of public siderophores, i.e., larger ϵ , helps to substantially enlarge the area of oscillation (yellow) and stable coexistence (blue) instead of exclusion (red). 86 Along the y-axis, increased siderophore consumption, i.e., larger p , slightly increased the area of stable coexistence.

91 **Figure S6. The impact of iron affinity of private and public siderophores on coexistence** 92 **between the partial cooperator and the pure cheater, related to Figure 4, and the STAR** 93 **methods.** K_m and K_l denote iron affinity of private and public siderophores, respectively. 94 The consequence of the pure cheater invading a partial cooperator (\vec{a}_A =(0.6,0.2,0.2), termed 95 as "strain A") under different levels of K_m and K_l were mapped to dot colors in the phase 96 plane. Partial cooperators can stably coexist with pure cheaters in a wide range of parameter 97 – combinations, when K_m balances with K_l (blue dots). When K_l decreases and K_m 98 increases, i.e., public siderophores increase affinity for iron, the system is more likely to 99 oscillate (yellow dot). When K_l increases and K_m decreases, the partial cooperator is more 100 likely to exclude the cheater (red dots denoted as "single A").

101

 Figure S7. Speed of reaching a population's steady-state size for various strategies and initial populations, related to Figure 4. In order to measure the speed of population establishment, we quantified the time used between introducing the initial population and 107 reaching the steady-state population. Assuming constant α_{growth} , self-suppliers and partial cooperators that allocate more resources to private siderophores can establish a population faster with a smaller initial population size, whereas strategies that allocate more resources to public siderophores can achieve the same or even faster results when the initial population size increases.