Supplementary Information

Tumor Suppressor p53 Mediates Interleukin-6 Expression to Enable Cancer Cell Evasion of Genotoxic Stress

Trinh T. T. Phan^{1,†}, Nam V. Truong^{2,†}, Wen-Guey Wu², Yi-Chun Su¹, Tzu-Sheng Hsu^{1,*}, and Lih-Yuan Lin^{1,*}

¹ Institute of Molecular and Cellular Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan R.O.C

² Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan R.O.C

[†] These authors contributed equally to this work.

*Corresponding authors: Lih-Yuan Lin, Tzu-Sheng Hsu

Email: lylin@life.nthu.edu.tw (LYL), tshsu@life.nthu.edu.tw (TSH)

This PDF file includes:

Supplementary Figure Legends

Supplementary Tables S1 to S5

Supplementary Figure Legends

Fig. S1 IL-6 is induced by genotoxic stress and drives cancer cell tolerance to genotoxic treatments. A-C IL-6 gene expression in A549 or H1299 cells treated with increasing concentrations of (A) sodium arsenite (SA), (B) doxorubicin (Dox), or (C) cisplatin (CisPt) for 24 h was measured by quantitative real-time PCR (qRT-PCR). D IL-6 mRNA levels in primary human liposarcoma cell cultures were analyzed using the GSE12972 dataset and their log₂-transformed values were compared between control (n = 19) and paired Dox-treated (n = 19) cells. E The concentration of IL-6 present in the culture supernatants of A549 or H1299 cells treated with the indicated concentrations of CisPt for 24 h was determined by ELISA. F, G Flow cytometric analysis of the cell surface expression of IL-6R α in A549 cells treated with increasing concentrations of (F) SA or (G) CisPt for 24 h. Cells were stained with PE-conjugated antibody against IL-6Rα. H IL-6 gene expression in control (scramble) and IL-6-silenced (shIL-6-1 and shIL-6-2) A549 cells untreated or treated with 20 µM SA for 24 h was measured by qRT-PCR. I IL-6 protein concentration in the culture supernatants of scramble, shIL-6-1, and shIL-6-2 A549 cells untreated or treated with 20 µM SA for 24 h was determined by ELISA. J IL-6 gene expression in control (siCtrl) and IL-6-silenced (siIL-6) A549 cells untreated or treated with 20 µM SA, 0.5 µM Dox, or 20 µM CisPt for 24 h was measured by qRT-PCR. K IL-6 protein concentration in the culture supernatants of siCtrl and siIL-6 A549 cells untreated or treated with 20 µM SA, 0.5 µM Dox, or 20 µM CisPt for 24 h was determined by ELISA. L Dose-response curves showing the survival of siCtrl and siIL-6 A549 cells in response to increasing concentrations of CisPt treatment for 24 h. M The IC₅₀ values of CisPt against siCtrl and siIL-6 A549 cells were calculated from the nonlinear regression curves in Fig. S1L. Cell viability was measured by MTT assays. Error bars represent mean ± SD, n = 3. Statistical analysis was performed using unpaired twotailed Student's t-test (A-C, E-G, M), paired two-tailed Student's t-test (D), or two-way ANOVA with Tukey's multiple comparisons test (H-K). * $p \le 0.05$; ** $p \le 0.01$; *** $p \le 0.001$; ns, not significant.

Fig. S2 IL-6 silencing heightens genotoxic stress-induced cell death in human breast cancer MCF-7 and cervical cancer HeLa cells. A, H IL-6 gene expression in control (siCtrl) and IL-6-silenced (siIL-6) (A) MCF-7 or (H) Hela cells untreated or treated with 20 μ M SA, 0.5 μ M Dox, or 20 μ M CisPt for 24 h was measured by qRT-PCR. B, D, F, I, K, M Dose-response curves showing the survival of siCtrl and siIL-6 (B, D, F) MCF-7 or (I, K, M) Hela cells in response to increasing concentrations of (B, I) SA, (D, K) Dox, or (F, M) CisPt treatment for 24 h. C, E, G, J, L, N The IC₅₀ values of (C, J) SA, (E, L) Dox, or (G, N) CisPt against siCtrl and siIL-6 (C, E, G) MCF-7 or (J, L, N) Hela cells were calculated from the nonlinear regression curves in Fig. S2B, D, F, I, K, M, respectively. Cell viability was measured by MTT assays. Error bars represent mean \pm SD, n = 3. Statistical analysis was performed using two-way ANOVA with Tukey's multiple comparisons test (A, H) or unpaired two-tailed Student's *t*-test (C, E, G, J, L, N). **p* ≤ 0.05; ***p* ≤ 0.001; ****p* ≤ 0.001.

Fig. S3 IL-6 mitigates genotoxic stress-induced cell death. **A**, **C**, **E** Dose-response curves showing the survival of control and 50 or 20 ng/ml IL-6-pretreated (A) A549 or (C, E) H1299 cells, respectively, in response to increasing concentrations of (A, C) SA or (E) CisPt treatment for 24 h. **B**, **D**, **F** The IC₅₀ values of (B, D) SA or (F) CisPt against control and 50 or 20 ng/ml IL-6-pretreated (B) A549 or (D, F) H1299 cells were calculated from the nonlinear regression curves in Fig. S3A, C, E, respectively. **G**, **I** Dose-response curves showing the survival of siCtrl, silL-6, and silL-6+IL-6 A549 cells in response to increasing concentrations of (G) SA or (I) Dox treatment for 24 h. **H**, **J** The IC₅₀ values of (H) SA or (J) Dox against siCtrl, silL-6, and silL-6+IL-6 A549 cells were calculated from the nonlinear sequestively. Cell were calculated from the nonlinear regression curves in Fig. S3G and S3I, respectively. Cell viability was measured by MTT assays. **K-M** The mRNA levels of the anti-apoptotic genes (K)

Bcl-xL, (L) Mcl-1, and (M) Bcl-2 in A549 cells treated with increasing concentrations of SA for 24 h were measured by qRT-PCR. **N** The proliferation of scramble, shIL-6-1, and shIL-6-2 A549 cells untreated or treated with 20 μ M SA for 24 h was assessed by manual cell counting with a hemocytometer. Error bars represent mean ± SD, n = 3. Statistical analysis was performed using unpaired two-tailed Student's *t*-test (B, D, F, K-M) or one-way ANOVA with Tukey's multiple comparisons test (H, J). * $p \le 0.05$; ** $p \le 0.01$; *** $p \le 0.001$; ns, not significant.

Fig. S4 p53 silencing attenuates IL-6 expression. qRT-PCR analysis of (A, C) p53 and (B, D) IL-6 gene expressions in control (siCtrl) and p53-silenced (sip53) (A, B) MCF-7 or (C, D) Hela cells untreated or treated with 0.5 μ M Dox for 24 h. Error bars represent mean ± SD, n = 3. Statistical analysis was performed using two-way ANOVA with Tukey's multiple comparisons test. * $p \le 0.05$; ** $p \le 0.01$; *** $p \le 0.001$; ns, not significant.

Fig. S5 Genotoxic-treated cancer cells secrete IL-6 to enable alternative (M2) macrophage polarization. A THP-1 monocytes were differentiated into M0 macrophages by treatment with 10 ng/ml PMA for 24 h followed by culture in serum-free RPMI medium for an additional 24 h and M0 macrophages were then stimulated with conditioned media from untreated or SA/Dox-treated A549 cells to induce macrophage polarization as depicted. **B** Phase-contrast imaging of THP-1 monocytes and 10 ng/ml PMA-primed macrophages before and after being cultured in serumfree RPMI medium for 24 h. Scale bar: 100 μm. **C-F** The mRNA levels of the macrophage markers (C) CD14, (D) CD68, (E) IL-1β, and (F) TNF-α were analyzed in THP-1 monocytes and THP-1derived M0 macrophages using qRT-PCR. **G** Flow cytometric analysis of the cell surface expression of the macrophage marker CD14 in THP-1 monocytes and THP-1-derived M0 macrophages. Cells were stained with PE-conjugated antibody against CD14. **H-J** The mRNA levels of (H, I) M2- (CD206 and CD163) or (J) M1-associated (CD80) macrophage markers were analyzed in THP-1-derived macrophages co-cultured with RPMI, control (scramble), or IL-6silenced (shIL-6-1 and shIL-6-2) A549 cells with and without 20 μ M SA or 0.1 μ M Dox treatment for 24 h using qRT-PCR. Error bars represent mean ± SD, n = 3. Statistical analysis was performed using unpaired two-tailed Student's *t*-test (C-G) or two-way ANOVA with Tukey's multiple comparisons test (H-J). **p* ≤ 0.05; ***p* ≤ 0.01; ****p* ≤ 0.001; ns, not significant.

Fig. S6 IL-6 expression in SA-treated A549 cells after SA removal and IL-6 concentration in macrophage-stimulating conditioned media. A qRT-PCR analysis of IL-6 mRNA levels in A549 cells after being treated with 20 μ M SA for 24 h and cultured in SA-free RPMI medium for the indicated time periods (1, 3, 6, 12, and 24 h). **B** The concentration of IL-6 present in the culture supernatants of A549 cells after being treated with SA (20 or 40 μ M) or Dox (0.1 or 0.5 μ M) for 24 h and cultured in SA/Dox-free RPMI medium for an additional 24 h. **C** The concentration of IL-6 present in the conditioned medium collected from the bottom wells of a 24-well cell culture plate was determined by ELISA. The upper chamber was plated with control (scramble) or IL-6-silenced (shIL-6-1 and shIL-6-2) A549 cells with and without 20 μ M SA or 0.1 μ M Dox treatment for 24 h. Error bars represent mean ± SD, n = 3. Statistical analysis was performed using one-way ANOVA with Tukey's multiple comparisons test (A, B) or two-way ANOVA with Tukey's multiple comparisons test (C). **p* ≤ 0.05; ***p* ≤ 0.01; ****p* ≤ 0.001; ns, not significant.

Supplementary Tables

Figure	Cell line	Treatment	IC₅₀ of SA (µM)	IC₅₀ of Dox (µM)	IC₅₀ of CisPt (µM)
1H, I		Scramble	256.90 ± 11.75		
	A549	shIL-6-1	183.03 ± 2.72		
		shIL-6-2	192.80 ± 14.64		
		Scramble		112.05 ± 25.18	
1J ,K	A549	shIL-6 -1		11.60 ± 2.71	
		shIL-6 -2		28.09 ± 0.93	
S1L. M	A549	siCtrl			113.09 ± 12.73
- · _,		silL-6			19.27 ± 0.39
S2B_C	MCF-7	siCtrl	47.45 ± 2.12		
, _		silL-6	23.45 ± 5.06		
S2D, E	MCF-7	siCtrl		0.81 ± 0.12	
		silL-6		0.44 ± 0.08	
S2F, G	MCF-7	siCtrl			214.97 ± 11.37
		silL-6			107.30 ± 3.03
S2L J	Hela	siCtrl	70.72 ± 8.53		
,		silL-6	33.69 ± 3.46		
S2K, L	Hela	siCtrl		24.80 ± 7.29	
		silL-6		1.89 ± 0.93	
S2M, N	Hela	siCtrl			62.63 ± 2.60
		silL-6			32.72 ± 2.82
S3A, B	A549	Vehicle	254.20 ± 11.37		
		IL-6	392.87 ± 84.06		
	<u>.</u>				

Table S1. IC₅₀ of SA, Dox, or CisPt under various treatment conditions

S3C, D	H1299	Vehicle	17.02 ± 0.76		
		IL-6	22.27 ± 2.85		
S3E, F	H1299	Vehicle			48.67 ± 8.22
		IL-6			76.80 ± 2.73
S3G, H	A549	siCtrl	258.87 ± 12.25		
		silL-6	158.33 ± 11.40		
		silL-6+IL-6	195.57 ± 14.62		
	A549	siCtrl		93.91 ± 3.66	
S3I, J		silL-6		2.41 ± 0.29	
		silL-6+IL-6		13.07 ± 0.80	
3G. H	A549	Vehicle	249.40 ± 1.51		
00,11		BAPTA-AM	138.00 ± 11.15		
3N. O	A549	Vehicle	264.27 ± 9.24		
		LY294002	124.73 ± 18.16		
5M, N	A549	siCtrl	249.80 ± 21.85		
		sip53	148.30 ± 6.12		
6H, I	A549	RPMI	252.27 ± 11.25		
		Ctrl CM	38.30 ± 0.80		
		SA CM	60.73 ± 9.76		
6J, K	H1299	RPMI	16.82 ± 1.10		
		Ctrl CM	11.83 ± 1.19		
		SA CM	17.06 ± 2.85		

Table S2. List of primers used for qRT-PCR

Target protein	Sequence (5'-3')		
IL-6	Forward: AGACAGCCACTCACCTCTTCAG		
	Reverse: TTCTGCCAGTGCCTCTTTGCTG		
Panx1	Forward: CCACGGAGTACGTGTTCTCG		
	Reverse: CCGCCCAGCAATATGAATCC		
Bcl-2	Forward: ATGTGTGTGGAGAGCGTCAA		
	Reverse: ACAGTTCCACAAAGGCATCC		
Bcl-xL	Forward: GAGCTGGTGGTTGACTTTCTC		
	Reverse: TCCATCTCCGATTCAGTCCCT		
Mcl-1	Forward: TAAGGACAAAACGGGACTGG		
	Reverse: ACCAGCTCCTACTCCAGCAA		
p53	Forward: AAGGAAATTTGCGTGTGGAGT		
	Reverse: AAAGCTGTTCCGTCCCAGTA		
CD206	Forward: GGGAAAGGTTACCCTGGTGG		
	Reverse: GTCAAGGAAGGGTCGGATCG		
CD163	Forward: TTTGTCAACTTGAGTCCCTTCAC		
	Reverse: TCCCGCTACACTTGTTTTCAC		
CCL18	Forward: TGGCAG ATTCCACAAAAGTTCA		
	Reverse: GGATGACACCTGGCTTGGG		
CD80	Forward: GGCCCGAGTACAAGAACCG		
	Reverse: TCGTATGTGCCCTCGTCAGAT		
CXCI 10	Forward: TGTACGCTGTACCTGCATCA		
	Reverse: GGACAAAATTGGCTTGCAGGA		

IL-1β	Forward: CTCGCCAGTGAAATGATGGCT
	Reverse: GTCGGAGATTCGTAGCTGGAT
CD14	Forward: CTGCAACTTCTCCGAACCTC
	Reverse: CCAGTAGCTGAGCAGGAACC
CD68	Forward: CTTCTCTCATTCCCCTATGGACA
	Reverse: GAAGGACACATTGTACTCCACC
TNF-α	Forward: TTCTGCCTGCTGCACTTTGGA
	Reverse: TTGATGGCAGAGAGGAGGTTG
UBC	Forward: CTGGAAGATGGTCGTACCCTG
	Reverse: GGTCTTGCCAGTGAGTGTCT
GAPDH	Forward: TGCACCACCAACTGCTTAGC
	Reverse: GGCATGGACTGTGGTCATGAG

Table S3. shRNA sequences

shRNA name	Clone ID	Oligo sequence (5'-3')
Scramble	ASN000000004	CCGGCCTAAGGTTAAGTCGCCCTCGCTCGAGCGA
		GGGCGACTTAACCTTAGGTTTTT
chll 6 1	TRCN0000059207	CCGGCAGAACGAATTGACAAACAAACTCGAGTTT
SIIL-0-1		GTTTGTCAATTCGTTCTGTTTTTG
shll -6-2	TRCN0000059206	CCGGGACATGTAACAAGAGTAACATCTCGAGATG
SHL 0-2		TTACTCTTGTTACATGTCTTTTTG

Table S4. siRNA sequences

Target protein	siRNA ID	Target sequence (5'-3')
p53	VHS40366	Sense: CCAUCCACUACAACUACAUGUGUAA
		Antisense: UUACACAUGUAGUUGUAGUGGAUGG
Caspase-2	HSS141454	Sense: UGCACGUGGCCGACAUGCUGGUUAA
		Antisense: UUAACCAGCAUGUCGGCCACGUGCA
IL-6	s7311	Sense: GAACGAAUUGACAAACAAAtt
		Antisense: UUUGUUUGUCAAUUCGUUCtg

 Table S5. List of primers used for ChIP-qPCR

Gene locus	Target region	Sequence (5'-3')
	ChIP 1	Forward: GGGAGAATTTCACAAAGGGACC
	(-1911 to -1768)	Reverse: CTTCCCACCCAAAACACTCC
	ChIP 2	Forward: TGGTTATGGCAGCTGTGAGA
	(-1441 to -1329)	Reverse: CCTGAACTCCATCTTCCCCA
	ChIP 3	Forward: TATGAGCCATCTACGCGGAG
	(-1277 to -1169)	Reverse: GGGTCCACAGATACAAGCCT
PANX1	ChIP 4	Forward: CCTGTGTACCATACCCTCCG
	(-817 to -652)	Reverse: GGAAGCTAAATGTGAGGATCCA
	ChIP 5	Forward: CCTTAATTTCCGTGGACACTGG
	(-622 to -488)	Reverse: GAGCCAGCAGAGAGAGGG
	ChIP 6	Forward: GCCATCCCATCCACAGAAAG
	(-218 to -119)	Reverse: GAAATTCTCCCGTCCCTCCC
	3'-UTR	Forward: TGCTTCATATGGCGTGCTTG
	(+2675 to +2791)	Reverse: CCAAATGGCCTCAATTCGGA
CDKN1A	-2292 to -2169	Forward: GGCTCTGATTGGCTTTCTGG
		Reverse: TCCTACCATCCCCTTCCTCA