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Supplementary Note 1 

MZmine 3 development and features 

MZmine’s underlying data model was completely rewritten and modularized to achieve greater 
expandability. This is directly reflected in the graphical user interface, e.g., individual modules can add 
new data types or graphical columns into the processed feature tables. This modular architecture 
allows MZmine 3 to import and process various MS data types, including GC-MS, LC-MS, LC-IMS-MS, 
or MS-imaging datasets. The memory management was optimized, and the available RAM (Random 
Access Memory) is extended by memory mapping spectral data and ion feature data onto fast local 
drives, freeing more memory for data processing. Systems without RAM constraints can also process 
all data in memory if preferred. Previously, feature alignment and gap-filling used to be bottlenecks in 
the feature detection workflows. These key steps were optimized and parallelized in MZmine 3, 
increasing the overall sample throughput (Supplementary Note 3). MZmine 3 is a modern Java 
application that is packaged with a customized Java Virtual Machine, making it cross-platform 
compatible without the need for additional software package installation. The last nearly two decades 
have seen various additions to MZmine.1–13 An up-to-date overview of all processing modules in 
MZmine 3 is available in the MZmine documentation: 

https://mzmine.github.io/mzmine_documentation/coding/module_list.html  

Several other community tools, e.g., tidyMass,14 MetDNA,15 GNPS16, NeatMS,17 mzRAPP,18 MetGem,19, 
SLAW,20 FERMO,21 MEMO,22 Inventa,23 and NetID15,24, can import MZmine results from its various data 
exchange formats: 

https://mzmine.github.io/mzmine_documentation/tool_integration   
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Overview of MZmine’s 4D LC-IMS-MS feature detection workflow 

The MZmine LC-IMS-MS feature detection adds a few steps to the classical LC-MS workflow. IMS-MS 
data is supported through open MS data formats, e.g., .mzML, and vendor-specific formats, e.g., .tdf 
(Bruker Daltonics). At each retention time, multiple mobility-resolved mass spectra make up a frame; 
visualized as a heatmap in Supplementary Fig. 1a. All scans within a frame are accumulated into a 
merged frame spectrum (b), similar to the mass spectra in regular LC-MS datasets without ion mobility 
separation. Those frame spectra are used by the ADAP chromatogram builder10 to create extracted 
ion chromatograms (EIC, c). MZmine then offers multiple algorithms to resolve chromatograms to RT-
resolved features (d), defined by their boundaries in m/z and RT dimension. Features are then 
expanded into the mobility dimension by searching the original mobility-resolved scans for signals in 
the given m/z and RT boundaries (e), creating ion mobility traces (f). Every ion mobility trace is 
described by raw 4D data (signal distribution in m/z, RT, mobility, and intensity dimension) and not 
only by their 2D projections, namely EIC and extracted ion mobilogram (EIM). These projections are 
built from the 4D raw data as well, to allow either a simple (2D: EIC, EIM) or more complex (4D: ion 
mobility traces) visualization and investigation of every feature. To create mobility-resolved IMS 
features (g), the EIMs are resolved by the same modules as the RT features. After this step, the 2D 
projections are rebuilt from the respective 4D raw data of the ion mobility traces. Afterward, all 
features in the MZmine feature table are IMS features composed of the underlying 4D data, ensuring 
reproducibility and traceability to the raw data, and their 2D projections as EICs and EIMs. Depending 
on the underlying data, EICs and EIMs may be smoothed and EIMs may be binned before feature 
resolving steps to improve the shapes before peak detection. 
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Supplementary Fig. 1 | Schematic LC-IMS-MS feature detection workflow. 

a, all mobility-resolved mass spectra measured at the same retention time (the same IMS ramp), 
typically represented as frame heatmaps, are accumulated into a merged frame spectrum, b. c, EICs 
connect signals within m/z tolerance across all merged frame spectra in the RT dimension. d, EICs are 
split into RT-resolved features by one of MZmine’s resolving algorithms. e, the ion mobility dimension 
is added to features by searching signals in all mobility scans that fall within the m/z and RT boundaries 
of a feature, expanding them to 4D ion mobility traces with m/z, RT, mobility, and intensity 
dimensions. f, ion mobility features are resolved in the mobility dimension, using the same algorithms 
as in d and after optional smoothing and binning of multiple mobility values to improve the shape of 
EIMs.  
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Multidimensional feature alignment across m/z, ion mobility, and RT 

Feature alignment (Join aligner) scores features from multiple samples against a master feature list in 
parallel and the best matches are aligned: If multiple features from the same sample match to a base 
row, the one with the lowest weighted deviation in all available dimensions 𝑝 (m/z, RT, ion mobility) 
is added. For each feature-pair within tolerances, all available descriptors are divided by the maximum 
allowed alignment difference (𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒!), weighted by a user-defined factor 𝑤𝑒𝑖𝑔ℎ𝑡!, and summed 
to a score.   
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Additional pre-filters are available to score only features that share a similar isotope pattern, MS2 
spectral similarity, or the same identifier from different annotation modules in MZmine, including the 
spectral library search and the local database compound matching (from a csv compound table). The 
MS2 spectral similarity can provide a more stringent filtering approach to feature alignment. However, 
this approach is limited to datasets with a high fragmentation spectra-coverage across samples and 
features. Currently, the absence of DDA acquisition of fragmentation spectra in (IMS)-MS imaging 
usually prevents the usage of this strategy.  

The current workflow aligns all samples from LC-(IMS)-MS into one aligned feature list. Afterward, all 
(IMS)-MS imaging samples are aligned onto this feature list. Starting with MZmine 3.3.0, multiple 
metrics are available in the feature table, reflecting on the alignment of each aligned feature (row).  
This includes the alignment rate (aligned/total samples) and the mean distances between the features 
m/z, RT, and ion mobility compared for each sample to their average value. These mean distances can 
provide valuable insight into the mass accuracy and potential RT and mobility shifts. Further, they can 
guide the optimization of the alignment parameters. A weighted distance score is calculated for the 
final aligned feature based on the equation above. Each feature falls within different m/z, RT, and 
mobility ranges which might contain more or fewer isomers or other interferences. By summing the 
total number of features within those ranges across all samples, minus the aligned features, a sum of 
additional features is listed for each row. This number reflects on closely eluting features in RT and ion 
mobility with a similar m/z and can help identify possible alignment issues or raise confidence in the 
alignment if there are no additional features found. 
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Overview of MZmine’s feature annotation modules 

MZmine comes with dedicated modules for the annotation of ion types (adducts), molecular formulas, 
and compounds listed in databases. Furthermore, export formats allow exporting MZmine results into 
other annotation tools, such as SIRIUS. The IMS-MS-derived CCS values are currently considered by 
the spectral library search, local compound database search, and the FBMN/IIMN (GNPS) export. 
Other modules can be applied to mobility-resolved features. The annotations from multiple modules 
are reflected in the feature table by multiple columns (see Supplementary Fig. 2)  

 
Supplementary Fig. 2 | Example of a feature list annotated by multiple methods. 

Annotations originate from the spectral library search, local compound database search, and lipid 
annotation modules in the columns Spectral match, Compound DB, and Lipid Annotation, respectively. 

The following list describes the most used annotation modules: 

Ion identity networking7 builds ion type libraries based on user-defined adducts (e.g., H+ and Na+) and 
in-source modifications (e.g., -H2O and +ACN). All combinations of an adduct and a modification are 
combined to represent monomers (e.g., [M+H]+) and multimers (e.g., [2M+H]+). Before annotating 
ions, features are grouped based on various criteria, including a retention time tolerance and 
correlation of the feature shapes and intensities across all samples. Pairs of grouped features are then 
matched against an ion library to annotate combinations that point to the same neutral mass. Options 
are available to define and add new adducts and modifications and to refine the results to retain only 
larger ion identity networks of ions that originate from the same molecule. More information is 
available in the online MZmine documentation:  

https://mzmine.github.io/mzmine_documentation/visualization_modules/interactive_ion_id_netw/i
nteractive_ion_id_netw.html  

Formula prediction is available to run on a whole feature list or on individual rows. There is an option 
to use the ion type from ion identity networking or to overwrite all ions by a fixed ionization type. 
Filters include an m/z tolerance, a list of elements with minimum and maximum occurrence, element 
count heuristics and ring-and-double-bond equivalent restrictions25, isotope pattern scoring, and 
fragmentation pattern scoring.9 The final results are sorted based on a weighted combination of the 
mass deviation, isotope pattern score, and fragmentation pattern score. More information is available 
in the documentation:  

https://mzmine.github.io/mzmine_documentation/module_docs/id_spectra_chem_formula/chem-
formula-pred.html  

Spectral library search matches experimental fragmentation spectra against local spectral libraries 
using spectral alignment and spectral similarity (e.g., cosine similarity for MS2 spectra or composite 
cosine similarity for GC-EI-MS spectra). Filters include m/z tolerances for precursor matching and 



MZmine 3 - Supplementary Information Page 7 of 20 

signal alignment, a minimum number of matched signals, and a similarity threshold. A retention time 
tolerance is available for chromatography-MS data and a CCS tolerance can prefilter ion mobility data. 
A 13C deisotoper can be applied to experimental and reference spectra before matching, to remove 
residual 13C isotope signals, that were co-isolated. Supported formats for reference spectra include 
.json (MassBank of North America (MoNA), GNPS, MZmine), .mgf (GNPS, MoNA, and others), .msp 
(NIST), and .jdx (JCAMP-DX). Recommended downloads are provided by GNPS (https://gnps-
external.ucsd.edu/gnpslibrary) and MoNA (https://mona.fiehnlab.ucdavis.edu/downloads). More 
information is available in the documentation:  

https://mzmine.github.io/mzmine_documentation/module_docs/id_spectral_library_search/spectra
l_library_search.html    

Local compound database (CSV) search loads compound information from a tabular comma-
separated file and annotates features that match multiple filters. Based on a provided neutral mass, 
multiple ion types (adducts and in-source modifications) are searched. All matches are added to a 
feature within m/z tolerance, RT tolerance, and ion mobility or CCS tolerance for IMS-MS. More 
information is available in the documentation:  

https://mzmine.github.io/mzmine_documentation/module_docs/id_prec_local_cmpd_db/local-
cmpd-db-search.html  

Lipid annotation follows a rule-based approach, which is common in computational lipidomics.26 For 
each lipid class, a set of ion notation-specific fragmentation rules are provided, reflecting the differing 
fragmentation behavior of ions,  e.g., [M+H]+ or [M+Na]+. After matching the accurate m/z, MS2 
fragment ions and neutral losses are annotated by those rules, covering head group and chain level 
information. If lipid class-specific fragments are matched, a species level or molecular species level 
annotation will be added to the feature; otherwise, the putative MS1 annotation is discarded 
(Supplementary Fig. 3). More information is available in the documentation:  

https://mzmine.github.io/mzmine_documentation/module_docs/id_lipid_annotation/lipid-
annotation.html 

SIRIUS export (SIRIUS,27 ZODIAC,28 CSI:FingerID,29 CANOPUS)30 creates an .mgf file with 
representative spectra per feature. Both MS1 and MS2 data are exported to allow the full use of the 
SIRIUS software that comprises multiple tools for the prediction of molecular formulas, ion types, 
compound structures, and compound classes. For each feature, a representative MS1 spectrum and 
multiple MS2 spectra are exported. The MS2 level includes either all available spectra or different 
options of merged spectra. The SIRIUS results can be merged back into MZmine results using the 
MZmine feature ID. More information is available in the documentation:  

https://mzmine.github.io/mzmine_documentation/module_docs/io/data-exchange-with-other-
software.html#sirius-csi-fingerid 

FBMN6/IIMN7 export (and the GNPS ecosystem16) creates all files needed for running Feature-based 
Molecular Networking and Ion Identity Molecular Networking on GNPS. This includes the 
quantification table (.csv), an .mgf file with one representative MS2 spectrum per feature, and the 
additional ion identity networking edges (optionally). The MS2 spectrum is either the most abundant 
with the highest TIC or a merged spectrum. Those molecular networking (MN) workflows represent 
features as nodes in a network of (cosine) similarities between fragmentation spectra. GNPS annotates 
compounds by matching against their open public spectral libraries. As an open community project, 
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many tools use the MN output for annotation propagation or for further analysis. Using the MZmine 
feature ID, results from GNPS, SIRIUS, and other tools can be merged. CCS values are exported for 
IMS-MS data and can provide coloring-schemes for the visual interpretation of networks. More 
information is available in the documentation:  

https://mzmine.github.io/mzmine_documentation/module_docs/io/data-exchange-with-other-
software.html#gnps-fbmniimn-export  
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Supplementary Fig. 3 | Example lipid PC 16:0/18:1(11Z), highlighting supported annotation levels 
and screenshots of the lipid annotation module in MZmine 3. 

a, MZmine 3 supports species and molecular species annotation levels following guidelines 
recommended by the Lipidomics Standard Initiative.31 b, The module can be applied to any feature list 
(1). The user defines the scope of the database by selecting lipid classes (2) and side-chain constraints 
as the number of carbons and double bonds (3). Matching criteria can be set for MS1 and MS2 levels 
(4). Before running the module, the on-the-fly created lipid species database can be viewed in a table 
(5). Listing the calculated exact m/z for supported ion notations (lipid class-specific) together with the 
implemented MS2 rules. Information on potential MS1 overlaps with other lipid species is provided in 
the Info and Status columns (orange: potential interference; cyan: clear) of c, the generated lipid 
database. 



MZmine 3 - Supplementary Information Page 10 of 20 

Supplementary Note 2 

Example for integrative LC-IMS-MS and MALDI-IMS-MS imaging analysis in MZmine 3 

Over the past years, MZmine has evolved from a raw data processing tool into a mature analysis 
pipeline. Implementing annotation capabilities based on various characteristics of LC-MS2 data, such 
as MS1 mass accuracy, MS2 spectra matching, or the isotope pattern scoring, contributes towards a 
comprehensive matured data analysis solution. With the introduction of IMS data processing in 
MZmine 3, annotation tools such as the lipid annotation module,3 can now leverage mobility-resolved 
features and MS2 spectra obtained by PASEF data acquisition. For example, IMS can separate chimeric 
spectra produced from isobaric precursor ions.  

In MS imaging analysis, a crucial drawback is the lack of large-scale MS2-based annotations, because 
images are usually acquired on the MS1 level only and data-dependent acquisition (DDA) methods are 
still lacking. Furthermore, even with MS2 acquisition, the windows for precursor ion isolation typically 
span unit resolution and cannot resolve all ions. This is particularly challenging when analyzing lipids, 
where the overlap of isomers and isobars must be considered.32 The annotation confidence can be 
increased by acquiring LC-IMS-MS2 data of the same sample to create a tissue-specific, MS2 curated, 
and CCS value enriched target list.33 MZmine 3 combines the annotations obtained from LC-IMS-MS 
analysis with the imaging data of a MALDI-IMS-MS experiment. The feature alignment module groups 
features from different data types using m/z and CCS, as demonstrated in Supplementary Fig. 4. A 
sheep brain tissue was analyzed by hydrophilic interaction liquid chromatography (HILIC)-IMS-MS and 
MALDI-IMS-MS. A microscopic bright field image is depicted in Supplementary Fig. 4a. A common 
challenge in annotating lipid MS imaging data is the differentiation of naturally occurring 13C2 isotopes 
from species differing by double bonds (e.g., [PC 34:1+H+13C2]+ ≈ [PC 34:0+H]+, ∆m/z 0.009). The 
distribution of 762.5946 ±0.01 m/z is shown in Supplementary Fig. 4b, which covers [PC 34:0+H]+ and 
[PC 34:1+H+13C2]+ and therefore cannot clearly be localized. However, the mobility-m/z heatmap in 
Supplementary Fig. 4c reveals the presence of two different compounds. While this distribution can 
be resolved by MALDI-IMS-MS alone, a confident MS2-backed annotation requires the feature 
alignment to the lipid extracts analyzed by HILIC-IMS-MS (Supplementary Fig. 4d). MS2 spectra were 
annotated by MZmine’s rule-based lipid annotation module3, revealing that both lipids are present in 
the sample and are resolved in the IMS dimension (Supplementary Fig. 4e). By aligning the 
complementary datasets using m/z and mobility, as shown in Supplementary Fig. 4e, the annotation 
obtained by HILIC-IMS-MS2 analysis can be transferred to the mobility-resolved images shown in 
Supplementary Fig. 4f and Supplementary Fig. 4g. In contrast to the non-mobility-resolved 
distribution in Supplementary Fig. 4b, two distinct, anti-correlated distributions are found for [PC 
34:0+H]+ and [PC 34:1+H+13C2]. Potentially, the PC 34:1 distribution could be deduced from the 
monoisotopic mass alone, and the two ions at m/z 762.59 could be distinguished by ultrahigh 
resolution MS (R > 85,000). However, the PC 34:0 annotation was only possible due to the mobility 
separation and integrative analysis of complementary HILIC-IMS-MS2 and MALDI-IMS-MS data, 
highlighting the potential of such a combined analysis.33 Using IIMN in the GNPS environment, the 
molecular network in Supplementary Fig. 4h illustrates the aligned LC and MALDI results by 
representing ion features (m/z, CCS, RT, spatial distribution, and MS2) as nodes, connected by pairwise 
matching of fragmentation spectra by modification-aware cosine similarity (grey edges). Ions from the 
same molecule are connected by feature shape correlation (red dashed edges). If the features are 
identified by rule-based lipid annotation or spectral library matching, pink borders or blue fillings are 
used, respectively. Features with images from MALDI-IMS-MS analysis show a diamond shape. 
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For manual investigation of LC-IMS-MS and IMS-MS data, two new interactive visualizers were 
developed for MZmine 3 (Supplementary Fig. 5a and 5b). Both visualizers allow easily accessible 
point-and-click investigation of the multidimensional data.  
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Supplementary Fig. 4 | Alignment of ion mobility-resolved imaging and chromatography MS data 
for improved annotations in spatial omics workflows. 

a, A microscopic bright field image of a sheep cerebrum and b, an exemplary signal distribution of m/z 
762.5946 ±0.01 are shown. c, The ion mobility m/z heatmap indicates the presence of an isobaric 
interference. d, HILIC-IMS-MS extracted ion chromatograms (EIC) of PC 34:0 and PC 34:1 obtained 
from a Matyash extraction,34 indicating that both lipids are present in the sample. e, The mobilograms 
of m/z 762.5946 from the imaging (dotted) and HILIC (solid) data are shown. MS2 spectra acquired 
during the HILIC separation allow compound annotation as PC 34:0 and the 13C2 isotope of PC 34:1. 
This annotation can be confidently transferred to the MALDI MS imaging data by aligning the HILIC 
features with mobility resolved images (panel f and g). h, An IIMN subnetwork of the HILIC-IMS-MS 
data, complemented by the images obtained from the MALDI-IMS-MS analysis. HILIC-IMS-MS features 
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aligned with an image are shown with a diamond shape. Interactive networks are available through 
the GNPS web platform.  

 

 
Supplementary Fig. 5 | IMS-MS data inspection interfaces in MZmine 3. 

a, A screenshot of the interactive LC-IMS-MS visualizer. All charts are connected by their data and by 
selected m/z, RT, and mobility ranges. 1) Summed frame spectrum, 2) EIC and BPC, 3) extracted ion- 
and base peak mobilograms, 4) frame heatmap, and 5) RT/mobility ion trace. Clicks in any chart change 
the selected m/z, retention time, and mobility ranges and trigger updates of the other visualizers. b, 
Combined screenshots of the IMS-MS and imaging visualizers.  
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Methods 

Chemicals and materials 

Methanol and acetonitrile were obtained from VWR International GmbH and were of LC-MS grade. 
HPLC grade methyl tert-butyl ether (MTBE) was obtained from Merck KGaA. 98% 2,5-dihydroxybenzoic 
acid (DHB), ammonium formate (>99%), and trifluoroacetic acid were ordered from Sigma Aldrich. 
Water was purified by a Milli-Q Academic system (18.2 MΩ cm; 0.2 μm filter; Millipore). Formic acid 
(LC-MS grade) was obtained from Fisher Scientific. 
 

Sheep brain tissue preparation 

Sheep brain tissue for this study was harvested from Swiss-Alpine sheep (animal license number 
ZH235/17, Swiss Animal Welfare Act). The details of the study have been described previously.35 A 
lipid extract of the brain tissue was prepared following the Matyash protocol.34 Briefly, 43.7 mg of 
brain tissue were cut on dry ice and rinsed with sterile filtered ammonium acetate buffer (0.1%, w/v). 
750 µL of buffer were added, and the tissue was homogenized with an Ultra Turrax T8 (IKA 
Labortechnik) on ice. Subsequently, 1.4 mL of methanol, 100 µL of BHT in methanol (65 mM), and 5 
mL of MTBE were added, and the mixture was incubated at 100 rpm on ice for 1 h. Afterwards, 1.25 
mL of water were added, and the sample was centrifuged at 1000 g. The organic phase was collected 
and the aqueous phase was re-extracted with 2 mL of the organic phase MTBE/methanol/water 
(10:3:2.5, v/v/v). After centrifugation, the combined organic phase was dried under a gentle nitrogen 
stream and redissolved in 600 µL of isopropanol. 

 

HILIC-IMS-MS 

The sample was analyzed using an UltiMate 3000 system with a dual gradient pump (Thermo 
Scientific) and a timsTOF fleX (Bruker Daltonics). An iHILIC Fusion(+) column (20 × 2.1 mm, 5 μm, 100 
Å) (HILICON AB) was employed for lipid class separation. The LC-IMS-MS2 method was adapted from 
Helmer et al.33 Briefly, 35 mM ammonium formate in water/acetonitrile (95:5, v/v, pH 3.5) (A) and 
acetonitrile (B) were used as eluents. Eluent B was held at 97% until 0.2 min, ramped to 93% at 0.5 
min, held until 2.75 min, ramped to 60 % at 8.0 min, held until 11.5 min, ramped to 97 % at 12 min, 
and re-equilibrated until 18.0 min. The column oven was set to 40 °C. The timsTOF fleX was operated 
in positive ESI mode, with 2.0 bar nebulizer pressure, 9.0 L/min dry gas, 200°C dry heater, 4000 V 
capillary voltage, -500 V end plate offset, 360 Vpp funnel 1 RF, 250 Vpp funnel 2 RF, 80 V deflection 
delta, 5 eV ion energy, 10 eV collision energy, 1000 Vpp collision RF, 5 µs pre pulse storage, 65 µs 
transfer time. TIMS delta values were set to -20 V (delta 1), -120 V (delta 2), 80 V (delta 3), 100 V (delta 
4), 0 V (delta 5), and 100 V (delta 6). The 1/K0 (inverse reduced ion mobility) range was set from 0.9 
Vs/cm2 to 1.6 Vs/cm2, the mass range was m/z 100-1350. MS2 spectra were acquired using the PASEF 
DDA mode with a collision energy of 40 eV. Ion charge control (ICC) was enabled and set to 7.5 mio 
counts. The samples were analyzed with TIMS ramp times of 100 ms and 500 ms. 

 

MALDI-IMS-MS 

10 µm thin sections were mounted on indium tin oxide coated glass slides. Bright field microscopic 
images were acquired BIOREVO BZ-9000 digital microscope (Keyence) in 2 and 10-fold magnification. 



MZmine 3 - Supplementary Information Page 15 of 20 

150 mg of DHB were dissolved in acetonitrile/water (9:1, v/v) with 0.1 % trifluoroacetic acid. The 
matrix was applied by a TM-Sprayer (HTX Imaging) with 40 mm nozzle height, 10 psi nitrogen pressure, 
60 °C, 0.125 mL/min solvent flow, 1200 mm/min z-arm velocity, 14 passes, a CC moving pattern, 3 mm 
track spacing, and 0 s drying time. The timsTOF fleX was operated in positive ion mode, with 350 laser 
shots, 10,000 Hz laser frequency, 50 µm spot size. The TIMS ramp time was set to 350 ms. Other 
parameters were retained from the HILIC measurements. 

 

Ion mobility raw data pre-processing 

LC-IMS-MS raw data was recalibrated in DataAnalysis 5.2 (Bruker Daltonics) using in-line infusion of 
sodium formate and ESI-L low concentration tuning mix (Agilent Technologies Manufacturing) mixed 
in a 1:1 ratio. Bruker raw data was directly imported from the native .tdf file format. MZmine then 
stores spectral data in temporary files that are memory mapped for efficient data retrieval.  Mobility-
resolved mass spectra at one retention time are grouped in frames. An accumulated mass spectrum 
representing the whole frame was calculated.  

 

LC-IMS-MS feature detection workflow 

Construction of extracted ion chromatograms (EICs) and resolving individual features, termed feature 
detection, was performed on the accumulated frame spectra. Ion chromatograms were created with 
the ADAP chromatogram builder.10 The EICs were then resolved in the RT dimension by the ADAP 
continuous wavelet transform to create individual features defined by an m/z and retention time 
range.  

The mobility-resolved data was searched for data points within the detected m/z and retention time 
limits. This created three-dimensional ion mobility traces. The ion mobility traces represent the 
intensity distribution of a feature in mobility and retention time dimension within an m/z range. 
Accumulated EICs (in mobility dimension) and accumulated mobilograms (in retention time 
dimension) were then created from the data in the ion mobility traces. The mobilograms were finally 
resolved in mobility dimension using feature detection algorithms such as local minimum search (100 
ms TIMS ramp) or ADAP continuous wavelet transform (500 ms TIMS ramp).10 Feature list deisotoping, 
alignment, and gap filling of ion mobility data were performed within given m/z, RT, and mobility 
tolerances. PASEF MS2 spectra were assigned to the features based on their RT and ion mobility 
ranges. Results were exported to FBMN on the GNPS web service. 

 

MALDI-IMS-MS imaging feature detection workflow 

Images were created with an adapted ADAP chromatogram builder algorithm.10 For every detected 
m/z, an image was created based on accumulated frame spectra. Afterwards, the mobility-resolved 
sub-scans were queried to build mobility-resolved images. The images were resolved in IMS dimension 
by the feature detection algorithm local minimum search.10 The mobility resolved images were aligned 
to an LC-IMS-MS feature list by m/z and mobility values, retaining LC-based annotations. 
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Supplementary Note 3 

Performance stress test 

Processing large-scale MS datasets requires significant computational resources. MZmine 3 improves 
the practical scalability of analysis from hundreds to tens of thousands of samples. To demonstrate 
the scalability of data analysis in MZmine 3,  we processed various public MS datasets on common 
hardware. The stress test resulted in high sample throughput, where the mean processing times only 
took 0.1% to 0.3% of the total data acquisition time for 6 different LC-MS datasets. A breakdown of 
the analysis (Supplementary Fig. 6) shows that parallelization of all computational steps removed 
significant bottlenecks. The alignment step, which creates a matrix of samples ⨉ features, remains the 
most time-consuming step for larger datasets. For example, the alignment of 250 complex dissolved 
organic matter (DOM) samples from ocean waters was reduced by 89% (from 43.4 min to 4.7 min), 
processed on data analysis computer 1 by MZmine 2.53 and MZmine 3.2.0, respectively (refer to 
Methods for hardware specifications). Due to the increased complexity of ion mobility-resolved data, 
LC-IMS-MS datasets demand even more efficient processing. MZmine 3 performed the complete four-
dimensional feature detection workflow in preparation of molecular networking in a fraction of the 
data acquisition time, e.g., in 29.5 min for 40 Piper plant extracts. For large datasets, MZmine 3 was 
able to process data from 8273 fecal LC-MS2 samples in 47.0 min and data from 1003 DOM LC-MS2 
samples, which are significantly more complex, in 59.5 min.  
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Supplementary Fig. 6 | Performance evaluation of MZmine 3. 

a, MZmine 3.2.0 processed six different LC-MS datasets of varying study targets and sizes. On average, 
processing took 0.1% to 0.3% of the data acquisition times. b, Processing of the same 250 sample 
dataset in MZmine 2 reveals a 7x speed up in MZmine 3. Analysis on a laptop and on the data analysis 
computer 1 gave similar performance (see specifications in Methods). Running MZmine 2.53 on other 
datasets, with similar parameters, revealed severe limitations; MZmine 2.53 crashed on all larger 
studies during chromatogram building or gap-filling. c, Benchmarks of the LC-IMS-MS workflow on 2 
datasets with 40 samples and 100 samples (the dataset size was increased by copying data files, see 
Methods) resulted in processing times that are a fraction of the total data acquisition time. See 
hardware specifications in the Methods section. 
 
 
 
Methods 

MZmine 3 was written with performance and throughput in mind. We performed comparative tests 
(MZmine 2.53 → 3.2.0) on six datasets with various study backgrounds. A large public environmental 
study (MSV000090079) of DOM, measured by LC-MS2 with top-5 DDA, was split into three datasets 
with 250, 500, and 1,003 samples, using the largest mzML files for the smaller subsets. Two human 
cohort studies (MSV000088054) with 3,008 and 8,273 samples were acquired by LC-MS2. A set of 1,600 
diverse plant extracts, blanks, and quality controls created the last public dataset (MSV000087728) 
with 1,920 LC-MS2 samples measured with top-3 DDA. 

Data processing workflow consisted of the main steps that were optimized for each dataset 
separately, considering the MS scan acquisition rate, the LC peak width, and the number of spectra-
per-feature. The DOM datasets, which show high spectral complexity and have an emphasis on 
annotation and molecular networking based on the top-5 DDA method, were processed with low noise 
levels and few feature constraints. The human cohort studies were processed with higher feature 
constraints, considering the higher MS acquisition speed and higher number of data points per 
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feature. The workflow for the plant dataset used chromatogram smoothing to improve the feature 
shapes before resolving, and skipped the gap-filling step given the diversity of samples. This step is 
usually performed as a secondary informed feature detection, preparing the feature list for statistical 
analysis. With the diversity of tested specimens and the top-3 DDA method, this is a perfect example 
of a dataset suited for molecular networking for novel compound discovery. All parameters and steps 
are provided as batch files in Supplementary File S1. 

First, performance tests were performed comparing the processing speed in MZmine 3.2.0 to the data 
acquisition speed, as summarized in Supplementary Fig. 6a. On data analysis computer 1 with 16 
threads and 128 GB memory and on a laptop with 16 threads and 32 GB memory (system 
specifications below), processing took 0.1%–0.3% of the time needed to acquire the LC-MS data of the 
whole study, not accounting for delays between sample injections. With all steps running in parallel, 
the throughput of samples scales with the increasing complexity of more features being aligned into 
one feature list. Alignment and gap-filling used to be bottlenecks of the feature detection workflow, 
however, with the current optimization, they produce reproducible results in a high throughput 
manner. This represents a 7-fold increase in processing speed in comparison with the previous 
generation, MZmine 2 (Supplementary Fig. 6b). 

Performance of the LC-IMS-MS workflow was tested on two public datasets of 46 Piper plant extracts 
(21.6 GB) and sheep brain. To simulate a larger dataset, the 3 sheep brain samples and 2 blanks were 
copied until reaching 10 blanks and 90 samples, totaling 100 LC-IMS-MS files (38.2 GB). MZmine 3 
imported, memory-mapped spectral data, and extracted LC-IMS-MS resolved ion features in a fraction 
of the total data acquisition time on data analysis computer 2 (Supplementary Fig. 6c).  

MZmine 3.2.0 was built and packaged with Java Development Kit (JDK) 17.0.4 (Temurin), eliminating 
the need to install a Java Virtual Machine on the target machine. MZmine 3.3.0 was packaged with 
the updated JDK 19.0.1 (Temurin). 
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Hardware specifications 

The systems used to process LC-MS studies were: 

- Data analysis computer 1, Intel Core i7-9700K, 8 cores, 16 threads, 128GB RAM, SSD storage 

- Laptop, Dell XPS15 9510, Intel Core i7-11800H, 8 cores, 16 threads, 32GB RAM, SSD storage  

The system used to process LC-IMS-MS and MALDI-IMS-MS studies was: 

- Data analysis computer 2, Dell Optiplex 7080, Intel Core i9 10900K, 10 cores, 20 threads, 64 
GB RAM, NVMe SSD storage 

 

Performance tuning and options are described in the MZmine documentation: 

https://mzmine.github.io/mzmine_documentation/performance.html 
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