

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Study protocol for IMPRoVE: a multicentre prospective observational cohort study of the incidence, impact and mechanisms of perioperative right ventricular dysfunction.

Journal:	BMJ Open
Manuscript ID	bmjopen-2023-074687
Article Type:	Protocol
Date Submitted by the Author:	13-Apr-2023
Complete List of Authors:	Keast, Tom; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Golden Jubilee Hospital McErlane, James; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee Hospital Kearns, Rachel; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Glasgow Royal Infirmary, Department of Anaesthesia McKinlay, Sonya; Glasgow Royal Infirmary, Department of Anaesthesia Raju, Indran; Queen Elizabeth University Hospital, Department of Anaesthesia and Critical Care Watson, Malcolm; Queen Elizabeth University Hospital, Department of Anaesthesia and Critical Care Robertson, Keith; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre Berry, Colin; University of Glasgow, Institute of Cardiovascular and Medical Sciences Greenlaw, Nicola; University of Glasgow, Robertson Centre for Biostatistics Ackland, Gareth; Barts Health NHS Trust, Department of Anaesthesia and Perioperative Medicine, Royal London Hospital McCall, Philip; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Golden Jubilee Hospital Shelley, Benjamin; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee Hospital
Keywords:	Echocardiography < CARDIOLOGY, Adult anaesthesia < ANAESTHETICS, SURGERY, Magnetic resonance imaging < RADIOLOGY & IMAGING

SCHOLARONE[™] Manuscripts

1		1
2		
3	1	Title: Study protocol for IMPRoVE: a multicentre prospective observational cohort
4		
5	2	study of the incidence, impact and mechanisms of perioperative right ventricular
6	3	dysfunction
7	4	
8	5	Dr Tom Keast ^{*1,2} , Dr James McErlane ^{*1,2} , Dr Rachel Kearns ^{1,3} , Dr Sonia McKinlay ³ ,
9	6	Dr Indran Raju ⁴ , Dr Malcom Watson ⁴ , Dr Keith Robertson ⁵ , Prof Colin Berry ⁶ , Dr
10	7	Nicola Greenlaw ⁷ , Prof Gareth Ackland ⁸ , Dr Philip McCall ^{1,2} , Prof Ben Shelley ^{1,2}
11	8	-
12		
13	9	Corresponding author: Dr James McErlane
14	10	james.mcerlane@glasgow.ac.uk
15		ORCID ID: 0000-0002-0490-8425
16 17	11	ORCID ID. 0000-0002-0490-8425
17	12	
10	13	Authors email addresses: Dr Tom Keast: tom.keast@glasgow.ac.uk, Dr Rachel Kearns:
20	14	Rachel.Kearns@glasgow.ac.uk, Dr Sonia McKinlay: Sonya.McKinlay@ggc.scot.nhs.uk, Dr
21	15	Indran Raju: Indran.Raju@ggc.scot.nhs.uk, Dr Malcom Watson:
22	16	malcolm.watson@ggc.scot.nhs.uk, Dr Keith Robertson: Keith.Robertson@gjnh.scot.nhs.uk,
23	17	Prof Colin Berry: Colin.Berry@glasgow.ac.uk, Nicola Greenlaw:
24	18	Nicola.Greenlaw@glasgow.ac.uk, Prof Gareth Ackland: g.ackland@qmul.ac.uk, Dr Philip
25	19	McCall: <u>philip.mccall@glasgow.ac.uk</u> , Prof Ben Shelley: <u>Benjamin.Shelley@glasgow.ac.uk</u>
26	15	meetan. philip.meetan@glubgow.ue.uk, 1101 Den bieney. Denjamm.bieney@glubgow.ue.uk
27	20	* Co first outhors
28	20	* Co-first authors
29	21	¹ Anaesthesia, Critical Care & Peri-operative Medicine Research Group, University of
30	22	Glasgow, UK. ² Department of Anaesthesia, Golden Jubilee National Hospital, Clydebank,
31	23	UK. ³ Department of Anaesthesia, Glasgow Royal Infirmary, Glasgow, UK. ⁴ Department of
32	24	Anaesthesia and Critical Care, Queen Elizabeth University Hospital, Glasgow, UK. ⁵ West of
33	25	Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK.
34	26	⁶ Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK. ⁷ Robertson
35	27	Centre for Biostatistics, University of Glasgow, UK. 8Department of Anaesthesia and
36	28	Perioperative Medicine, Royal London Hospital, Barts Health NHS Trust, London, UK.
37	20	Tenoperative medicine, Royar Dondon Hospital, Daris Headin 1416 Hust, Dondon, OK.
38 39		
39 40		
40		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		

1			2
2			
3	29	Abstract	
4	30	Introduction	
5 6	31	Perioperative myocardial injury evidenced by elevated cardiac biomarkers (both natriuretic	
7	32	peptides and troponin) is common after major non-cardiac surgery. It is unclear however if	
8	33	the rise in cardiac biomarkers represents global or more localised cardiac injury. We have	
9	34	previously shown isolated right ventricular (RV) dysfunction in patients following lung	
10	35	resection surgery, with no change in left ventricular (LV) function. Given that perioperative	
11	36	RV dysfunction (RVD) can manifest insidiously, we hypothesise there may be a substantial	
12 13	37	burden of covert yet clinically important perioperative RVD in other major non-cardiac	
14	38	surgical groups. The Incidence, impact and Mechanisms of Perioperative Right VEntricular	
15	39	dysfunction (IMPRoVE) study has been designed to address this knowledge gap.	
16	40		
17	41	Methods and analysis	
18	42	A multicentre prospective observational cohort study across four centres in the West of	
19 20	43	Scotland and London. One-hundred and seventy-five patients will be recruited from five	
20	44	surgical specialties; thoracic, upper gastrointestinal, vascular, colorectal, and orthopaedic	
22	45	surgery (35 patients from each group). All patients will undergo pre- and postoperative (day	
23	46	2-4) echocardiography, with contemporaneous cardiac biomarker testing. Ten patients from	
24	47	each surgical specialty (50 patients in total) will undergo T1-cardiovascular magnetic	
25	48	resonance (CMR) imaging preoperatively and postoperatively. The co-primary outcomes are	;
26 27	49	the incidence of perioperative RVD (diagnosed by RV speckle tracking echocardiography)	
28	50	and the effect that RVD has on days alive and at home at 30-days postoperatively. Secondary	-
29	51	outcomes include LV dysfunction and clinical outcomes informed by Standardised Endpoint	
30	52	in Perioperative Medicine (StEP) consensus definitions. T1 CMR will be used to investigate	
31	53	for imaging correlates of myocardial inflammation as a possible mechanism driving	
32 33	54	perioperative RVD.	
33 34	55		
35	56	Ethics and dissemination	
36	57	Approval was gained from Oxford C Research Ethics Committee (REC reference	
37	58	22/SC/0442). Findings will be disseminated by various methods including social media,	
38	59	international presentations, and publication in peer-reviewed journals.	
39 40	60		
40 41	61	Trial registration	
42	62 63	ClinicalTrials.gov registration in progress.	
43	63 64	Strengths and limitations of this study	
44	65	This is the first study to investigate the incidence of perioperative RVD after major non-	
45	66	cardiac surgery, and the association between RVD and patient outcomes in this group.	
46 47	67	cardiae surgery, and the association between KVD and patient butcomes in this group.	
48	68	T1-CMR sub-study to investigate whether inflammation is a mechanism underlying	
49	69	perioperative RVD.	
50	70	perioperative RVD.	
51	71	A large prospective multicentre study with appropriate statistical power analysis.	
52 53	72	These prospective manueentie study with appropriate studistical power analysis.	
55 54	73	It is difficult to predict the incidence of perioperative RVD in surgical groups other than	
55	74	lung resection since there is such limited data.	
56			
57			
58			
59 60			
50			

BMJ Open

Perioperative myocardial injury (PMI) is common after major non-cardiac surgery, with a recent large international observational study demonstrating an elevated postoperative high-sensitivity troponin (hsTn) level in 19.7% of patients undergoing major non-cardiac surgery¹. Perioperative PMI has also been shown to be associated with poor cardiovascular outcomes in patients undergoing non-cardiac surgery². Similarly, natriuretic peptides increase following surgery, and this is associated with an increased risk of cardiovascular complications and mortality³. Our group has demonstrated that peak postoperative brain natriuretic peptide (BNP) is associated with postoperative complications and length of hospital stay after thoracic surgery⁴. Although an increase in cardiac biomarkers after major non-cardiac is well described, there has been little research to investigate the location of the myocardial injury (although it is frequently attributed to injury of the left ventricle with little evidence to substantiate this assertion). A study in a mixed surgical population requiring "rescue" echocardiography demonstrated that postoperative right ventricular (RV) dysfunction was as prevalent as left ventricular (LV) dysfunction, occurring in 24.1% of patients.⁵ Postoperative RV dysfunction (RVD) is difficult to diagnose, manifesting with subtle clinical signs; it is therefore unsurprising that its importance may have been overlooked.⁶ In addition to postoperative RVD, it has be shown that there may be a considerable burden of preoperative RVD in patients undergoing non-cardiac surgery, a study in patients undergoing major vascular surgery found a prevalence of preoperative RVD of 10%, and this was associated with postoperative major cardiac complications⁷. The incidence and significance of perioperative RVD in other non-cardiac surgical populations has been poorly described. We have previously shown that patients undergoing lung resection experience significant impairment of RV function postoperatively with no change in LV function⁸. Further research is needed to investigate the incidence and impact of perioperative RVD on patient outcomes

2 3 4	101	in other non-cardiac surgery groups. Additionally, the mechanisms underlying perioperative
5	102	RVD require elucidation to allow effective preventative and treatment strategies to be
7 8	103	devised. The IMPRoVE study has been conceived to address this gap in our understanding of
9 10 11	104	perioperative RVD.
12 13	105	
14 15	106	Potential mechanisms of perioperative RV dysfunction
16 17 18	107	The mechanisms of postoperative RVD likely reflect a complex interplay between pre-
19 20	108	existing RVD, patient susceptibility, surgical risk and a multitude of potential perioperative
21 22	109	insults.
23 24 25	110	
26 27	111	As described above ⁷ , RVD may pre-date surgery. In the general population, RVD is more
28 29	112	prevalent in the elderly, and in people with hypertension, diabetes mellitus, ischaemic heart
30 31 32	113	disease, and lung disease ⁹ ; risk factors which are overrepresented in the surgical population.
32 33 34	114	As anticipated, in our previous thoracic surgery cohort we found a high prevalence of pre-
35 36	115	existing RV dysfunction of 50% ⁸ .
37 38	116	
39 40 41	117	The perioperative period exposes patients to many insults that may contribute to RVD.
42 43	118	Excess pre-load may occur in the form of injudicious IV fluid administration, resulting in RV
44 45	119	distension and tricuspid regurgitation ^{6,10} . Impaired contractility may occur due to myocardial
46 47 48	120	ischaemia. RV afterload may increase by many mechanisms, including;
48 49 50	121	
51 52	122	- Pulmonary thromboembolism (PTE)- occurring sub-clinically in up to 28% of patients
53 54	123	undergoing elective intermediate to high risk noncardiac surgery ¹¹ .
55 56 57	124	
58 59		
60		

2 3 4	125	- Lung injury and inflammation- due to pre-existing lung disease and the combined
5 6	126	deleterious effects of ventilator induced lung injury, systemic inflammation and fluid
7 8	127	overload ⁶ .
9 10 11	128	
12 13	129	- Positive-pressure mechanical ventilation ⁶
14 15 16	130	
10 17 18	131	- Lung resection- recently we have demonstrated the pulsatile component of RV
19 20	132	afterload significantly increases after lung resection ¹² .
21 22	133	
23 24 25	134	Inflammation and Perioperative Myocardial Injury
25 26 27	135	Whist it is widely hypothesised that PMI results predominantly from ischaemia secondary to
28 29	136	myocardial oxygen supply/demand imbalance, this hypothesis remains unproven and is
30 31	137	challenged by important observations; in excess of 90% of patients with PMI have no
32 33 34	138	ischaemic symptoms to support a diagnosis of myocardial infarction ¹ , and the extent and
35 36	139	severity of coronary artery disease does not correlate closely with the occurrence of PMI ¹³ .
37 38	140	
39 40 41	141	The inflammatory response is an important contributor to the myocardial injury seen after
41 42 43	142	myocardial infarction and cardiac surgery, but the extent to which systemic inflammation is
44 45	143	involved in the pathogenesis of PMI after non-cardiac surgery is not known. Ackland et al
46 47	144	recently demonstrated that PMI was associated with an elevated neutrophil-lymphocyte ratio,
48 49 50	145	suggesting systemic inflammation may predispose patients to PMI ¹⁴ . Using T1-weighted
51 52	146	Cardiovascular Magnetic Resonance (T1-CMR) our group has described the presence of
53 54	147	imaging correlates of perioperative RV (but not LV) myocardial inflammation in patients
55 56 57	148	undergoing lung resection ¹⁵ .
57 58 59 60	149	

2 3	150	In summary, with greater understanding of the incidence, impact and underlying mechanisms
4 5	151	of perioperative RV dysfunction provided through this investigation, preventative
6 7		
8 9	152	interventions targeted at patients at greatest risk may offer a unique therapeutic opportunity to
10 11	153	provide a personalised approach to perioperative management, and improve patient outcomes
12 13	154	across a wide range of surgical populations.
14 15	155	
16 17 18	156	Hypotheses
19 20	157	1. Right ventricular dysfunction (RVD) after major non-cardiac surgery is a common covert
21 22	158	contributor to perioperative morbidity.
23 24 25	159	
26 27	160	2. Inflammatory injury to the right ventricle (RV) is a significant contributing factor to
28 29	161	perioperative myocardial injury.
30 31 32	162	
33 34	163	3. Prevention of RVD in high-risk patients undergoing major non-cardiac surgery will lead to
35 36	164	improved outcomes. This underlying hypothesis justifies the workstream of our group,
37 38	165	however it is not directly tested by IMPRoVE study.
39 40 41	166	
42 43	167	Methods and Analysis
44 45 46	168	Summary: A multicentre prospective observational cohort study in patients undergoing major
40 47 48	169	non-cardiac surgery in five surgical specialties. Main study: 175 patients to undergo
49 50	170	transthoracic echocardiography (TTE) pre- and postoperatively (Figure 1). Sub-study: 50
51 52	171	patients to undergo T1-CMR pre- and postoperatively.
53 54 55	172	
56		
57 58		
59 60		

Page 7 of 27

BMJ Open	
	7
Centres: three hospitals in the West of Scotland (Golden Jubilee National Hospital [GJNH],	
Queen Elizabeth University Hospital, and Glasgow Royal Infirmary). and one London	
hospital (Royal London Hospital).	
Study status: Grant funding was secured 12/02/2021, with ethical approval on 12/01/2023	
(REC reference 22/SC/0442). First recruit anticipated April 2023.	
Selection of study subjects	
Inclusion Criteria	
1. Patient aged >18 years	
2. Patient undergoing planned elective primary hip or knee joint replacement under spinal	
anaesthesia, major colorectal, major vascular surgery, or major surgery requiring one lung	
ventilation with or without lung resection	
3. Provision of informed consent	
Main Study Exclusion Criteria	
1. Pregnancy	
2. On-going participation in any investigational research which could undermine the	
scientific basis of the study	
3. Previous major surgery within previous 3 months	

- 4. Previous participation in the IMPRoVE study
- 5. Inadequate comprehension of English resulting in inability to comply with instructions
- while undergoing interventions required for main study and sub-study

2 3 4	198	T1-CMR Sub-study Exclusion Criteria
5 6	199	1. Contraindication to T1-CMR (see supplementary material)
7 8	200	2. Atrial fibrillation at baseline
9 10 11	201	3. Acute or chronic kidney disease
12 13	202	4. Allergy to intravenous contrast
14 15	203	
16 17	204	Study Conduct
18 19 20	205	Recruitment
21 22	206	Patients will be identified from hospital waiting lists. Patients will be informed of the study,
23 24	207	offered a patient information sheet, and invited to participate at the earliest possible
25 26 27	208	opportunity after they have been informed of their decision for surgery. Following
28 29	209	appropriate time to consider participation, informed consent will be obtained by a member of
30 31	210	the research team.
32 33 34	211	
35 36	212	Consent
37 38	213	Written informed consent will be obtained, following a face-to-face discussion about the
39 40 41	214	study by a member of the study team. Signing of consent form and preoperative blood
42 43	215	sampling and imaging may take place at any time in the 30 days prior to surgery or on the
44 45	216	day of surgery.
46 47 48	217	
40 49 50	218	Medical Management
51 52	219	Medical management will be according to the standard of care at each treating site and is not
53 54	220	influenced by this study protocol.
55 56 57	221	
58 59 60	222	

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
57 58	
59	

- Table 1 shows the general schedule of assessments/study interventions that patients will
- undergo.

⁰ 226

² 227 <u>Table 1. Schedule of Assessments</u>

	Pre-op	Day of surgery (Day 0)	POD1	POD2	Day of Echo (POD 2-4)	Discharge	30 days	3 months	12 month
Informed consent	x								
Inclusion/exclusion criteria	x								
Baseline demographics and risk scoring	х								
BNP/HsTn	x		x	x	х				
NT-proBNP	x								
Immediate perioperative data		x	0	4					
Echocardiography	X				х				
Γ1-CMR ^A	х				х				
QoR-15	x				х				
Organ specific complications (Clavien-Dindo ≥ 2)			х	X	x	X	Х		
Unplanned ICU Admission			Х	X	x	X			
Length of Hospital stay					2	х			
Length of ICU/HDU stay					x	x			
Mortality					x	X	Х	Х	Х
DAH ₃₀							х		
Hospital readmission							Х		
EQ-5D-5L	х						X	Х	х
WHODAS 2.0	х						Х	Х	Х
	1 0.1	C		oups (50 ir	1				

232 Related Quality of Life Questionnaire, WHODAS 2.0 = World Health Organisation Disability Assessment

233 Schedule 2.0.

⁵⁹ 234

235 Echocardiography Conduct and Analysis

Transthoracic echocardiography will be performed on all 175 patients by a British Society of Echocardiography (BSE) accredited echocardiographers preoperatively and between postoperative days 2-4. Echocardiography will acquire the minimum BSE image dataset¹⁶. In addition to this minimum image dataset, we will acquire a RV focussed apical four chamber view for RV free-wall peak longitudinal strain (FWLS) analysis (optimising feasibility as per consensus guidelines¹⁷¹⁸). All echocardiography study images will be sent centrally for offline analysis: anonymised images will be transferred via routine clinical imaging systems to the GJNH.

4 244

A full echocardiography data set will be used to assess for RVD (the primary outcome) and LV dysfunction (LVD). Offline RV and LV 2D speckle tracking strain analysis will be performed using Tomtec 2D Cardiac Performance Analysis software. Twenty echocardiography scans will be randomly selected and re-reported by the same reporter a minimum of two weeks after initial reporting, and reported by a second reporter, to allow assessment of intra- and inter-observer agreement. Reproducibility will be assessed by intraclass correlation co-efficient (ICC) using two-way mixed effects with absolute agreement and Bland–Altmann plots.

5 254 **T1-CMR Conduct**

A sub-cohort of 50 patients (10 from each surgical group) will undergo T1-CMR
preoperatively and on day 2-4 postoperatively. Replicating our previous protocol⁸, CMR will
be undertaken on a 1.5 or 3.0 Tesla scanner, by band 7 Health and Care Professions Council
accredited radiographers. T1 weighted scans will be performed pre- and post- intravenous
gadolinium administration. Post-processing will be protocolised and dual reported by blinded
observers.

1		1
2 3 4	261	Laboratory sampling
5 6	262	Where possible samples will be drawn contemporaneously with routine clinical blood tests.
7 8 9	263	Cardiac biomarkers will be batch analysed at University of Glasgow Laboratories.
9 10 11	264	
12 13	265	DAH ₃₀ Conduct
14 15 16	266	Days alive and at home at 30-days postoperatively (DAH ₃₀) will be assessed by telephone on
16 17 18	267	postoperative day 30 (up to + 5 days). A script will be used to ensure that DAH_{30} is reliably
19 20	268	and consistently recorded.
21 22 22	269	
23 24 25	270	Data collection and management
26 27	271	Data collection will be performed by the local study team on case report forms (CRFs) which
28 29	272	will be filed and securely stored at participating sites. The data will be anonymised at site and
30 31 32	273	a unique numeric study number allocated. Completed CRFs will be entered onto a secure
33 34	274	online database in a linked anonymised form. Electronic data will be stored in an encrypted
35 36	275	and anonymised format for 15 years following the completion of the trial. At the end of this
37 38 39	276	period, the dataset will be destroyed according to DoD 5220.22-M standards. All data will be
40 41	277	held in accordance with The General Data Protection Regulation (2018).
42 43	278	
44 45 46	279	Laboratory data
46 47 48	280	Laboratory data will be obtained from the local biochemistry and haematology laboratory
49 50	281	reporting systems preoperatively, on the day of echocardiography and at follow-up.
51 52	282	
53 54 55	283	Clinical data
56 57	284	Baseline demographic information will be collected including chronic co-morbidities. We
58 59 60	285	will specifically gather information on sleep apnoea status and previous COVID-19 infection

1		-
2		
3 4	286	since these may affect baseline RV function. Preoperative data will include previous
5 6	287	pulmonary function tests, cardiopulmonary exercise testing, computed tomography (CT)
7 8 9	288	thorax imaging (for coronary artery calcium scoring), American College of Surgeons
) 10 11	289	National Surgical Quality Improvement Program risk scoring, and baseline questionnaires
12 13	290	(Duke activity status index [DASI], quality of recovery-15 [QoR-15], EuroQol-5 Dimension
14 15	291	Health Related Quality of Life Questionnaire [EQ-5D-5L], and WHO Disability Assessment
16 17 18	292	Schedule 2.0 [WHODAS 2.0]). Immediate perioperative data will include the operation
19 20	293	performed, duration of surgery and anaesthesia, duration of one lung ventilation (if
21 22	294	applicable), and use of vasopressor/inotropic support.
23 24 25	295	
25 26 27	296	Study outcomes
28 29	297	Co-primary outcomes
30 31	298	Incidence of postoperative RVD
32 33 34	299	RVD, defined as:
35 36	300	
37 38	301	• 2D-speckle tracking derived RVFWLS less negative than -20% ^{17,19} .
39 40	302	
41 42 43	303	• Or, (when RVFWLS not available) two of Tricuspid Annular Plane Systolic Excursion
44 45	304	<16mm, S' Wave velocity at the tricuspid annulus <10cm/s or tissue doppler RV index of
46 47	305	myocardial performance $>0.55^{20}$.
48 49 50	306	
50 51 52	307	Clinical impact of postoperative RVD
53 54	308	Days alive and at home at 30 days postoperatively (DAH ₃₀). DAH ₃₀ is a continuous number
55 56	309	between 0 and 30 which reflects, out of the 30 days following surgery, the total number of
57 58 59 60		

1		1
2 3 4	310	those days that a patient spends alive and at home. If a patient dies within those 30 days, their
5 6 7	311	value is set to 0.
7 8 9	312	
10 11	313	Justification for co-primary outcomes
12 13	314	Incidence of postoperative RVD
14 15 16	315	There is currently no consensus on how best to measure RV function in the context of clinical
17 18	316	trials ²¹ . Recent work however (by our group and others) has demonstrated the superiority and
19 20 21	317	increased reproducibility of RVFWLS in identifying RVD compared to 'conventional
21 22 23	318	indices' ²²⁻²⁴ . A recent American Thoracic Society Research Statement has advocated the use
24 25	319	of RVFWLS due to its ability to assess RVD at an early stage and to detect differences when
26 27 20	320	other traditional measurements fail to do so ²¹ .
28 29 30	321	
31 32	322	Clinical impact of perioperative RV
33 34	323	Days alive and at home at 30 days postoperatively (DAH ₃₀) is a novel, well validated clinical
35 36 37	324	endpoint describing all facets of the perioperative experience and has been recommended as a
38 39	325	patient centred outcome by the Standardising Endpoints in Perioperative (StEP) Medicine
40 41	326	initiative. DAH_{30} is sensitive to prolonged stay due to complications, discharge to a
42 43 44	327	rehabilitation or nursing care facility, readmission to hospital after discharge and mortality
45 46	328	thus integrating efficacy, quality, and safety ^{25,26} .
47 48	329	
49 50 51	330	
52 53	331	
54 55	332	
56 57	333	
58 59 60	334	

335 Exploratory outcomes

336 Exploratory outcomes that we will investigate are shown in Table 2.

Left ventricular dysfunction	Defined by 2D-echocardiography derived biplane ejection fract
Cardiac biomarkers	NT-proBNP, BNP, hsTn
Clinical outcomes informed by	StEP trials consensus definitions:
Cardiovascular outcomes ²⁷	Myocardial infarction
	Myocardial injury
	Cardiac death
	Non-fatal cardiac arrest
	Coronary revascularisation
	Major adverse cardiac event
Pulmonary outcomes ²⁸	Pneumonia
	Atelectasis
	Acute Respiratory Distress Syndrome
	Pulmonary aspiration
Renal outcomes ²⁹	Acute Kidney Injury
	Need for Renal Replacement Therapy
Infection outcomes ³⁰	Fever
	Clinical suspicion of infection
Neurological outcomes ³¹	Delirium 🚫
	Stroke
Major complications	Sequential Organ Failure Assessment Score
Clinical indicators	Need for unplanned HDU or ICU admission
	Requirement for new invasive or non-invasive ventilation
	Length of postoperative critical care and hospital stay
	Mortality at 30 days
Patient quality of recovery	QoR-15
Patient centred outcomes	EQ-5D-5L
	WHODAS 2.0
	(assessed at 30 days, 3 months, and 12 months postoperatively)
T1-CMR	Pre and postoperative T1-CMR. T1 weighted CMR pre and pos
	intravenous gadolinium to calculate T1 signal and extracellular
	volume (imaging correlates of myocardial inflammation)
NT-proBNP = N-terminal prohormon	e of brain natriuretic peptide, BNP = brain natriuretic peptide, HsTn =
high sensitivity troponin, StEP = Stan	dardised Endpoints, HDU = high dependency unit, ICU = intensive care
unit, QoR-15 = quality of recovery-15	5, EQ-5D-5L = EuroQol-5 Dimension Health Related Quality of Life
Questionnaire, WHODAS 2.0 = Worl	d Health Organisation Disability Assessment Schedule 2.0, T1-CMR = T1
cardiovascular magnetic resonance,	

2 3	345	Statistical Considerations
4 5	346	All statistical analyses will be performed in conjunction with the Robertson Centre for
6 7		
8 9	347	Biostatistics at the University of Glasgow.
10 11	348	
12 13	349	Analysis of co-primary outcomes
14 15	350	Incidence of perioperative RV dysfunction
16 17 18	351	The identified incidence of postoperative RVD will be compared with the null hypothesis that
19 20	352	the incidence equals zero using a one-sample binomial test; 95% confidence intervals for the
21 22	353	incidence will be defined using the Clopper-Pearson method. In addition, we will perform
23 24 25	354	sensitivity analyses to identify the incidence of patients that develop new post operative
26 27	355	RVD, and identify the incidence of those that have pre-existing RVD maintained through to
28 29	356	the postoperative period. Sub-group analyses will estimate the incidence rate of postoperative
30 31 32	357	LVD and RVD within surgical subgroups and compare the incidence in patients with COPD
33 34	358	vs no COPD, in operations involving mechanical ventilation and no mechanical ventilation
35 36	359	(orthopaedic surgery under spinal anaesthesia), one lung ventilation (OLV) vs no OLV, in
37 38 39	360	videoscopic vs open surgeries, and in patients with IHD vs no IHD. Secondary analyses will
40 41	361	explore the association between pre- and postoperative cardiac biomarker levels and
42 43	362	perioperative LVD and RVD.
44 45 46	363	
46 47 48	364	With a one sample binomial test at a one-sided significance level of 5% with 80% power, 31
49 50	365	patients would be required to confidently identify an incidence of postoperative RVD of 5%
51 52	366	as different from zero in any individual surgical sub-group. As such, recruiting 35 patients
53 54 55	367	per group provides a 10% margin for loss to follow-up and withdrawals. This results in a total
56 57	368	sample size of 175.
58 59 60	369	

Page 16 of 27

370 Clinical impact of perioperative RV dysfunction

Assuming the incidence of RVD is proven to be different from zero in any group (highly likely given our previous findings⁸), then additional analyses will be performed in pooled data across all surgical groups to assess the clinical impact of postoperative LVD or RVD. Sensitivity analyses will be performed to assess the clinical impact of RVD on patients that develop new postoperative RVD, compared to the clinical impact of pre-existing RVD which is maintained through to the postoperative period.

DAH₃₀ postoperatively will be compared between the groups with and without postoperative RVD using negative binomial regression analysis adjusting for age and other known predictors of $DAH_{30}^{25,26}$ It will also be explored how adjustment for further variables (including cardiac biomarker profile) affects results. We will conduct the same DAH₃₀ analysis on the sensitivity analysis groups described above.

Performing power analysis for this comparison is challenging given the large number of unknowns in terms of the incidence of RVD, and the potential effect size. As such, an indicative power analysis was performed exploring sample sizes from 50 to 200 patients, an incidence of RVD 15-50% and for a difference in DAH₃₀ of 2 or 3 days. The anticipated power is in excess of 0.8 in all simulations containing over 125 patients suggesting that in the 175-patient sample should have sufficient power in most conceivable scenarios (Figure 2).

1		1
2 3 4	395	Exploratory outcomes
5 6	396	LVD will be analysed analogously to RVD as a secondary analysis.
7 8	397	
9 10 11	398	Secondary outcomes from the postoperative period will be used to compare their incidence in
12 13	399	patients with and without the primary outcome (RVD). We will assess for association
14 15	400	between RVD and PMI (via cardiac biomarkers), cardiovascular complications, major
16 17 18	401	complications, patient recovery, length of ICU and hospital stay. Analysis of intraoperative
19 20	402	data will be used with the aim to identify mechanisms by which RVD may have arisen.
21 22	403	Where appropriate, multivariate analysis will be used.
23 24 25	404	
26 27	405	We will use 30-day mortality as our primary survival end point and will assess for association
28 29	406	with RVD via appropriate survival analyses.
30 31 32	407	
33 34	408	We will also assess the intermediate and long-term impact of RVD upon patients by assessing
35 36	409	association between RVD and health related quality of life (via EQ-5D-5L) and functional
37 38	410	status (via WHODAS 2.0) at 30-day, three months, and one year postoperatively.
39 40 41	411	
42 43	412	Pre- and postoperative T1-CMR will explore for association between imaging correlates of
44 45	413	myocardial inflammation (T1 and extracellular volume) and both RVD and PMI. This sub-
46 47 48	414	study will also aim to confirm our previous findings of elevated postoperative
49 50	415	T1/extracellular volume in patients after thoracic surgery ¹⁵ , and replicate this in other surgical
51 52	416	groups.
53 54 55	417	
56 57	418	
58 59	419	
60		

Patient and public Involvement

Our programme of work was presented to the Society of Cardiothoracic Surgeons

'RESOLVES' Patient and Public Involvement (PPI) group with very positive feedback. This

PPI group was unanimously in favour of our research and its obvious benefits to patients.

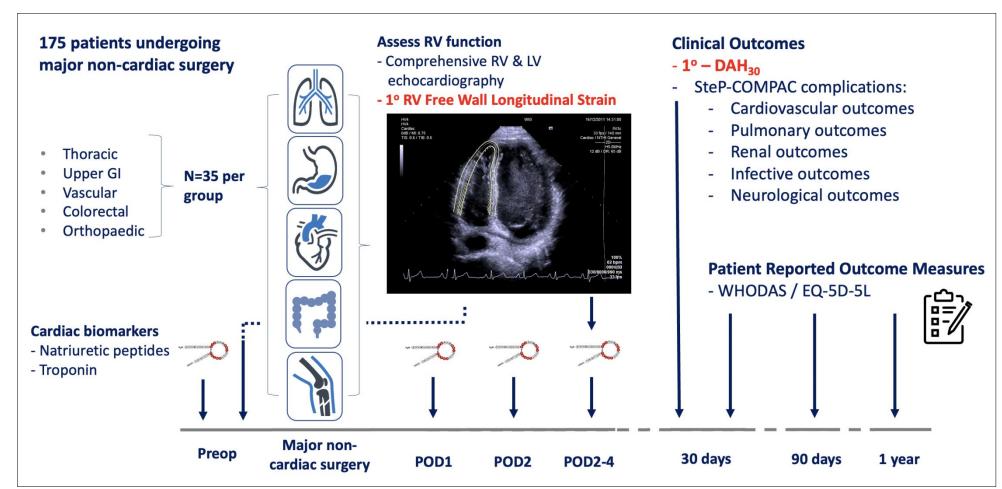
Ethics and Dissemination

The study will be conducted in accordance with the ethical principles that have their origin in the Declaration of Helsinki and to Good Clinical Practice (GCP) Guidelines. The study has been approved by the Research Ethics Committee (REC reference 22/SC/0442) and will comply with all applicable UK legislation. All local site Standardised Operating Procedures (SOPs) will be followed.

All publications and presentations relating to this study will be authorised by the trial Chief Investigator (BS). Authorship will be determined according to the international committee of medical journal editors' recommendations. The results of the study will be first reported to study collaborators. Subsequently, we will communicate our results by reporting them to the funder and presentation at national meetings, with publication in appropriate peer reviewed journals. Further details about the trial results and final report will be available on request to the scientific community in a timely manner.

Authors Contributions

TK and JM wrote the initial draft of the protocol. BS and PM conceived the study and BS is the grant holder. NG advised on statistical analyses for the study. All authors contributed to the protocol, and all authors read and approved the final version of the protocol.


1	١
4	

2 3 4	445	Funding
5 6	446	This study is supported by the National Institute of Academic Anaesthesia/Royal College of
7 8	447	Anaesthetists British Oxygen Company Chair of Anaesthesia Research Grant. CB is
9 10 11	448	supported by the BHF Centre of Research Excellence grant (reference number
12 13	449	RE/18/6/34217). GS is supported by the NIHR Advanced Fellowship (NIHR300097).
14 15	450	
16 17 18	451	Competing Interests
19 20	452	No authors have any competing interests to declare.
21 22	453	
23 24 25	454	Acknowledgements
26 27	455	Acknowledgements Not applicable Word count 3019
28 29	456	
30 31 32	457	Word count
32 33 34	458	3019
35 36		
37 38 30		
39 40 41		
42 43		
44 45		
46 47 48		
49 50		
51 52		
53 54 55		
56 57		
58 59		
60		

2 3 4	459	Figure Legends
5 6	460	
7 8 9	461	Figure 1 Overview of IMPRoVE Main Study
10 11	462	Graphical overview of the main IMPRoVE study. One-hundred and seventy-five patients (35
12 13	463	from each surgical group) will undergo echocardiography and cardiac biomarker testing pre-
14 15	464	and postoperatively. Co-primary outcomes are the incidence of RV dysfunction, diagnosed
16 17 18	465	by RV free wall longitudinal strain, and DAH ₃₀ (shown in red).
19 20	466	GI = gastrointestinal, RV = right ventricular, LV = left ventricular, DAH_{30} = Days alive and
21 22	467	at home at 30 days postoperatively, StEP-COMPAC = Standardised Endpoints and Core
23 24 25	468	Outcome Measures for Perioperative and Anaesthetic Care, WHODAS = WHO Disability
26 27	469	Assessment Schedule 2.0, EQ-5D-5L = EuroQol-5 Dimension Health Related Quality of Life
28 29	470	Questionnaire, POD = postoperative day
30 31 32	471	
33 34	472	Figure 2. Simulated power analysis for impact of RVD on days alive and at home at 30 days
35 36	473	
37		Assuming for 1% of the patients $DAH_{30} = 0$, for the remainder DAH_{30} follows a negative
38	474	Assuming for 1% of the patients $DAH_{30} = 0$, for the remainder DAH_{30} follows a negative binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one
38 39 40		4
38 39	474	binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one
38 39 40 41 42 43 44 45	474 475	binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the
38 39 40 41 42 43 44 45 46 47	474 475 476	binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the validation cohorts. The simulated DAH_{30} was then compared between groups using negative
 38 39 40 41 42 43 44 45 46 47 48 49 	474 475 476 477	binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the validation cohorts. The simulated DAH_{30} was then compared between groups using negative binomial regression (repeated) in 1000 samples. The figures show the resulting estimated
38 39 40 41 42 43 44 45 46 47 48	474 475 476 477 478	binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the validation cohorts. The simulated DAH_{30} was then compared between groups using negative binomial regression (repeated) in 1000 samples. The figures show the resulting estimated power for incidences of postoperative RVD from 15-50% [#] , and for a clinical effect size of 2
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	474 475 476 477 478 479	binomial distribution with parameters chosen such that the median DAH ₃₀ is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the validation cohorts. The simulated DAH ₃₀ was then compared between groups using negative binomial regression (repeated) in 1000 samples. The figures show the resulting estimated power for incidences of postoperative RVD from 15-50% [#] , and for a clinical effect size of 2 (Fig A) or 3 (Fig B) days difference in DAH30 [*] .
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	474 475 476 477 478 479 480	binomial distribution with parameters chosen such that the median DAH ₃₀ is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the validation cohorts. The simulated DAH ₃₀ was then compared between groups using negative binomial regression (repeated) in 1000 samples. The figures show the resulting estimated power for incidences of postoperative RVD from 15-50% [#] , and for a clinical effect size of 2 (Fig A) or 3 (Fig B) days difference in DAH30 [*] . [#] In our previous work the incidence of postoperative RVD was 50% in thoracic surgical

1 2		
3	101	Deferences
4	484 485	References
5	485 486	1. Devereaux PJ, Biccard BM, Sigamani A, et al. Association of Postoperative High-
6	480 487	
7		Sensitivity Troponin Levels With Myocardial Injury and 30-Day Mortality Among Patients
8 9	488	Undergoing Noncardiac Surgery. J Am Med Assoc 2017; 317 (16): 1642-51.
9 10	489	2. Puelacher C, Gualandro DM, Glarner N, et al. Long-term outcomes of perioperative
11	490	myocardial infarction/injury after non-cardiac surgery. <i>European heart journal</i> 2023.
12	491	3. Rodseth RN, Biccard BM, Chu R, et al. Postoperative B-type natriuretic peptide for
13	492	prediction of major cardiac events in patients undergoing noncardiac surgery: systematic
14	493	review and individual patient meta-analysis. <i>Anesthesiology</i> 2013; 119 (2): 270-83.
15	494	4. Lafferty B, McCall P, Shelley B. BNP for prediction of outcome following lung resection
16 17	495	surgery (PROFILES); an interim analysis. Journal of Cardiothoracic and Vascular
17	496	Anesthesia 2020; 34 (1): S15-6.
19	497	5. Markin NW, Gmelch BS, Griffee MJ, Holmberg TJ, Morgan DE, Zimmerman JM. A
20	498	review of 364 perioperative rescue echocardiograms: findings of an anesthesiologist-staffed
21	499	perioperative echocardiography service. J Cardiothor Vasc An 2015; 29(1): 82-8.
22	500	6. Murphy E, Shelley B. Clinical presentation and management of right ventricular
23	501	dysfunction. <i>BJA Education</i> 2019; 19 (6): 183-90.
24 25	502	7. Chou J, Ma M, Gylys M, et al. Preexisting Right Ventricular Dysfunction Is Associated
25 26	503	With Higher Postoperative Cardiac Complications and Longer Hospital Stay in High-Risk
27	504	Patients Undergoing Nonemergent Major Vascular Surgery. J Cardiothor Vasc An 2019;
28	505	33 (5): 1279-86.
29	506	8. McCall PJ, Arthur A, Glass A, et al. The right ventricular response to lung resection. J
30	507	<i>Thorac Cardiovasc Surg</i> 2019; 158 (2): 556-65 e5.
31	508	9. Modin D, Møgelvang R, Andersen DM, Biering-Sørensen T. Right Ventricular Function
32 33	509	Evaluated by Tricuspid Annular Plane Systolic Excursion Predicts Cardiovascular Death in
34	510	the General Population. Journal of the American Heart Association 2019; 8(10).
35	511	10. Murphy E, Shelley B. The right ventricle-structural and functional importance for
36	512	anaesthesia and intensive care. <i>BJA education</i> 2018; 18 (8).
37	513	11. Grobben RB, van Waes JAR, Leiner T, et al. Unexpected Cardiac Computed
38	514	Tomography Findings in Patients With Postoperative Myocardial Injury. Anesthesia and
39	515	analgesia 2018; 126 (5): 1462-8.
40 41	516	12. Glass A, McCall P, Arthur A, Mangion K, B S. Pulmonary artery wave reflection and
41	517	right ventricular function after lung resection. British journal of anaesthesia 2022.
43	518	13. Sheth T, Chan M, Butler C, et al. Prognostic capabilities of coronary computed
44	519	tomographic angiography before non-cardiac surgery: prospective cohort study. BMJ:
45	520	British Medical Journal 2015; 350 : h1907.
46	521	14. Ackland GL, Abbott TEF, Cain D, et al. Preoperative systemic inflammation and
47	522	perioperative myocardial injury: prospective observational multicentre cohort study of
48 49	523	patients undergoing non-cardiac surgery. British journal of anaesthesia 2019; 122(2): 180-7.
49 50	524	15. Murphy E, Glass A, McCall P, B S. Myocardial inflammation after major non-cardiac
51	525	thoracic surgery. British Journal of Anaesthesia 2021; 126(2); E80-1.
52	526	16. Robinson S, Rana B, Oxborough D, et al. A practical guideline for performing a
53	527	comprehensive transthoracic echocardiogram in adults: the British Society of
54	528	Echocardiography minimum dataset. <i>Echo research and practice</i> 2020; 7(4).
55	529	17. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber
56 57	530	quantification by echocardiography in adults: an update from the American Society of
58	531	Echocardiography and the European Association of Cardiovascular Imaging. Journal of the
59	532	American Society of Echocardiography : official publication of the American Society of
60	533	<i>Echocardiography</i> 2015; 28 (1).

Zaidi A, Knight DS, Augustine DX, et al. Echocardiographic assessment of the right 18. heart in adults: a practical guideline from the British Society of Echocardiography. Echo research and practice 2020; 7(1). Addetia K, Miyoshi T, Citro R, et al. Two-Dimensional Echocardiographic Right 19. Ventricular Size and Systolic Function Measurements Stratified by Sex, Age, and Ethnicity: Results of the World Alliance of Societies of Echocardiography Study. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography 2021; 34(11). Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment 20. of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography 2010; 23(7). Lahm T, Douglas IS, Archer SL, et al. Assessment of Right Ventricular Function in the 21. Research Setting: Knowledge Gaps and Pathways Forward. An Official American Thoracic Society Research Statement. American journal of respiratory and critical care medicine 2018; 198(4): e15-e43. Focardi M, Cameli M, Carbone SF, et al. Traditional and innovative echocardiographic 22. parameters for the analysis of right ventricular performance in comparison with cardiac magnetic resonance. Eu Heart J-Card Img 2015; 16(1): 47-52. McCall P, Soosay A, Kinsella J, Sonecki P, Shelley B. The utility of transthoracic 23. echocardiographic measures of right ventricular systolic function in a lung resection cohort. Echo Res Pract 2019; 6(1): 7-15. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for Cardiac Chamber 24. Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal - Cardiovascular Imaging 2015; 16(3): 233-71. Myles PS, Shulman MA, Heritier S, et al. Validation of days at home as an outcome 25. measure after surgery: a prospective cohort study in Australia. BMJ Open 2017; 7(8): e015828. 26. Jerath A, Austin PC, Wijeysundera DN. Days Alive and Out of Hospital: Validation of a Patient-centered Outcome for Perioperative Medicine. Anesthesiology 2019; 131(1): 84-93. Beattie WS, Lalu M, Bocock M, et al. Systematic review and consensus definitions for 27. the Standardized Endpoints in Perioperative Medicine (StEP) initiative: cardiovascular outcomes. British journal of anaesthesia 2021; 126(1). Abbott TEF, Fowler AJ, Pelosi P, et al. A systematic review and consensus definitions 28. for standardised end-points in perioperative medicine: pulmonary complications. British journal of anaesthesia 2018; 120(5). McIlroy DR, Bellomo R, Billings FT, et al. Systematic review and consensus 29. definitions for the Standardised Endpoints in Perioperative Medicine (StEP) initiative: renal endpoints. British journal of anaesthesia 2018; 121(5). 30. Barnes J, Hunter J, Harris S, et al. Systematic review and consensus definitions for the Standardised Endpoints in Perioperative Medicine (StEP) initiative: infection and sepsis. British journal of anaesthesia 2019; 122(4). Haller G, Bampoe S, Cook T, et al. Systematic review and consensus definitions for the 31. Standardised Endpoints in Perioperative Medicine initiative: clinical indicators. British journal of anaesthesia 2019; 123(2).

Figure 1 Overview of IMPRoVE Main Study

Graphical overview of the main IMPRoVE study. One-hundred and seventy-five patients (35 from each surgical group) will undergo echocardiography and cardiac biomarker testing pre- and postoperatively. Co-primary outcomes are the incidence of RV dysfunction, diagnosed by RV free wall longitudinal strain, and DAH₃₀ (shown in red).

 $GI = gastrointestinal, RV = right ventricular, LV = left ventricular, DAH_{30} = Days alive and at home at 30 days postoperatively, StEP-COMPAC =$

Standardised Endpoints and Core Outcome Measures for Perioperative and Anaesthetic Care, WHODAS = WHO Disability Assessment Schedule 2.0, EQ-5D-5L = EuroQol-5 Dimension Health Related Quality of Life Questionnaire, POD = postoperative day

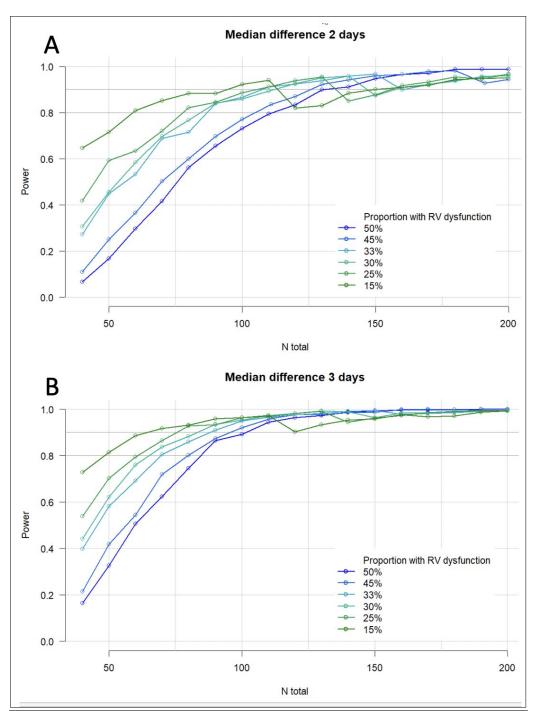


Figure 2. Simulated power analysis for impact of RVD on days alive and at home at 30 days Assuming for 1% of the patients $DAH_{30} = 0$, for the remainder DAH_{30} follows a negative binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the validation cohorts. The simulated DAH_{30} was then compared between groups using negative binomial regression (repeated) in 1000 samples. The figures show the resulting estimated power for incidences of postoperative RVD from 15-50%[#], and for a clinical effect size of 2 (Fig A) or 3 (Fig B) days difference in DAH30^{*}. [#]In our previous work the incidence of postoperative RVD was 50% in thoracic surgical patients but may be significantly less in, for example, an orthopaedic population.

*In Chou et al's study preoperative RV dysfunction prolonged hospital length of stay by over 50%, but this cohort was a very high-risk vascular surgical population⁷.

Contraindications to Cardiovascular Magnetic Resonance Imaging

Presence of:

- cardiac pacemaker
- artificial heart valve
- neurostimulator
- cochlear implant
- aneurysm clips
- metal injuries to the eye
- loose metal in a part of the body

KORR RUNNON

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1+2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7-8
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	10-14
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	12+13
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	15+16
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	N/A
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	15-17
		(b) Describe any methods used to examine subgroups and interactions	15-17
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(e) Describe any sensitivity analyses	N/A
Results			

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cohort studies*

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	N/A
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	N/A
		(b) Indicate number of participants with missing data for each variable of interest	N/A
		(c) Summarise follow-up time (eg, average and total amount)	N/A
Outcome data	15*	Report numbers of outcome events or summary measures over time	N/A
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	N/A
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	N/A
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			N/A
Key results	18	Summarise key results with reference to study objectives	N/A
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	N/A
Generalisability	21	Discuss the generalisability (external validity) of the study results	N/A
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	19
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Study protocol for IMPRoVE: a multicentre prospective observational cohort study of the incidence, impact and mechanisms of perioperative right ventricular dysfunction in non-cardiac surgery

Manuscript IDbmjopen-2023-074687.R1Article Type:ProtocolDate Submitted by the Author:01-Aug-2023Complete List of Authors:Keast, Thomas; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre McErlane, James; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre Kearns, Rachel; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre Kearns, Rachel; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Glasgow Royal Infirmary, Department of Anaesthesia and Critical Care Watson, Malcolm; Queen Elizabeth University Hospital, Department of Anaesthesia and Critical Care Robertson, Keith; Golden Jubilee National Hospital, Department of Anaesthesia and Critical Care Robertson, Keith; Golden Jubilee National Hospital, Department of Anaesthesia and Critical Care Robertson, Keith; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre Berry, Colin; University of Glasgow, Institute of Cardiovascular and Medical Sciences Greenlaw, Nicola; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine, Royal London Hospital McCal, Philip; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine, Royal London Hospital McCal, Philip; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine, Royal London Hospital McCal, Philip; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine, Research Group; Golden Jubilee	Journal:	BMJ Open
Date Submitted by the Author: 01-Aug-2023 Complete List of Authors: Keast, Thomas; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre McErlane, James; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre Kearns, Rachel; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Glasgow Royal Infirmary, Department of Anaesthesia Raju, Indran; Queen Elizabeth University Hospital, Department of Anaesthesia and Critical Care Robertson, Keith; Golden Jubilee National Hospital, Department of Anaesthesia and Critical Care Robertson, Keith; Golden Jubilee National Hospital, Department of Anaesthesia and Critical Care Robertson, Keith; Golden Jubilee National Hospital, Department of Anaesthesia and Critical Care Robertson, Keith; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre Berry, Colin; University of Glasgow, Robertson Centre for Biostatistics Ackland, Gareth; Barts Health NHS Trust, Department of Anaesthesia and Perioperative Medicine, Royal London Hospital McCall, Philip; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Golden Jubilee Hospital McCall, Philip; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee Hospital McCall, Philip; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee Hospital McCall, Philip; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee Hospital McCall, Philip; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee Hospital McCall, Philip	Manuscript ID	bmjopen-2023-074687.R1
Author: 01-Aug-2023 Complete List of Authors: Keast, Thomas; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre McErlane, James; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre Kearns, Rachel; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Glasgow Royal Infirmary, Department of Anaesthesia MCKinlay, Sonya; Glasgow Royal Infirmary, Department of Anaesthesia and Critical Care McKinlay, Sonya; Glasgow Royal Infirmary, Department of Anaesthesia and Critical Care West of Scotland Regional Heart and Lung Centre Medical Sciences Greenlaw, Nicola; University of Glasgow, Robertson Centre for Biostatistics Ackland, Gareth; Barts Health NHS Trust, Department of Anaesthesia and Perioperative Medicine, Royal London Hospital Care & Perioperative Medicine Research Group; Golden Jubilee Hospital Secondary Subject Heading: Anaesthesia Critical Care & Perioperative Medicine Research Group; Golden Jubilee Hospital Colin; University of Glasgow, Nabertson Centre for Biostatistics Ackland, Gareth; Barts Health NHS Trust, Department of Anaesthesia and Perioperative Medicine Research Group; Golden Jubilee Hospital Secondary Subject Anaesthesia Critical Care & Perioperative Medicine Research Group; Golden Jubilee Hospital Carliovascular medic	Article Type:	Protocol
operative Medicine Research Group; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre McErlane, James; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre Kearns, Rachel; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Glasgow Royal Infirmary, Department of Anaesthesia McKinlay, Sonya; Glasgow Royal Infirmary, Department of Anaesthesia and Critical Care Watson, Malcolm; Queen Elizabeth University Hospital, Department of Anaesthesia and Critical Care Robertson, Keith; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre Berry, Colin; University of Glasgow, Institute of Cardiovascular and Medical Sciences Greenlaw, Nicola; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Golden Jubilee Hospital McCall, Philip; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Golden Jubilee Hospital McCall, Philip; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Golden Jubilee Hospital Shelley, Benjami; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Golden Jubilee Hospital Shelley, Benjami; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Golden Jubilee Hospital Shelley, Benjami; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee Hospital Shelley, Benjami; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee Hospital Shelley, Benjamin; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee Hospit		01-Aug-2023
Heading: Anaestnesia Secondary Subject Heading: Cardiovascular medicine, Evidence based practice, Intensive care Kowwords: Echocardiography < CARDIOLOGY, Adult anaesthesia < ANAESTHETICS,	Complete List of Authors:	operative Medicine Research Group; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre McErlane, James; University of Glasgow, Anaesthesia, Critical Care & Peri-operative Medicine Research Group; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre Kearns, Rachel; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Glasgow Royal Infirmary, Department of Anaesthesia McKinlay, Sonya; Glasgow Royal Infirmary, Department of Anaesthesia Raju, Indran; Queen Elizabeth University Hospital, Department of Anaesthesia and Critical Care Watson, Malcolm; Queen Elizabeth University Hospital, Department of Anaesthesia and Critical Care Robertson, Keith; Golden Jubilee National Hospital West of Scotland Regional Heart and Lung Centre Berry, Colin; University of Glasgow, Institute of Cardiovascular and Medical Sciences Greenlaw, Nicola; University of Glasgow, Robertson Centre for Biostatistics Ackland, Gareth; Barts Health NHS Trust, Department of Anaesthesia and Perioperative Medicine, Royal London Hospital McCall, Philip; University of Glasgow, Anaesthesia, Critical Care & Peri- operative Medicine Research Group; Golden Jubilee Hospital Shelley, Benjamin; University of Glasgow, Anaesthesia, Critical Care & Peri-
Echocardiography < CARDIOLOGY, Adult anaesthesia < ANAESTHETICS,		Anaesthesia
	Secondary Subject Heading:	Cardiovascular medicine, Evidence based practice, Intensive care
SUNGENT, Magnetic resonance imaging < NADIOLOGT & IMAGING	Keywords:	Echocardiography < CARDIOLOGY, Adult anaesthesia < ANAESTHETICS, SURGERY, Magnetic resonance imaging < RADIOLOGY & IMAGING

1 2 3	
4 5	SCHOLARONE [™] Manuscripts
6 7	
8 9 10	
11 12	
13 14	
15 16 17	
18 19	
20 21	
22 23 24	
24 25 26	
27 28	
29 30 31	
31 32 33	
34 35	
36 37	
38 39 40	
41 42	
43 44 45	
46 47	
48 49	
50 51	
52 53 54	
55 56	
57 58	
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtn

1		
2		
3	1	Title: Study protocol for IMPRoVE: a multicentre prospective observational cohort
4	2	study of the incidence, impact and mechanisms of perioperative right ventricular
5 6	3	dysfunction in non-cardiac surgery
0 7	4	$\overline{\mathbf{P}}$
8	5	Dr Tom Keast ^{*1,2} , Dr James McErlane ^{*1,2} , Dr Rachel Kearns ^{1,3} , Dr Sonia McKinlay ³ ,
9	6	Dr Indran Raju ⁴ , Dr Malcolm Watson ⁴ , Dr Keith Robertson ⁵ , Prof Colin Berry ⁶ , Dr
10	7	Nicola Greenlaw ⁷ , Prof Gareth Ackland ⁸ , Dr Philip McCall ^{1,2} , Prof Ben Shelley ^{1,2}
11 12	8	
13		
14	9	Corresponding author: Dr James McErlane
15	10	james.mcerlane@glasgow.ac.uk
16	11	ORCID ID: 0000-0002-0490-8425
17	12	
18 19	13	Authors email addresses: Dr Tom Keast:, <u>Thomas.Keast@glasgow.ac.uk</u> , Dr Rachel Kearns:
20	14	Rachel.Kearns@glasgow.ac.uk, Dr Sonia McKinlay: Sonya.McKinlay@ggc.scot.nhs.uk, Dr
21	15	Indran Raju: Indran.Raju@ggc.scot.nhs.uk, Dr Malcolm Watson:
22	16	malcolm.watson@ggc.scot.nhs.uk, Dr Keith Robertson: Keith.Robertson@gjnh.scot.nhs.uk,
23	17	Prof Colin Berry: Colin.Berry@glasgow.ac.uk, Nicola Greenlaw:
24	18	Nicola.Greenlaw@glasgow.ac.uk, Prof Gareth Ackland: g.ackland@qmul.ac.uk, Dr Philip
25	19	McCall: philip.mccall@glasgow.ac.uk, Prof Ben Shelley: Benjamin.Shelley@glasgow.ac.uk
26		
27	20	* Co-first authors
28	21	¹ Anaesthesia, Critical Care & Peri-operative Medicine Research Group, University of
29 30	22	Glasgow, UK. ² Department of Anaesthesia, Golden Jubilee National Hospital, Clydebank,
31	23	UK. ³ Department of Anaesthesia, Glasgow Royal Infirmary, Glasgow, UK. ⁴ Department of
32	24	Anaesthesia and Critical Care, Queen Elizabeth University Hospital, Glasgow, UK. ⁵ West of
33	25	Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK.
34		
35	26	⁶ Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK. ⁷ Robertson
36	27	Centre for Biostatistics, University of Glasgow, UK. ⁸ Department of Anaesthesia and
37	28	Perioperative Medicine, Royal London Hospital, Barts Health NHS Trust, London, UK.
38		
39		
40		
41 42		
42 43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		

,	

1		
2		
3	29	Abstract
4 5	30	Introduction
6	31	Perioperative myocardial injury evidenced by elevated cardiac biomarkers (both natriuretic
7	32	peptides and troponin) is common after major non-cardiac surgery. It is unclear however if
8	33	the rise in cardiac biomarkers represents global or more localised cardiac injury. We have
9	34	previously shown isolated right ventricular (RV) dysfunction in patients following lung
10	35	resection surgery, with no change in left ventricular (LV) function. Given that perioperative
11		
12	36	RV dysfunction (RVD) can manifest insidiously, we hypothesise there may be a substantial
13	37	burden of covert yet clinically important perioperative RVD in other major non-cardiac
14	38	surgical groups. The Incidence, impact and Mechanisms of Perioperative Right VEntricular
15	39	dysfunction (IMPRoVE) study has been designed to address this knowledge gap.
16	40	
17	41	Methods and analysis
18	42	A multicentre prospective observational cohort study across four centres in the West of
19	43	Scotland and London. One-hundred and seventy-five patients will be recruited from five
20	44	surgical specialties; thoracic, upper gastrointestinal, vascular, colorectal, and orthopaedic
21		
22	45	surgery (35 patients from each group). All patients will undergo pre- and postoperative (day
23	46	2-4) echocardiography, with contemporaneous cardiac biomarker testing. Ten patients from
24	47	each surgical specialty (50 patients in total) will undergo T1-cardiovascular magnetic
25	48	resonance (CMR) imaging preoperatively and postoperatively. The co-primary outcomes are
26 27	49	the incidence of perioperative RVD (diagnosed by RV speckle tracking echocardiography)
27 28	50	and the effect that RVD has on days alive and at home at 30-days postoperatively. Secondary
28 29	51	outcomes include LV dysfunction and clinical outcomes informed by Standardised Endpoints
30	52	in Perioperative Medicine (StEP) consensus definitions. T1 CMR will be used to investigate
31	53	for imaging correlates of myocardial inflammation as a possible mechanism driving
32	54	perioperative RVD.
33	55	perioperative RVD.
34		Ethics and discomination
35	56	Ethics and dissemination
36	57	Approval was gained from Oxford C Research Ethics Committee (REC reference
37	58	22/SC/0442). Findings will be disseminated by various methods including social media,
38	59	international presentations, and publication in peer-reviewed journals.
39	60	
40	61	Trial registration
41	62	The IMPRoVE study is registered on ClinicalTrials.gov (Identifier NCT05827315).
42	63	
43	64	
44	65	Strengths and limitations of this study
45 46	66	This is the first study to investigate the incidence of perioperative RVD after major non-
40 47	67	cardiac surgery, and the association between RVD and patient outcomes in this group.
47		cardiac surgery, and the association between KVD and patient outcomes in this group.
49	68	
50	69	T1-CMR sub-study to investigate whether inflammation is a mechanism underlying
51	70	perioperative RVD.
52	71	
53	72	A large prospective multicentre study with appropriate statistical power analysis.
54	73	
55	74	It is difficult to predict the incidence of perioperative RVD in surgical groups other than
56	75	lung resection since there is such limited data.
57		
58		
59		
60		

77 Introduction

Perioperative myocardial injury (PMI) is common after major non-cardiac surgery, with a recent large international observational study demonstrating an elevated postoperative high-sensitivity troponin (hsTn) level in 19.7% of patients undergoing major non-cardiac surgery.(1) Perioperative PMI has also been shown to be associated with poor cardiovascular outcomes in patients undergoing non-cardiac surgery.(2) Similarly, natriuretic peptides increase following surgery, and this is associated with an increased risk of cardiovascular complications and mortality.(3) Our group has demonstrated that peak postoperative brain natriuretic peptide (BNP) is associated with postoperative complications and length of hospital stay after thoracic surgery.(4) Although an increase in cardiac biomarkers after major non-cardiac is well described, there has been little research to investigate the location of the myocardial injury (although it is frequently attributed to injury of the left ventricle with little evidence to substantiate this assertion). A study in a mixed surgical population requiring "rescue" echocardiography demonstrated that postoperative right ventricular (RV) dysfunction was as prevalent as left ventricular (LV) dysfunction, occurring in 24.1% of patients.(5) Postoperative RV dysfunction (RVD) is difficult to diagnose, manifesting with subtle clinical signs; it is therefore unsurprising that its importance may have been overlooked.(6) In addition to postoperative RVD, it has been shown that there may be a considerable burden of preoperative RVD in patients undergoing non-cardiac surgery. A study in patients undergoing major vascular surgery found a prevalence of preoperative RVD of 10%, and this was associated with postoperative major cardiac complications.(7) The incidence and significance of perioperative RVD in other non-cardiac surgical populations has been poorly described. We have previously shown that patients undergoing lung resection experience significant impairment of RV function postoperatively with no change in LV function.(8) Further research is needed to investigate the incidence and impact of

Page 5 of 28

BMJ Open

1 2		· · · · · · · · · · · · · · · · · · ·
3 4	102	perioperative RVD on patient outcomes in other non-cardiac surgery groups. Additionally,
5 6 7	103	the mechanisms underlying perioperative RVD require elucidation to allow effective
7 8 9	104	preventative and treatment strategies to be devised. The IMPRoVE study has been conceived
10 11	105	to address this gap in our understanding of perioperative RVD.
12 13	106	
14 15 16	107	Potential mechanisms of perioperative RV dysfunction
16 17 18	108	The mechanisms of postoperative RVD likely reflect a complex interplay between pre-
19 20	109	existing RVD, patient susceptibility, surgical risk and a multitude of potential perioperative
21 22	110	insults.
23 24	111	
25 26 27	112	As described above,(7) RVD may pre-date surgery. In the general population, RVD is more
28 29	113	prevalent in the elderly, and in people with hypertension, diabetes mellitus, ischaemic heart
30 31 32	114	disease, and lung disease;(9) risk factors which are overrepresented in the surgical
32 33 34	115	population. As anticipated, in our previous thoracic surgery cohort we found a high
35 36	116	prevalence of pre-existing RV dysfunction of 50%.(8)
37 38	117	
39 40 41	118	The perioperative period exposes patients to many insults that may contribute to RVD.
41 42 43	119	Excess pre-load may occur in the form of injudicious IV fluid administration, resulting in RV
44 45	120	distension and tricuspid regurgitation.(6,10) Impaired contractility may occur due to
46 47 48	121	myocardial ischaemia. RV afterload may increase by many mechanisms, including;
40 49 50	122	
51 52	123	- Pulmonary thromboembolism (PTE)- occurring sub-clinically in up to 28% of patients
53 54	124	undergoing elective intermediate to high risk noncardiac surgery.(11)
55 56 57 58 59 60	125	

1		
2		
3 4	126	- Lung injury and inflammation- due to pre-existing lung disease and the combined
5 6 7	127	deleterious effects of ventilator induced lung injury, systemic inflammation and fluid
7 8 9	128	overload.(6)
10 11	129	
12 13	130	- Positive-pressure mechanical ventilation-especially one-lung ventilation.(6)
14 15 16	131	
10 17 18	132	- <i>Lung resection</i> - recently we have demonstrated the pulsatile component of RV
19 20	133	afterload significantly increases after lung resection.(12)
21 22 23	134	
23 24 25	135	Inflammation and Perioperative Myocardial Injury
26 27 28 29	136	Whist it is widely hypothesised that PMI results predominantly from ischaemia secondary to
	137	myocardial oxygen supply/demand imbalance, this hypothesis remains unproven and is
30 31 32	138	challenged by important observations; in excess of 90% of patients with PMI have no
33 34	139	ischaemic symptoms to support a diagnosis of myocardial infarction,(1) and the extent and
35 36	140	severity of coronary artery disease does not correlate closely with the occurrence of PMI.(13)
37 38 20	141	
39 40 41	142	The inflammatory response is an important contributor to the myocardial injury seen after
42 43	143	myocardial infarction and cardiac surgery, but the extent to which systemic inflammation is
44 45	144	involved in the pathogenesis of PMI after non-cardiac surgery is not known. Ackland et al
46 47 48	145	recently demonstrated that PMI was associated with an elevated neutrophil-lymphocyte ratio,
49 50	146	suggesting systemic inflammation may predispose patients to PMI.(14) Using T1-weighted
51 52	147	Cardiovascular Magnetic Resonance (T1-CMR) our group has described the presence of
53 54 55	148	imaging correlates of perioperative RV (but not LV) myocardial inflammation in patients
55 56 57	149	following lung resection.(15)
58 59 60	150	

Page 7 of 28

1

6			
h	4	^	
)

2		
3 4	151	In summary, with greater understanding of the incidence, impact and underlying mechanisms
5 6	152	of perioperative RV dysfunction provided through this investigation, preventative
7 8 9	153	interventions targeted at patients at greatest risk may offer a unique therapeutic opportunity to
) 10 11	154	provide a personalised approach to perioperative management and improve patient outcomes
12 13	155	across a wide range of surgical populations.
14 15 16	156	
17 18	157	Hypotheses
19 20	158	1. Right ventricular dysfunction (RVD) after major non-cardiac surgery is a common covert
21 22 23	159	contributor to perioperative morbidity.
24 25	160	
26 27	161	2. Inflammatory injury to the right ventricle (RV) is a significant contributing factor to
28 29 30	162	perioperative myocardial injury.
31 32	163	
33 34	164	Methods and Analysis
35 36 37	165	Summary: A multicentre prospective observational cohort study in patients undergoing major
38 39	166	non-cardiac surgery in five surgical specialties. Main study: 175 patients to undergo
40 41	167	transthoracic echocardiography (TTE) pre- and postoperatively (Figure 1). Sub-study: 50
42 43 44	168	patients to undergo T1-CMR pre- and postoperatively.
44 45 46	169	
47 48	170	Centres: three hospitals in the West of Scotland (Golden Jubilee National Hospital [GJNH],
49 50	171	Queen Elizabeth University Hospital, and Glasgow Royal Infirmary) and one London
51 52 53	172	hospital (Royal London Hospital).
54 55	173	
56 57		
58 59 60		
00		

2		
2 3 4	174	Study status: Grant funding was secured 12/02/2021, with ethical approval on 12/01/2023
5 6	175	(REC reference 22/SC/0442). Recruitment commenced in May 2023 with an anticipated
7 8 9	176	study duration of 36 months.
9 10 11	177	
12 13	178	Selection of study subjects
14 15 16	179	Inclusion Criteria
16 17 18	180	1. Patient aged >18 years
19 20	181	2. Patient undergoing planned elective primary hip or knee joint replacement under spinal
21 22	182	anaesthesia, major colorectal, major vascular surgery, or major surgery requiring one lung
23 24 25	183	ventilation with or without lung resection
26 27	184	3. Provision of informed consent
28 29	185	
30 31 32	186	Main Study Exclusion Criteria
33 34	187	1. Pregnancy
35 36	188	2. On-going participation in any investigational research which could undermine the
37 38 39	189	scientific basis of the study
40 41	190	3. Previous major surgery within previous 3 months
42 43	191	4. Previous participation in the IMPRoVE study
44 45 46	192	5. Inadequate comprehension of English resulting in inability to comply with instructions
40 47 48	193	while undergoing interventions required for main study and sub-study
49 50	194	
51 52	195	Risk factors for RVD are likely to be overrepresented in patients presenting for surgery and
53 54 55	196	participants with pre-existing RVD could represent an important population that may face
56 57 58	197	greater consequences of acute perioperative insults to the RV. For this reason, although not a
59		

1		
2 3 4	198	specific inclusion or exclusion criteria, patients with pre-existing RVD, including when
4 5 6	199	identified on pre-op echocardiography will be included in the study.
7 8	200	
9 10 11	201	T1-CMR Sub-study Exclusion Criteria
12 13	202	1. Contraindication to T1-CMR (see supplementary material)
14 15 16	203	2. Atrial fibrillation at baseline
17 18	204	3. Acute or chronic kidney disease
19 20	205	4. Allergy to intravenous contrast
21 22 23	206	
23 24 25	207	Study Conduct
26 27	208	Recruitment
28 29 30	209	Patients will be identified from hospital waiting lists. Patients will be informed of the study,
30 31 32	210	offered a patient information sheet, and invited to participate at the earliest possible
33 34	211	opportunity after they have been informed of their decision for surgery. Following
35 36 27	212	appropriate time to consider participation, informed consent will be obtained by a member of
37 38 39	213	the research team.
40 41	214	
42 43	215	Consent
44 45 46	216	Written informed consent will be obtained, following a face-to-face discussion about the
47 48	217	study by a member of the study team. Signing of consent form and preoperative blood
49 50	218	sampling and imaging may take place at any time in the 30 days prior to surgery or on the
51 52 53	219	day of surgery
54 55	220	
56 57 58 59 60	221	Medical Management

Page 10 of 28

222 Medical management will be according to the standard of care at each treating site and is not

223 influenced by this study protocol.

225 Study Interventions

- Table 1 shows the general schedule of assessments/study interventions that patients will
- undergo.

229 <u>Table 1. Schedule of Assessments</u>

Visit Window	Pre-op	Day of surgery (Day 0)	POD1	POD2	Day of Echo (POD 2-4)	Discharge	30 days	3 months	12 months
Informed consent	х								
Inclusion/exclusion criteria	Х			6					
Baseline demographics and risk scoring	Х								
BNP/HsTn	х		х	X	х				
NT-proBNP	Х								
Immediate perioperative data		X			0				
Laboratory Data	Х		Х	X	x				
Echocardiography	Х				x				
T1-CMR ^A	Х				x				
QoR-15	Х				х				
Organ specific complications (Clavien-Dindo ≥ 2)			х	X	x	X	x		
Unplanned ICU Admission			Х	X	x	X			
Length of Hospital stay						X			
Length of ICU/HDU stay					x	X			
Mortality					х	X	X	X	Х
DAH ₃₀							x		
Hospital readmission							x		
EQ-5D-5L	х						x	X	Х
WHODAS 2.0	х						x	х	х
A= Ten patients from e	each of th	he five su	rgical gr	$\frac{1}{00000}$ (50 ir	n total)	1			

 $\begin{array}{l} 57\\ 58 \end{array} \quad \text{troponin, NT-proBNP} = \text{N-terminal prohormone of brain natriuretic peptide, T1-CMR} = \text{T1 cardiovascular} \end{array}$

 $\begin{array}{c} 59\\ 60 \end{array} \quad \text{magnetic resonance, } QoR-15 = \text{quality of recovery-15 score, } ICU = \text{intensive care unit, } HDU = \text{high} \end{array}$

BMJ Open

1		1
2 3	233	dependency unit, DAH_{30} = days alive and at home at 30-days, EQ-5D-5L = EuroQol-5 Dimension Health
4 5	234	Related Quality of Life Questionnaire, WHODAS 2.0 = World Health Organisation Disability Assessment
6 7	235	Schedule 2.0.
8 9 10	236	
10 11 12	237	Echocardiography Conduct and Analysis
13 14	238	Transthoracic echocardiography will be performed on all 175 patients by a British Society of
15 16 17	239	Echocardiography (BSE) accredited echocardiographers preoperatively and between
17 18 19	240	postoperative days 2-4. Echocardiography will acquire the minimum BSE image dataset.(16)
20 21	241	In addition to this minimum image dataset, we will acquire a RV focussed apical four
22 23	242	chamber view for RV free-wall peak longitudinal strain (FWLS) analysis (optimising
24 25 26	243	feasibility as per consensus guidelines(17,18)). All echocardiography study images will be
27 28	244	sent centrally for offline analysis: anonymised images will be transferred via routine clinical
29 30	245	imaging systems to the GJNH.
31 32	246	
33 34 25	247	A full echocardiography data set will be used to assess for RVD (the primary outcome) and
35 36 37	248	LV dysfunction (LVD). Offline RV and LV 2D speckle tracking strain analysis will be
38 39	249	performed using Tomtec 2D Cardiac Performance Analysis software. Twenty
40 41	250	echocardiography scans will be randomly selected and re-reported by the same reporter a
42 43 44	251	minimum of two weeks after initial reporting, and reported by a second reporter, to allow
45 46	252	assessment of intra- and inter-observer agreement. Reproducibility will be assessed by
47 48	253	intraclass correlation co-efficient (ICC) using two-way mixed effects with absolute
49 50 51	254	agreement and Bland–Altmann plots.
52 53	255	
54		
55 56		
57		
58 59		

1		-
2 3 4	256	T1-CMR Conduct
5 6	257	A sub-cohort of 50 patients (10 from each surgical group) will undergo T1-CMR
7 8 9	258	preoperatively and on day 2-4 postoperatively. Replicating our previous protocol,(8) CMR
9 10 11	259	will be undertaken on a 1.5 or 3.0 Tesla scanner, by band 7 Health and Care Professions
12 13	260	Council accredited radiographers. T1 weighted scans will be performed pre- and post-
14 15	261	intravenous gadolinium administration. Post-processing will be protocolised and dual
16 17 18	262	reported by blinded observers.
18 19 20	263	
21 22	264	Laboratory sampling
23 24 25	265	Where possible samples will be drawn contemporaneously with routine clinical blood tests.
25 26 27	266	Cardiac biomarkers will be batch analysed at University of Glasgow Laboratories.
28 29	267	
30 31	268	DAH ₃₀ Conduct
32 33 34	269	Days alive and at home at 30-days postoperatively (DAH ₃₀) will be assessed by telephone on
35 36	270	postoperative day 30 (up to + 5 days). A script will be used to ensure that DAH_{30} is reliably
37 38	271	and consistently recorded.
39 40	272	
41 42 43	273	Data collection will be performed by the local study team on case report forms (CRFs) which
44 45	274	will be filed and securely stored at participating sites. The data will be anonymised at site and
46 47	275	a unique numeric study number allocated. Completed CRFs will be entered onto a secure
48 49 50	276	online database in a linked anonymised form. Electronic data will be stored in an encrypted
51 52	277	and anonymised format for 15 years following the completion of the trial. At the end of this
53 54	278	period, the dataset will be destroyed according to DoD 5220.22-M standards. All data will be
55 56 57	279	held in accordance with The General Data Protection Regulation (2018).
57 58 59 60	280	

1 2		
2 3 4	281	Laboratory data
5 6	282	Laboratory data (Full blood count [FBC], Urea and Electrolytes [U+Es] Liver Function Tests
7 8 9	283	[LFTs] and C-reactive protein [CRP]) will be obtained from the local biochemistry and
10 11	284	haematology laboratory reporting systems perioperatively, on the day of echocardiography
12 13	285	and if clinically indicated, at follow-up.
14 15 16	286	
17 18	287	Clinical data
19 20	288	Baseline demographic information will be collected including chronic co-morbidities. We
21 22 23	289	will specifically gather information on sleep apnoea status and previous COVID-19 infection
23 24 25	290	since these may affect baseline RV function. Preoperative data will include previous
26 27	291	pulmonary function tests, cardiopulmonary exercise testing, computed tomography (CT)
28 29 20	292	thorax imaging (for coronary artery calcium scoring), American College of Surgeons
30 31 32	293	National Surgical Quality Improvement Program risk scoring, and baseline questionnaires
33 34	294	(Duke activity status index [DASI], quality of recovery-15 [QoR-15], EuroQol-5 Dimension
35 36	295	Health Related Quality of Life Questionnaire [EQ-5D-5L], and WHO Disability Assessment
37 38 39	296	Schedule 2.0 [WHODAS 2.0]). Immediate perioperative data will include the operation
40 41	297	performed, duration of surgery and anaesthesia, duration of one lung ventilation (if
42 43	298	applicable), and use of vasopressor/inotropic support.
44 45 46	299	
47 48	300	Study outcomes
49 50	301	Co-primary outcomes
51 52 53	302	Incidence of postoperative RVD
55 55	303	RVD, defined as:
56 57	304	
58 59 60	305	• 2D-speckle tracking derived RVFWLS less negative than -20%.(17,19)

1		1
2 3	306	
4 5	307	• Or, (when RVFWLS not available) two of Tricuspid Annular Plane Systolic Excursion
6 7		
8 9	308	<16mm, S' Wave velocity at the tricuspid annulus <10cm/s or tissue doppler RV index of
10 11	309	myocardial performance >0.55.(20)
12 13	310	
14 15	311	Clinical impact of postoperative RVD
 16 17 18 19 20 21 22 23 24 25 	312	Days alive and at home at 30 days postoperatively (DAH ₃₀). DAH ₃₀ is a continuous number
	313	between 0 and 30 which reflects, out of the 30 days following surgery, the total number of
	314	those days that a patient spends alive and at home. If a patient dies within those 30 days, their
	315	value is set to 0.
25 26 27	316	
28 29	317	Justification for co-primary outcomes
30 31	318	Incidence of postoperative RVD
32 33 34 35 36 37 38	319	There is currently no consensus on how best to measure RV function in the context of clinical
	320	trials.(21) Recent work however (by our group and others) has demonstrated the superiority
	321	and increased reproducibility of RVFWLS in identifying RVD compared to 'conventional
39 40 41	322	indices'.(22-24) A recent American Thoracic Society Research Statement has advocated the
41 42 43	323	use of RVFWLS due to its ability to assess RVD at an early stage and to detect differences
44 45	324	when other traditional measurements fail to do so.(21)
46 47	325	
48 49 50	326	Clinical impact of perioperative RV
51 52	327	Days alive and at home at 30 days postoperatively (DAH ₃₀) is a novel, well validated clinical
53 54	328	endpoint describing all facets of the perioperative experience and has been recommended as a
55 56 57	329	patient centred outcome by the Standardising Endpoints in Perioperative (StEP) Medicine
57 58 59 60	330	initiative. DAH_{30} is sensitive to prolonged stay due to complications, discharge to a

 rchabilitation or nursing care facility, readmission to hospital after discharge and mortality thus integrating efficacy, quality, and safety.(25,26) 	1 2		
 thus integrating efficacy, quality, and safety.(25,26) thus integrating efficacy, quality, and safety.(25,26) thus integrating efficacy, quality, and safety.(25,26) 	3	331	rehabilitation or nursing care facility, readmission to hospital after discharge and mortality
	5	332	thus integrating efficacy, quality, and safety.(25,26)
		333	
	13		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	15		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	17		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	19		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	21		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	23		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	25		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	27		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	29		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	31		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	33		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	35		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	37		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	39		
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	41		
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	43		
 47 48 49 50 51 52 53 54 55 56 57 58 59 	45		
49 50 51 52 53 54 55 56 57 58 59	47		
51 52 53 54 55 56 57 58 59	49		
53 54 55 56 57 58 59	51		
55 56 57 58 59	53		
57 58 59	55		
59	57		
60			

334 Exploratory outcomes

335 Exploratory outcomes that we will investigate are shown in Table 2.

Left ventricular dysfunction	Defined by 2D-echocardiography derived biplane ejection fraction
Cardiac biomarkers	NT-proBNP, BNP, hsTn
Clinical outcomes informed by	StEP trials consensus definitions:
Cardiovascular outcomes(27)	Myocardial infarction
	Myocardial injury
	Cardiac death
	Non-fatal cardiac arrest
	Coronary revascularisation
	Major adverse cardiac event
Pulmonary outcomes(28)	Pneumonia
	Atelectasis
	Acute Respiratory Distress Syndrome
	Pulmonary aspiration
Renal outcomes(29)	Acute Kidney Injury
	Need for Renal Replacement Therapy
Infection outcomes(30)	Fever
	Clinical suspicion of infection
Neurological outcomes(31)	Delirium 🔿
_	Stroke
Major complications	Sequential Organ Failure Assessment Score
Clinical indicators	Need for unplanned HDU or ICU admission
	Requirement for new invasive or non-invasive ventilation
	Length of postoperative critical care and hospital stay
	Mortality at 30 days
Patient quality of recovery	QoR-15
Patient centred outcomes	EQ-5D-5L
	WHODAS 2.0
	(assessed at 30 days, 3 months, and 12 months postoperatively)
T1-CMR	Pre and postoperative T1-CMR. T1 weighted CMR pre and post
	intravenous gadolinium to calculate T1 signal and extracellular
	volume (imaging correlates of myocardial inflammation)
NT-proBNP = N-terminal prohormon	e of brain natriuretic peptide, BNP = brain natriuretic peptide, HsTn =
high sensitivity troponin, StEP = Stan	dardised Endpoints, HDU = high dependency unit, ICU = intensive care
unit, QoR-15 = quality of recovery-15	5, EQ-5D-5L = EuroQol-5 Dimension Health Related Quality of Life
Questionnaire, WHODAS 2.0 = Worl	d Health Organisation Disability Assessment Schedule 2.0, T1-CMR = T1
cardiovascular magnetic resonance,	

1		1
2 3 4	344	Statistical Considerations
5 6	345	All statistical analyses will be performed in conjunction with the Robertson Centre for
7 8 9	346	Biostatistics at the University of Glasgow.
10 11	347	
12 13	348	Analysis of co-primary outcomes
14 15 16	349	Incidence of perioperative RV dysfunction
17 18	350	The identified incidence of postoperative RVD will be compared with the null hypothesis that
19 20 21	351	the incidence equals zero using a one-sample binomial test; 95% confidence intervals for the
21 22 23	352	incidence will be defined using the Clopper-Pearson method. In addition, we will perform
24 25	353	sensitivity analyses to identify the incidence of patients that develop new post operative
26 27	354	RVD, and identify the incidence of those that have pre-existing RVD maintained through to
28 29 30	355	the postoperative period. Sub-group analyses will estimate the incidence rate of postoperative
31 32	356	LVD and RVD within surgical subgroups and compare the incidence in patients with COPD
33 34	357	vs no COPD, in operations involving mechanical ventilation and no mechanical ventilation
35 36 37	358	(orthopaedic surgery under spinal anaesthesia), one lung ventilation (OLV) vs no OLV, in
37 38 39	359	videoscopic vs open surgeries, and in patients with IHD vs no IHD. Secondary analyses will
40 41	360	explore the association between pre- and postoperative cardiac biomarker levels and
42 43	361	perioperative LVD and RVD.
44 45 46	362	
47 48	363	With a one sample binomial test at a one-sided significance level of 5% with 80% power, 31
49 50	364	patients would be required to confidently identify an incidence of postoperative RVD of 5%
51 52 53	365	as different from zero in any individual surgical sub-group. As such, recruiting 35 patients
55 54 55	366	per group provides a 10% margin for loss to follow-up and withdrawals. This results in a total
56 57	367	sample size of 175.
58 59 60	368	

Page 18 of 28

|--|

Assuming the incidence of RVD is proven to be different from zero in any group (highly likely given our previous findings(8)), then additional analyses will be performed in pooled data across all surgical groups to assess the clinical impact of postoperative LVD or RVD. Sensitivity analyses will be performed to assess the clinical impact of RVD on patients that develop new postoperative RVD, compared to the clinical impact of pre-existing RVD which is maintained through to the postoperative period.

DAH₃₀ postoperatively will be compared between the groups with and without postoperative RVD using negative binomial regression analysis adjusting for age and other known predictors of DAH₃₀.(25,26) It will also be explored how adjustment for further variables (including cardiac biomarker profile) affects results. We will conduct the same DAH₃₀ analysis on the sensitivity analysis groups described above.

Performing power analysis for this comparison is challenging given the large number of unknowns in terms of the incidence of RVD, and the potential effect size. As such, an indicative power analysis was performed exploring sample sizes from 50 to 200 patients, an incidence of RVD 15-50% and for a difference in DAH₃₀ of 2 or 3 days. The anticipated power is in excess of 0.8 in all simulations containing over 125 patients suggesting that in the 175-patient sample should have sufficient power in most conceivable scenarios (Figure 2).

BMJ Open

Exploratory outcomes LVD will be analysed analogously to RVD as a secondary analysis. Secondary outcomes from the postoperative period will be used to compare their incidence in patients with and without the primary outcome (RVD). We will assess for association between RVD and PMI (via cardiac biomarkers), cardiovascular complications, major complications, patient recovery, length of ICU and hospital stay. Analysis of intraoperative data will be used with the aim to identify mechanisms by which RVD may have arisen. Where appropriate, multivariate analysis will be used. We will use 30-day mortality as our primary survival end point and will assess for association with RVD via appropriate survival analyses. We will also assess the intermediate and long-term impact of RVD upon patients by assessing association between RVD and health related quality of life (via EO-5D-5L) and functional status (via WHODAS 2.0) at 30-day, three months, and one year postoperatively. Pre- and postoperative T1-CMR will explore for association between imaging correlates of myocardial inflammation (T1 and extracellular volume) and both RVD and PMI. This sub-study will also aim to confirm our previous findings of elevated postoperative T1/extracellular volume in patients after thoracic surgery (15) and replicate this in other surgical groups.

Patient and public Involvement

Our programme of work was presented to the Society of Cardiothoracic Surgeons

'RESOLVES' Patient and Public Involvement (PPI) group with very positive feedback. This

PPI group was unanimously in favour of our research and its obvious benefits to patients.

Ethics and Dissemination

The study will be conducted in accordance with the ethical principles that have their origin in the Declaration of Helsinki and to Good Clinical Practice (GCP) Guidelines. UK wide ethical approval was obtained from the South Central- Oxford C Research Ethics Committee (REC reference 22/SC/0442) and will comply with all applicable UK legislation. Local research and development approval was obtained from each participating site. All local site Standardised Operating Procedures (SOPs) will be followed.

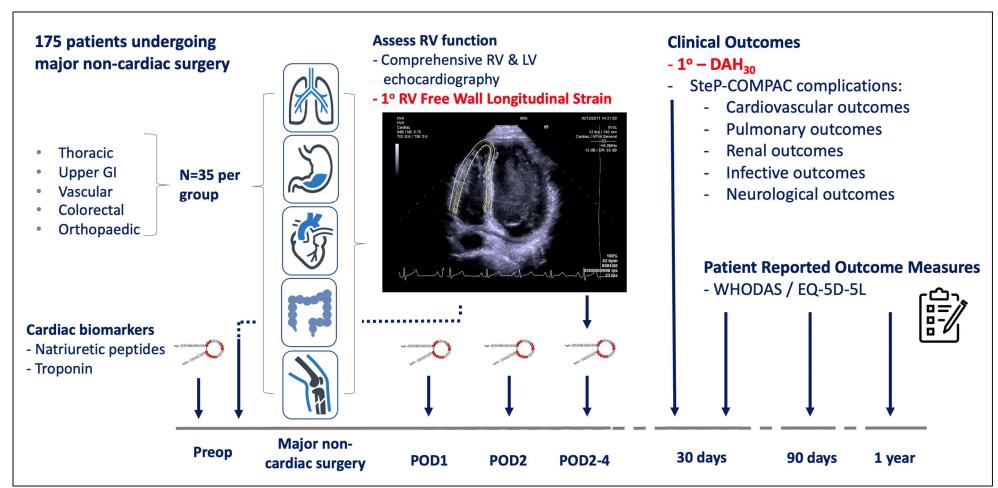
All publications and presentations relating to this study will be authorised by the trial Chief Investigator (BS). Authorship will be determined according to the international committee of medical journal editors' recommendations. The results of the study will be first reported to study collaborators. Subsequently, we will communicate our results by reporting them to the funder and presentation at national meetings, with publication in appropriate peer reviewed journals. Further details about the trial results and final report will be available on request to the scientific community in a timely manner.

Authors Contributions

All authors contributed significantly to the submitted work. TK and JM wrote the initial draft of the protocol. BS and PM conceived the study and BS is the grant holder. CB contributed to study design and initial funding application. RK and SM are co-principal investigators at

Page 21 of 28

١.
7


1		2
2		
3 4	444	Glasgow Royal Infirmary and contributed to study design. MW is principal investigator and
5 6	445	IR co-investigator at the Queen Elizabeth University Hospital, both contributed to study
7 8 9	446	design. GA is co-investigator at the Royal London Hospital and contributed to study design.
10 11	447	KR is a co-investigator and lead interventional cardiologist for the study and was involved in
12 13	448	study design. NG advised on statistical analyses for the study. All authors read and
14 15 16	449	approved the final manuscript.
17 18	450	
19 20	451	Funding
21 22 23	452	This study is supported by the National Institute of Academic Anaesthesia/Royal College of
23 24 25	453	Anaesthetists British Oxygen Company Chair of Anaesthesia Research Grant. CB is
26 27	454	supported by the BHF Centre of Research Excellence grant (reference number
28 29	455	RE/18/6/34217). GA is supported by the NIHR Advanced Fellowship (NIHR300097).
30 31 32	456	
33 34	457	Competing Interests
35 36	458	No authors have any competing interests to declare.
37 38	459	
39 40 41	460	Acknowledgements
42 43	461	Acknowledgements Not applicable
44 45 46	462	
46 47 48	463	Word count
49 50	464	3170
51 52		
53		
54		
55 56		
57		
58 59		
60		

2

1 2 2		
3 4 5	465	Figure Legends
5 6 7	466	
7 8 9	467	Figure 1 Overview of IMPRoVE Main Study
9 10 11	468	Graphical overview of the main IMPRoVE study. One-hundred and seventy-five patients (35
12 13	469	from each surgical group) will undergo echocardiography and cardiac biomarker testing pre-
14 15	470	and postoperatively. Co-primary outcomes are the incidence of RV dysfunction, diagnosed
16 17 18	471	by RV free wall longitudinal strain, and DAH_{30} (shown in red).
19 20	472	GI = gastrointestinal, RV = right ventricular, LV = left ventricular, DAH_{30} = Days alive and
21 22	473	at home at 30 days postoperatively, StEP-COMPAC = Standardised Endpoints and Core
23 24 25	474	Outcome Measures for Perioperative and Anaesthetic Care, WHODAS = WHO Disability
26 27	475	Assessment Schedule 2.0, EQ-5D-5L = EuroQol-5 Dimension Health Related Quality of Life
28 29	476	Questionnaire, POD = postoperative day
30 31 32	477	
31 32 33	477 478	Figure 2. Simulated power analysis for impact of RVD on days alive and at home at 30 days
31 32 33 34 35 36		Figure 2. Simulated power analysis for impact of RVD on days alive and at home at 30 days Assuming for 1% of the patients $DAH_{30} = 0$, for the remainder DAH_{30} follows a negative
31 32 33 34 35 36 37 38	478	
31 32 33 34 35 36 37 38 39 40	478 479	Assuming for 1% of the patients $DAH_{30} = 0$, for the remainder DAH_{30} follows a negative
31 32 33 34 35 36 37 38 39	478 479 480	Assuming for 1% of the patients $DAH_{30} = 0$, for the remainder DAH_{30} follows a negative binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 	478 479 480 481	Assuming for 1% of the patients $DAH_{30} = 0$, for the remainder DAH_{30} follows a negative binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 	478 479 480 481 482	Assuming for 1% of the patients $DAH_{30} = 0$, for the remainder DAH_{30} follows a negative binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the validation cohorts. The simulated DAH_{30} was then compared between groups using negative
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 	478 479 480 481 482 483	Assuming for 1% of the patients $DAH_{30} = 0$, for the remainder DAH_{30} follows a negative binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the validation cohorts. The simulated DAH_{30} was then compared between groups using negative binomial regression (repeated) in 1000 samples. The figures show the resulting estimated
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	478 479 480 481 482 483 484	Assuming for 1% of the patients $DAH_{30} = 0$, for the remainder DAH_{30} follows a negative binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the validation cohorts. The simulated DAH_{30} was then compared between groups using negative binomial regression (repeated) in 1000 samples. The figures show the resulting estimated power for incidences of postoperative RVD from 15-50% [#] , and for a clinical effect size of 2
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	478 479 480 481 482 483 484 485	Assuming for 1% of the patients $DAH_{30} = 0$, for the remainder DAH_{30} follows a negative binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the validation cohorts. The simulated DAH_{30} was then compared between groups using negative binomial regression (repeated) in 1000 samples. The figures show the resulting estimated power for incidences of postoperative RVD from 15-50% [#] , and for a clinical effect size of 2 (Fig A) or 3 (Fig B) days difference in DAH30 [*] .
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	478 479 480 481 482 483 484 485 486	Assuming for 1% of the patients $DAH_{30} = 0$, for the remainder DAH_{30} follows a negative binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the validation cohorts. The simulated DAH_{30} was then compared between groups using negative binomial regression (repeated) in 1000 samples. The figures show the resulting estimated power for incidences of postoperative RVD from 15-50% [#] , and for a clinical effect size of 2 (Fig A) or 3 (Fig B) days difference in DAH30 [*] .

1		4
2		
3	490	References
4	491	
5	492	1. Devereaux PJ, Biccard BM, Sigamani A, et al. Association of Postoperative High-
6	493	Sensitivity Troponin Levels With Myocardial Injury and 30-Day Mortality Among Patients
7		
8 9	494	Undergoing Noncardiac Surgery. J Am Med Assoc 2017; 317 (16): 1642-51.
9 10	495	2. Puelacher C, Gualandro DM, Glarner N, et al. Long-term outcomes of perioperative
11	496	myocardial infarction/injury after non-cardiac surgery. European heart journal 2023.
12	497	3. Rodseth RN, Biccard BM, Chu R, et al. Postoperative B-type natriuretic peptide for
13	498	prediction of major cardiac events in patients undergoing noncardiac surgery: systematic
14	499	review and individual patient meta-analysis. Anesthesiology 2013; 119(2): 270-83.
15	500	4. Lafferty B, McCall P, Shelley B. BNP for prediction of outcome following lung resection
16	501	surgery (PROFILES); an interim analysis Journal of Cardiothoracic and Vascular
17	502	Anesthesia 2020; 34 (1): S15-6.
18	503	5. Markin NW, Gmelch BS, Griffee MJ, Holmberg TJ, Morgan DE, Zimmerman JM. A
19	504	review of 364 perioperative rescue echocardiograms: findings of an anesthesiologist-staffed
20	505	perioperative echocardiography service. J Cardiothor Vasc An 2015; 29 (1): 82-8.
21	506	6. Murphy E, Shelley B. Clinical presentation and management of right ventricular
22	507	dysfunction. <i>BJA Education</i> 2019; 19 (6): 183-90.
23 24		
24 25	508	7. Chou J, Ma M, Gylys M, et al. Preexisting Right Ventricular Dysfunction Is Associated
26	509	With Higher Postoperative Cardiac Complications and Longer Hospital Stay in High-Risk
27	510	Patients Undergoing Nonemergent Major Vascular Surgery. J Cardiothor Vasc An 2019;
28	511	33 (5): 1279-86.
29	512	8. McCall PJ, Arthur A, Glass A, et al. The right ventricular response to lung resection. J
30	513	<i>Thorac Cardiovasc Surg</i> 2019; 158 (2): 556-65 e5.
31	514	9. Modin D, Møgelvang R, Andersen DM, Biering-Sørensen T. Right Ventricular Function
32	515	Evaluated by Tricuspid Annular Plane Systolic Excursion Predicts Cardiovascular Death in
33	516	the General Population. Journal of the American Heart Association 2019; 8(10).
34	517	10. Murphy E, Shelley B. The right ventricle-structural and functional importance for
35	518	anaesthesia and intensive care. BJA education 2018; 18(8).
36 37	519	11. Grobben RB, van Waes JAR, Leiner T, et al. Unexpected Cardiac Computed
	520	Tomography Findings in Patients With Postoperative Myocardial Injury. Anesthesia and
38 39	521	analgesia 2018; 126 (5): 1462-8.
40	522	12. Glass A, McCall P, Arthur A, Mangion K, B S. Pulmonary artery wave reflection and
41	523	right ventricular function after lung resection. British journal of anaesthesia 2022.
42		
43	524	13. Sheth T, Chan M, Butler C, et al. Prognostic capabilities of coronary computed
44	525	tomographic angiography before non-cardiac surgery: prospective cohort study. <i>BMJ</i> :
45	526	British Medical Journal 2015; 350 : h1907.
46	527	14. Ackland GL, Abbott TEF, Cain D, et al. Preoperative systemic inflammation and
47	528	perioperative myocardial injury: prospective observational multicentre cohort study of
48	529	patients undergoing non-cardiac surgery. British journal of anaesthesia 2019; 122(2): 180-7.
49 50	530	15. Murphy E, Glass A, McCall P, B S. Myocardial inflammation after major non-cardiac
50 51	531	thoracic surgery. British Journal of Anaesthesia 2021; 126(2); E80-1.
52	532	16. Robinson S, Rana B, Oxborough D, et al. A practical guideline for performing a
53	533	comprehensive transthoracic echocardiogram in adults: the British Society of
54	534	Echocardiography minimum dataset. <i>Echo research and practice</i> 2020; 7(4).
55	535	17. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber
56	536	quantification by echocardiography in adults: an update from the American Society of
57	537	Echocardiography and the European Association of Cardiovascular Imaging. <i>Journal of the</i>
58	538	American Society of Echocardiography : official publication of the American Society of
59	538 539	Echocardiography 2015; 28 (1).
60	222	Benoeurunogrupny 2013, 20 (1).

1		2
2		
3	F 4 0	19 Zoidi A. Knight DC. Augusting DV. et al. Echogonalis anothic approximant of the night
4	540	18. Zaidi A, Knight DS, Augustine DX, et al. Echocardiographic assessment of the right
5	541	heart in adults: a practical guideline from the British Society of Echocardiography. <i>Echo</i>
6	542	research and practice 2020; 7(1).
7	543	19. Addetia K, Miyoshi T, Citro R, et al. Two-Dimensional Echocardiographic Right
8	544	Ventricular Size and Systolic Function Measurements Stratified by Sex, Age, and Ethnicity:
9	545	Results of the World Alliance of Societies of Echocardiography Study. Journal of the
10	546	American Society of Echocardiography : official publication of the American Society of
11	547	<i>Echocardiography</i> 2021; 34 (11).
12	548	20. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment
13 14	549	of the right heart in adults: a report from the American Society of Echocardiography endorsed
15	550	by the European Association of Echocardiography, a registered branch of the European
16	551	Society of Cardiology, and the Canadian Society of Echocardiography. <i>Journal of the</i>
17	552	American Society of Echocardiography : official publication of the American Society of
18	553	Echocardiography 2010; 23(7).
19	554	21. Lahm T, Douglas IS, Archer SL, et al. Assessment of Right Ventricular Function in the
20		
21	555	Research Setting: Knowledge Gaps and Pathways Forward. An Official American Thoracic
22	556	Society Research Statement. <i>American journal of respiratory and critical care medicine</i>
23	557	2018; 198 (4): e15-e43.
24	558	22. Focardi M, Cameli M, Carbone SF, et al. Traditional and innovative echocardiographic
25 26	559	parameters for the analysis of right ventricular performance in comparison with cardiac
26 27	560	magnetic resonance. Eu Heart J-Card Img 2015; 16(1): 47-52.
27	561	23. McCall P, Soosay A, Kinsella J, Sonecki P, Shelley B. The utility of transthoracic
29	562	echocardiographic measures of right ventricular systolic function in a lung resection cohort.
30	563	<i>Echo Res Pract</i> 2019; 6 (1): 7-15.
31	564	24. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for Cardiac Chamber
32	565	Quantification by Echocardiography in Adults: An Update from the American Society of
33	566	Echocardiography and the European Association of Cardiovascular Imaging. European Heart
34	567	Journal - Cardiovascular Imaging 2015; 16(3): 233-71.
35	568	25. Myles PS, Shulman MA, Heritier S, et al. Validation of days at home as an outcome
36	569	measure after surgery: a prospective cohort study in Australia. <i>BMJ Open</i> 2017; 7(8):
37 20	570	e015828.
38 39	571	26. Jerath A, Austin PC, Wijeysundera DN. Days Alive and Out of Hospital: Validation of
40	572	a Patient-centered Outcome for Perioperative Medicine. <i>Anesthesiology</i> 2019; 131 (1): 84-93.
41	573	 Beattie WS, Lalu M, Bocock M, et al. Systematic review and consensus definitions for
42		the Standardized Endpoints in Perioperative Medicine (StEP) initiative: cardiovascular
43	574	1 1
44	575	outcomes. British journal of anaesthesia 2021; 126 (1).
45	576	28. Abbott TEF, Fowler AJ, Pelosi P, et al. A systematic review and consensus definitions
46	577	for standardised end-points in perioperative medicine: pulmonary complications. <i>British</i>
47	578	journal of anaesthesia 2018; 120 (5).
48	579	29. McIlroy DR, Bellomo R, Billings FT, et al. Systematic review and consensus
49 50	580	definitions for the Standardised Endpoints in Perioperative Medicine (StEP) initiative: renal
50 51	581	endpoints. British journal of anaesthesia 2018; 121(5).
52	582	30. Barnes J, Hunter J, Harris S, et al. Systematic review and consensus definitions for the
53	583	Standardised Endpoints in Perioperative Medicine (StEP) initiative: infection and sepsis.
54	584	British journal of anaesthesia 2019; 122(4).
55	585	31. Haller G, Bampoe S, Cook T, et al. Systematic review and consensus definitions for the
56	586	Standardised Endpoints in Perioperative Medicine initiative: clinical indicators. British
57	587	journal of anaesthesia 2019; 123 (2).
58		J ·······J ···························
59		
60		

Figure 1 Overview of IMPRoVE Main Study

Graphical overview of the main IMPRoVE study. One-hundred and seventy-five patients (35 from each surgical group) will undergo echocardiography and cardiac biomarker testing pre- and postoperatively. Co-primary outcomes are the incidence of RV dysfunction, diagnosed by RV free wall longitudinal strain, and DAH₃₀ (shown in red).

GI = gastrointestinal, RV = right ventricular, LV = left ventricular, $DAH_{30} = Days$ alive and at home at 30 days postoperatively, StEP-COMPAC =

Standardised Endpoints and Core Outcome Measures for Perioperative and Anaesthetic Care, WHODAS = WHO Disability Assessment Schedule 2.0, EQ-

5D-5L = EuroQol-5 Dimension Health Related Quality of Life Questionnaire, POD = postoperative day

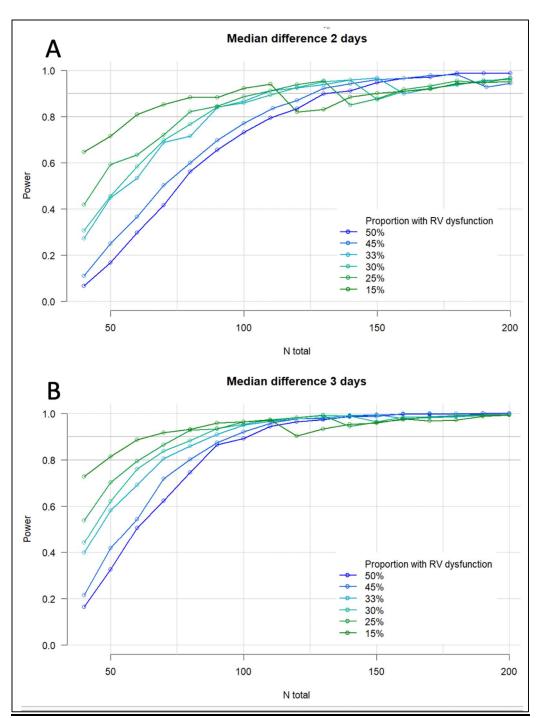


Figure 2. Simulated power analysis for impact of RVD on days alive and at home at 30 days Assuming for 1% of the patients $DAH_{30} = 0$, for the remainder DAH_{30} follows a negative binomial distribution with parameters chosen such that the median DAH_{30} is 24/25 in one group and 27 in the other group and the shape of the distribution is similar to that seen in the validation cohorts. The simulated DAH_{30} was then compared between groups using negative binomial regression (repeated) in 1000 samples. The figures show the resulting estimated power for incidences of postoperative RVD from 15-50%[#], and for a clinical effect size of 2 (Fig A) or 3 (Fig B) days difference in DAH30^{*}. [#]In our previous work the incidence of postoperative RVD was 50% in thoracic surgical patients but may be significantly less in, for example, an orthopaedic population.

*In Chou et al's study preoperative RV dysfunction prolonged hospital length of stay by over 50%, but this cohort was a very high-risk vascular surgical population⁷.

Contraindications to Cardiovascular Magnetic Resonance Imaging

Presence of:

- cardiac pacemaker
- artificial heart valve
- neurostimulator
- cochlear implant
- aneurysm clips
- metal injuries to the eye
- loose metal in a part of the body

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1+2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7-8
		(b) For matched studies, give matching criteria and number of exposed and unexposed	N/A
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	10-14
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	12+13
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	15+16
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	N/A
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	15-17
		(b) Describe any methods used to examine subgroups and interactions	15-17
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, explain how loss to follow-up was addressed	N/A
		(e) Describe any sensitivity analyses	N/A

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	N/A
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	N/A
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	N/A
		(b) Indicate number of participants with missing data for each variable of interest	N/A
		(c) Summarise follow-up time (eg, average and total amount)	N/A
Outcome data	15*	Report numbers of outcome events or summary measures over time	N/A
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	N/A
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	N/A
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	N/A
Discussion			N/A
Key results	18	Summarise key results with reference to study objectives	N/A
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	N/A
Generalisability	21	Discuss the generalisability (external validity) of the study results	N/A
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	19

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.