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Supplemental Note 1: AGORA 2.0 represents a substantial expansion in size and scope 
over AGORA 1.03 
We extended the scope of AGORA2 beyond cultured and gut-associated strains found in 
Western microbiomes. While AGORA 1.031 mostly consisted of cultured species, AGORA2 
includes 487 currently uncultured and/or uncharacterised strains (Figure 1a, Table S1). 
AGORA2 contains 737 bacterial isolates, including 105 novel species, from the Human 
Gastrointestinal Bacteria Culture Collection (HBC)2. AGORA2 accounts for body sites other 
than gut, such as skin and mouth (Table S1). While the selection of AGORA 1.03 strains was 
mainly based on species found in healthy young Western individuals3, AGORA2 accounts for 
species detected in a cohort of elderly Parkinson’s Disease patients and controls4, a cohort of 
Japanese colorectal cancer patients and controls5 as well as species isolated from Polynesian, 
Saudi, and Senegalese individuals6. The taxonomic extension of AGORA2 (Figure 2a, b) 
covers all 83 named microbes in the Broad Institute-OpenBiome Microbiome Library7, all 
strains in the human gastrointestinal bacteria culture collection2, 175 of 180 named species 
(97%) in 92,143 metagenome-assembled genomes from 11,850 human gut microbiomes8, as 
well as 463 of the 560 named species (83%) in a resource of over 150,000 microbial genomes 
from 32 countries9. Finally, we expanded the coverage of AGORA beyond human-associated 
strains by reconstructing 127 mouse-associated strains (Figure 1a, Table S1), thus, enabling 
modelling of the mouse microbiome. Mouse models are an important tool in microbiome 
research, but the microbiome is distinct from human10. It should be noted that Bacilli and 
Gammaproteobacteria were overrepresented in the strain selection (Figure 1b) reflecting a 
likely sequencing bias for well-studied species and/or opportunistic pathogens. 
 
Supplemental Note 2: DEMETER results in high-quality reconstructions that capture 
known biochemical and physiological properties 
The AGORA2 reconstructions underwent continuous testing through a test suite11 that ensured 
correct reconstruction structure, biochemical and thermodynamic consistency, as well as good 
agreement with experimental and genomic findings and known traits of the organism (Table 
S2). These efforts ensured that all curated reconstruction-derived condition-specific metabolic 
models could grow anaerobically on complex medium11 and produced realistic amounts of 
ATP, which was not the case for models derived from most draft reconstructions (Figure 1c). 
We collected information on carbon sources, fermentation pathways, and growth requirements 
that served as input data for the pipeline. Using an iterative approach described in11, the semi-
automatically curated reconstructions were continuously tested against the input data. 
Discrepancies between experimental data and model predictions identified by the test suite 
were manually inspected and corrected (Methods). As a result, while the metabolic models 
derived from draft reconstructions showed low prediction accuracy, those derived from the 
curated AGORA2 reconstructions, as expected, agreed very well with the experimental data 
(Figure 1d). For instance, defined media had been reported for 74 AGORA2 strains12 and all 
74 reconstructions could grow on the respective media.  
 
The metabolic reconstructions were further curated by mapping a published compendium of 
metabolite uptake and secretion data for ~570 human microbes13 onto the AGORA2 strains. 
Corresponding exchange and transport reactions were added for each microbe reported to take 
up and/or secrete a metabolite. Thus, due to the extensive data-driven curation and refinement 
already performed, AGORA2 captured species-specific catabolic and biosynthetic pathways 
present in the human gut microbiome very well. Afterwards, the reconstructions were further 
improved by performing gap-filling to ensure the uptake and secretion of metabolites reported 
in13, resulting in an agreement with metabolite uptake and secretion data of >99% for both 
(Figure 1d). 
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Supplemental Note 3: Curation of biomass objective functions 
Gram-positive and -negative bacteria differ in their cell wall structure14. Gram-positive bacteria 
possess a thick layer of teichoic acid and an inner but no outer membrane, while gram-negative 
bacteria have an inner and an outer membrane separated by a large periplasmatic space with 
the outer membrane carrying lipopolysaccharides (LPS)14. As exceptions, the Deinococcus-
Thermus phylum has on outer membrane, but does not have LPS15, certain Firmicutes, such as 
Acidaminobacter and Gracilibacter sp. stain gram-negative, but have a gram-positive cell wall 
structure14, 16, and the Chloroflexi phylum stains gram-negative, but has no LPS and no outer 
membrane14. Moreover, the Tenericutes phylum does not possess a cell wall14 and archaea have 
ether lipids in their membranes instead of the bacterial ester lipids14. When inspecting the 
biomass objective functions (BOFs) in the draft reconstructions, it was found that 32% of 
reconstructions of gram-positive organisms had gram-negative components in their BOF or 
vice versa. Moreover, 35 Tenericutes and seven archaea draft reconstructions incorrectly had 
standard bacterial cell wall components in their BOFs. To correct this, a step adjusting the BOF 
according to taxon-specific cell wall structure was incorporated into DEMETER11. All BOFs 
were checked based on the respective organisms’ gram status and corrected by removing 
incorrect metabolites and add teichoic acid or LPS, as appropriate. For gram-negative 
organisms with an outer membrane, a periplasmatic compartment was added. The exceptions 
listed above were taken into account. An archaeal BOF was formulated by retrieved ether lipid 
structures and the corresponding biosynthesis reactions from the reconstruction of 
Methanosarcina barkeri17. Gap-filling reactions enabling cell wall component production were 
also added to the corresponding reconstructions, if necessary. 
 
Supplemental Note 4: Reconstruction features across taxa 
The reaction content of the classes and families with the highest numbers of representatives in 
AGORA2 was visualised through t-distributed stochastic neighbour embedding (t-SNE)18 
(Methods, Figure 2a-d). Generally, reconstructions clustered by class and family indicating that 
related organisms were similar in reconstruction content (Figure 2a-b). However, multiple 
subclusters of microbial classes were observed, especially for the Bacilli and 
Gammaproteobacteria classes (Figure 2c-d). Clustering Bacilli and Gammaproteobacteria 
representatives separately revealed multiple subclusters in the Enterococus, Staphylococcus, 
and Streptococcus genera (Figure 2c) as well as in the Escherichia and Salmonella genera 
(Figure 2d). These clusters were already observed in the KBase draft reconstructions (Figures 
S2a-c) indicating that this was a result of the genome annotation. 
 
The number of reactions, metabolites, and genes per reconstructions also varied by taxon 
(Figure 2e-g). The highest numbers of reactions, metabolites, and genes were found in the 
Proteobacteria phylum, likely as a result of many representatives of this phylum having large 
genomes (Table S1) and a generalist type of metabolism14. The smallest reconstructions were 
found in the Tenericutes phylum, which consisted of organisms without a cell wall14. Growth 
rates on a previously defined Western diet1 also correlated with reconstruction size and were 
in a biologically realistic range (Figure 2h). 
 
Supplemental Note 5: Interspecies interactions and bottlenecks in microbial drug 
metabolism 
For some drug metabolic products, only a subset of microbiome samples correlated with the 
abundances of the enzymes directly producing them (Figure 5b). We hypothesised that this was 
due to multiple species being involved in the metabolism of these drugs. An interspecies 
interaction in the metabolism of the Parkinson’s Disease drug levodopa has been demonstrated 
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previously19. To identify species and enzymes that were bottlenecks for drug metabolism, we 
performed a shadow price analysis as described previously20 (Methods). Non-zero shadow 
prices of biomass metabolites indicated that these species were flux bottlenecks for the drug 
metabolic product (Methods, Figure S6, Table S10). For instance, for the conversion of the 
anticancer prodrug 5-fluorocytosine to the active drug 5-fluorouracil via cytosine deaminase, 
and the detoxified end product 5,6-dehydro-5-fluorouracil via dihydrouracil dehydrogenase, 
either the first or the second step were flux bottlenecks (Figure S6a). Examples are 
Anaerotruncus colihominis and Hungatella hathewayi, which carry only cytosine deaminase, 
and Escherichia coli, which has both cytosine deaminase and dihydrouracil dehydrogenase 
(Figure S6a). For the previously described case of levodopa metabolism19, two variations of 
flux limitations could be distinguished. If production of the end product m-tyramine correlated 
directly with dopamine dehydroxylase abundance, the abundance of Eggerthella lenta, the only 
species carrying this enzyme was flux-limiting (Figure S6b). In contrast, for microbiomes 
outside the correlation curve, the abundance of species carrying tyrosine decarboxylase, which 
produces dopamine from levodopa (e.g., Enterococcus sp.), was flux limiting (Figure S6b). A 
species-species interaction in levodopa metabolism involving Enteroccocus sp. and E. lenta 
had been previously reported19. Since this microbial pathway lowers the bioavailability of the 
active drug levodopa19, identifying the species that serve as bottlenecks for levodopa 
conversion is an important consideration for Parkinson’s Disease treatment strategies. 
 
Supplemental Note 6: Retrieval of genomes for human gut-associated strains 
An initial set of genomes for a comparative genome analysis included 632 of 773 genomes 
from the AGORA genome set1. To extend this set, we retrieved genomes for all the strains for 
microbial species associated with human gut21, and the genomes for 4,881 of such strains were 
available at the PubSEED resource. To check the quality of genome sequencing and assembly, 
we analysed the distribution of 31 genetic marker genes that are these proteins because they 
are nearly universally distributed in Bacteria and exist as single copy genes within each 
genome22. In agreement with the distribution of the genetic marker genes, this gene list was 
modified. Thus, the genes dnaG, infC, and pgk were excluded because these genes often exist 
as multiple non-identical copies within certain genome, whereas the gene pyrG was excluded 
because its absence in multiple analysed genomes. Based on the distribution of the other genetic 
marker genes, 43 genomes were excluded from the genome set as they lacked multiple genetic 
marker genes and/or had the presence of multiple identical copies of the gene in a single 
genome. Thus, genome set used for the comparative genomics manual refinement included 
4,848 genomes. For an analysis of drug metabolism, the genome set was further extended by 
adding 643 genomes for other gut associated strains that had been retrieved through literature 
searches (Supplemental Note 1) and were available in the PubSEED database. Thus, for drug 
metabolism, genome set was extended up to 5,438 microbial genomes. 
 
Supplemental Note 7: Curation of the subsystems, annotation of protein functional roles 
All the functional roles corresponded to a single catalysed reaction, or a set of catalysed 
reactions (see below), were grouped into subsets, if possibly. For example, NADH- and 
NADPH- specific forms of FMN-dependent azoreductases (EC 1.7.1.6 and EC 1.7.-.-, 
respectively) were attributed to different subsets. Two types of the subsets were created, (1) 
including all subunits for certain enzyme or transporter, such as catalytic and electron-transfer 
subunits of digoxin reductase, and (2) including alternative names for the same enzymatic 
activity, such as b-galactosidases (EC 3.2.1.23) of the families GH2, GH35, and GH42. The 
single protein can belong to more than one subset, for example, NAD(P)H-specific form of 
azoreductase was attributed to subsets for both NADH- and NADPH-specific forms, however, 
this protein is not homologous to any of two previous.  
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To include all the alternative names for the same enzyme or transporter, chromosomal gene 
clusters were analysed. This was done for all genes that were absent in a certain genome but 
were present genomes of organisms belonging to the same species or genus. The following 
procedure was applied: (1) Genome context of the analysed gene was compared and genes, 
clustered with the analysed gene in multiple genomes of the related organisms were 
determined. (2) Orthologs of the clustered genes were searched in the analysed genome, and, 
if they were found, (3) their genomic context in the analysed genome was studied to find a gene 
that (i) have a genome context similar to that was observed in the genomes of the related 
organisms for the analysed gene and (ii) have a name synonymous to the name of the analysed 
gene or other genes in the subset including the analysed gene. (4) If such candidate was found, 
a new functional role was included into the subsystem and included into the corresponding 
subset.  
 
Supplemental Note 8: Estimation of completeness of the analysed metabolic pathways 
Most of the curated subsystems correspond to biosynthesis of certain metabolite(s). All the 
biosynthetic pathways for each of potentially synthesised metabolite were collected and 
analysed. More than one pathway may be possible for a single metabolite, as well the same 
gene can be included into different pathways for the synthesis of different metabolites. 
 
Based on the presence of enzymatic genes, all the pathways were classified to the following 
categories. (1) Complete pathways included genes for all the enzymes of the pathway. (2) 
Gapped pathways were defined as that have no genes for no more than two reactions and length 
of each gap in the pathway does not exceed one reaction. (3) For incomplete pathways genes 
for more than two reactions were absent or extension of a gap exceeded two or more reactions. 
(4) If no gene of a pathway was present in the genome, the pathway was defined as absent. For 
the incomplete pathways, no reactions corresponding to the present genes were included into 
metabolic reconstructions. For the gapped pathways, a gap-filing procedure was applied, 
whereas for the complete pathways, reactions for all the genes were included into the 
reconstructions. The metabolite was considered as being synthesised by a microorganism if at 
least one complete or gapped biosynthetic pathway was predicted. This classification was 
applied to all analysed pathways except the (1) drug and bile acids transformations, which have 
been shown to rely on microbial collaboration to complete a pathway19; (2) respiration because 
all the curated pathways consist of only one reaction, and (3) central carbon catabolism because 
these pathways are tightly connected to the biosynthetic pathways and may be defined as 
incomplete whereas not generating blocked reactions1. 
 
Supplemental Note 9: Manual refinement of the annotations for the drug-metabolising 
enzymes 
For a refinement of functional annotations for the drug-metabolising enzymes the following 
procedure was applied. (1) Phylogenetic tree was constructed for protein sequences of all the 
found BBHs. (2) Experimentally confirmed drug-metabolising enzymes were mapped onto the 
tree. (3) Monophyletic branches containing the experimentally confirmed enzymes were 
defined. (4) Branches lacking these enzymes were considered as false-positive predictions and 
were excluded from the analysis (Figure S10). Additionally, it was found that two of the drug-
metabolising enzymes have a conserved genomic context. Thus, a gene for L-tyrosine 
decarboxylase (TdcA, EC 4.1.1.25) is clustered together with a gene for tyrosyl-tRNA 
synthetase (EC 6.1.1.1), whereas a gene for cytidine deaminase (cCda, EC 3.5.4.5) is clustered 
together with genes for pyrimidine-nucleoside phosphorylase (EC 2.4.2.2) and deoxyribose-
phosphate aldolase (EC 4.1.2.4). Such a genomic context was used to distinguish between 
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genes for the drug-metabolising enzymes (clustering is conserved) and their paralogs (no 
clustering).  
 
Supplemental Note 10: Analysis of subcellular localisation of drug-metabolising enzymes 
For all the drug-metabolising enzymes the following procedure was applied. (1) For all the 
enzymes homologous to each other, maximal-likelihood phylogenetic tree was constructed; for 
example, for -galactosidases, three trees were constructed for the GH2, GH35, and GH42 
families, respectively. (2) For every tree, species-specific monophyletic branches were defined. 
(3) Subcellular localisation was predicted with CELLO23, 24 web tool for one randomly selected 
protein for every species-specific monophyletic branch and then extrapolated to the whole 
species-specific monophyletic branch. 
 
Supplemental Note 11: Prediction of drug transporting proteins 
Cytoplasmic drug metabolising enzymes require the presence of transporters delivering 
corresponding drugs into the cytoplasm. To predict these transporters, we analysed genomic 
context for the predicted cytoplasmic enzymes. Candidate drug transporters should satisfy the 
following criteria: (1) Genes for these transporters should be chromosomally co-localised with 
the genes for the cytoplasmic enzymes. (2) This co-location should be evolutionary conserved, 
i.e., should be observed in more than one species. (3) Genes for candidate drug transporters 
should demonstrate sequence similarity with known domains specific for transport proteins, 
which was checked by search on CDD database25 using the following cut off parameters: an e-
value ≤0.01 and a maximum number of hits equal to 500.   
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Supplemental Figures 

 
Figure S1: Change in model size due to refinement of reconstruction for the 5,438 
reconstructions, for which comparative genomics were performed. Left Panel: Histograms for 
change in reaction numbers across reconstructions. Right panel: Box plots across phyla for 
fold change in gene and reaction numbers due to reconstruction. High numbers of added 
reactions were result of adding drug reactions to reconstructions with drug-metabolising 
potential. Boxes of box plots were defined by 25th percentile, the median, and the 75th 
percentile. Whiskers cover 1.5 times the interquartile range. 
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Figure S2a): Clustering through t-distributed stochastic neighbour embedding (t-SNE) of 
reaction presence across all pathways per reconstruction for the draft reconstructions retrieved 
from KBase. Shown are the members of the Bacilli class by genus. 
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Figure S2b): Clustering through t-distributed stochastic neighbour embedding (t-SNE) of 
reaction presence across all pathways per reconstruction for the draft reconstructions retrieved 
from KBase. Shown are the members of the Gammaproteobacteria class by genus. 
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Figure S3a: Principles Component Analysis (PCA) space (first two dimensions) of the uptake 
fluxes under a European diet for 7,302 strains. Displayed are the strains belonging to the seven 
biggest phyla in AGORA2 (Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, 
Fusobacteria, Tenericutes, Spirochaetes).  
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Figure S3b: Principles Component Analysis (PCA) space (first two dimensions) of the 
secretion fluxes under a European diet for 7,302 strains. Displayed are the strains belonging to 
the seven largest phyla in AGORA2 (Firmicutes, Proteobacteria, Actinobacteria, 
Bacteroidetes, Fusobacteria, Tenericutes, Spirochaetes). 
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Figure S4: Yields from 1 mmol/gdry weight/hr of drugs that can serve as sources for ATP, CO2, pyruvate, 
and NH4 production. Shown are all microbes that could use at least one drug to produce the respective 
source. Flux with glucose and with no compound added are shown as controls. One example drug per 
enzyme was tested. 
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Figure S5a: Maximal-likelihood phylogenetic tree for cytidine deaminase (cCda, eCda, EC: 
3.5.4.5) proteins in the analysed genomes. Taxonomy is shown by branch colour; solid lines, 
cytoplasmic proteins; dotted lines, extracellular / periplasmic proteins. 
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Figure S5b: Maximal-likelihood phylogenetic tree for nitroreductase (cNit, eNit, EC: 1.-.-.-) 
proteins in the analysed genomes. Taxonomy is shown by branch colour; solid lines, 
cytoplasmic proteins; dotted lines, extracellular / periplasmic proteins. 
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Figure S5c: Maximal-likelihood phylogenetic tree for pyrimidine-nucleoside phosphorylase 
(cBRV, EC: 2.4.2.2) proteins in the analysed genomes. Taxonomy is shown by branch colour. 
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Figure S5d: Maximal-likelihood phylogenetic tree for -glucuronidase (cUidA, eUidA, EC: 
3.2.1.31) proteins in the analysed genomes. Taxonomy is shown by branch colour; solid lines, 
cytoplasmic proteins; dotted lines, extracellular / periplasmic proteins. 
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Figure S6: Bottlenecks limiting drug-metabolising capacity in 616 microbiomes. Non-zero 
shadow prices indicate that increasing the abundance of this species would increase the 
secretion flux of the end product of the shown enzymatic reaction in this microbiome. A 
shadow price of zero shows that increasing the abundance of the species would not affect 
secretion of the end product. a) Pathway of 5-fluorocytosine deamination to 5-fluorouracil and 
subsequent reduction to 5,6-dihydro-5-fluorouracil. b) Pathway of levodopa decarboxylation 
to dopamine and dopamine dehydroxylation to m-tyramine. In each panel, the x axis shows net 
secretion flux of the drug metabolite per microbiome in mmol/gdry weight/day and the y axis 
shows the relative reaction abundance per microbiome. 
 

b) Species limiting levodopa conversion flux

a) Species limiting 5-fluorocytosine conversion flux
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e.g., Escherichia coli
Anaerotruncus colihominis
Hungatella hathewayi

e.g., Escherichia coli

5-fluorouracil (active drug)

Levodopa

Tyrosine carboxylase Dopamine dehydroxylase

Eggerthella lenta

m-TyramineDopamine

e.g., Enterococcus faecalis
Enteroccocus faecium
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Figure S7: Scatter plots of drug-metabolising potentials under a European average diet 
(AED) against the metabolising potential under a Japanese diet (JP). sn38g=glucuronated 
irinotecan, sn38=deglucuronated irinotecan, 5fura=5-fluorouracil, fcsn=5-fluorocytosine, 
dh5fura=5,6.dihydro-5-fluorouracil, dihydro_digoxin=Dihydrodigoxin, ac5asa=N-acetyl-5-
aminosalicylic acid, 5asa=5-aminosalicylic acid, dfduri=2’,2’-Difuorodeoyuridine, 
ac5asa_bzd=N-acetyl-5-aminosalicylic acid from balsalizide, chlphncl=chloramphenicol, 
nchlphncl=Nitrosochoramphenicol, bvu=(E)-5-(2-Bromovinyl)Uracil, 34dhphe=levodopa, 
dopa=Dopamine, mtym=m-tyramine, 4hphac=p-Hydroxyphenylacetic acid, 
tchola=taurocholate, cholate=cholic acid.  
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Figure S8: Spearman correlations between species abundances and drug conversion potential 
(mmol/person/day) in 616 microbiomes of Japanese colorectal cancer patients and controls. 
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Figure S9: Descriptive statistics for the modelled drug metabolites. a) Scatter plot (red: 
controls; blue cancer) of 2',2'-difluorodeoxyuridine (microbial metabolite of 5-fluorocytosine) 
and r406 (metabolite of fostamatinib) in dependence of BMI with linear regression lines for 
cases and controls. The slope of BMI was significant (2',2'-difluorodeoxyuridine: b=2.11, 95%-
CI=(1.12;3.09), p=1.06e-05, FDR<0.05; r406:b=-0.22, 95%-CI=(:-0.37;-0.06). p=3.09e-03, 
FDR<0.05) adjusted for sex and age (restricted cubic splines), but no significant differences 
could be found between CRC cases and controls (difluorodeoxyuridine: p=0.77; r406: p=0.27). 
b) Box plots of 2',2'-difluorodeoxyuridine (metabolite of gemcitabine), cholate (metabolite of 
taurocholate) on sex. P-values were derived from linear regressions adjusted for age (restricted 
cubic splines). All effects were significant after correction for multiple testing (2',2'-
difluorodeoxyuridine : b=13.62, 95%-CI=(5.42;21.83), p-value: 1.17e-03, FDR<0.05; cholate: 
b=-25.10, 95%-CI:(-39.90;-13.29), p=3.40e-05, FDR<0.05). Boxes of box plots are defined by 
the 25th percentile, the median, and the 75th percentile. Whiskers cover 1.5 times of the 
interquartile range. All p-values are reported two-sided. 
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Figure S10: Procedures for a manual refinement of the drug-metabolising genes. The 
following steps are shown: (I) construction of the maximal-likelihood phylogenetic tree, rooted 
at a mid-point, and mapping of the previously known proteins; (II) defining monophyletic 
branches including all the previously known proteins; (III) removal of the false-positive 
predictions and analysis of the genomic context; (IV) removal of the false-positive predictions 
and defining of the species-specific protein clusters; (V) prediction of the subcellular 
localisation; (VI) analysis of the genomic context to predict transporters, only for cytoplasmic 
enzymes. 
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