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Supplementary Figures 
 

 
 
Supplementary Fig. 1 | Interaction of tetracycline on the SSU-head. a, 
cryo-EM density (transparent surface) for drug and nucleotides (not for 
solvent) with molecule model for tetracycline (blue), 16S rRNA nucleotides 
(grey), water molecules (red spheres) and Mg ions (green spheres). b, same 
view as (a) without density but with dashed lines indicating direct (orange) 
or indirect water (blue) or Mg ion (green) mediated interactions. c-d, 
schematic representation of the (c) indirect water (blue) or Mg ion (green) 
and (d) direct (orange) interactions between tetracycline and the SSU-head. 
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Supplementary Fig. 2 | Interaction of omadacycline on the SSU-head. a, 
cryo-EM density (transparent surface) for drug and nucleotides (not for 
solvent) with molecule model for omadacycline (blue), 16S rRNA 
nucleotides (grey), water molecules (red spheres) and Mg ions (green 
spheres). b, same view as (a) without density but with dashed lines 
indicating direct (orange) or indirect water (blue) or Mg ion (green) 
mediated interactions. c-d, schematic representation of the (c) indirect water 
(blue) or Mg ion (green) and (d) direct (orange) interactions between 
omadacycline and the SSU head. 
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Supplementary Fig. 3 | Interaction of eravacycline on the SSU-head. a, 
cryo-EM density (transparent surface) for drug and nucleotides (not for 
solvent) with molecule model for eravacycline (blue), 16S rRNA nucleotides 
(grey), water molecules (red spheres) and Mg ions (green spheres). b, same 
view as (a) without density but with dashed lines indicating direct (orange) 
or indirect water (blue) or Mg ion (green) mediated interactions. c-d, 
schematic representation of the (c) indirect water (blue) or Mg ion (green) 
and (d) direct (orange) interactions between eravacycline and the SSU head. 
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Supplementary Fig. 4 | Interaction of pentacycline on the SSU-head. a, 
cryo-EM density (transparent surface) for drug and nucleotides (not for 
solvent) with molecule model for pentacycline (blue), 16S rRNA nucleotides 
(grey), water molecules (red spheres) and Mg ions (green spheres). b, same 
view as (a) without density but with dashed lines indicating direct (orange) 
or indirect water (blue) or Mg ion (green) mediated interactions. c-d, 
schematic representation of the (c) indirect water (blue) or Mg ion (green) 
and (d) direct (orange) interactions between pentacycline and the SSU head. 
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Supplementary Fig. 5 | Interaction of hygromycin B on the SSU-body. a, 
cryo-EM density (transparent surface) for drug and nucleotides (not for 
solvent) with molecule model for hygromycin B (blue), 16S rRNA 
nucleotides (grey), water molecules (red spheres) and a putative K+ ion 
(purple sphere). b, same view as (a) without density but with dashed lines 
indicating direct (orange) or indirect water (blue) or a putative K+ ion 
(purple) mediated interactions. c, schematic representation of the indirect 
water (blue) or a putative K+ ion (purple) as well as direct (orange) 
interactions between hygromycin B and the SSU body. 
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Supplementary Fig. 6 | Interaction of gentamicin on the SSU-body. a, 
cryo-EM density (transparent surface) for drug and nucleotides (not for 
solvent) with molecule model for gentamicin (blue), 16S rRNA nucleotides 
(grey) and water molecules (red spheres). b, same view as (a) without 
density but with dashed lines indicating direct (orange) or indirect (blue) 
water-mediated interactions. c, schematic representation of the indirect water 
(blue) and direct (orange) interactions between gentamicin and the SSU 
body. 
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Supplementary Fig. 7 | Interaction of spectinomycin on the SSU. a, cryo-
EM density (transparent surface) for drug and nucleotides (not for solvent) 
with molecule model for spectinomycin (blue), 16S rRNA nucleotides (grey) 
and water molecules (red spheres). b, same view as (a) without density but 
with dashed lines indicating direct (orange) or indirect (blue) water-mediated 
interactions. c, schematic representation of the indirect water (blue) and 
direct (orange) interactions between spectinomycin and the SSU. 
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Supplementary Fig. 8 | Interaction of streptomycin on the SSU-body. a, 
cryo-EM density (transparent surface) for drug and nucleotides (not for 
solvent) with molecule model for streptomycin (blue), 16S rRNA 
nucleotides (grey) and water molecules (red spheres). b, same view as (a) 
without density but with dashed lines indicating direct (orange) or indirect 
(blue) water-mediated interactions. c, schematic representation of the 
indirect water (blue) and direct (orange) interactions between streptomycin 
and the SSU body. Note that in panel a-b, the interaction with K88 of uS12 
is not included. 
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Supplementary Fig. 9 | Interaction of apramycin on the SSU-body. a, 
cryo-EM density (transparent surface) for drug and nucleotides (not for 
solvent) with molecule model for apramycin (blue), 16S rRNA nucleotides 
(grey) and water molecules (red spheres). b, same view as (a) without 
density but with dashed lines indicating direct (orange) or indirect (blue) 
water-mediated interactions. c, schematic representation of the indirect water 
(blue) and direct (orange) interactions between apramycin and the SSU 
body. 
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Supplementary Fig. 10 | Interaction of kasugamycin on the SSU-body. a, 
cryo-EM density (transparent surface) for drug and nucleotides (not for 
solvent) with molecule model for kasugamycin (blue), 16S rRNA 
nucleotides (grey) and water molecules (red spheres). b, same view as (a) 
without density but with dashed lines indicating direct (orange) or indirect 
(blue) water-mediated interactions. c, schematic representation of the 
indirect water (blue) and direct (orange) interactions between kasugamycin 
and the SSU body. 
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Supplementary Fig. 11 | Interaction of capreomycin at the interface 
between the SSU and LSU. a, cryo-EM density (transparent surface) for 
drug and nucleotides (not for solvent) with molecule model for capreomycin 
(blue), 16S/23S rRNA nucleotides (grey) and water molecules (red spheres). 
b, same view as (a) without density but with dashed lines indicating direct 
(orange) or indirect (blue) water-mediated interactions. c, schematic 
representation of the indirect water (blue) and direct (orange) interactions 
between capreomycin and the SSU/LSU. 
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Supplementary Fig. 12 | Interaction of avilamycin on the LSU. a, cryo-
EM density (transparent surface) for drug and nucleotides (not for solvent) 
with molecule model for avilamycin (blue), 23S rRNA nucleotides (grey) 
and water molecules (red spheres). b, same view as (a) without density but 
with dashed lines indicating direct (orange) or indirect (blue) water-mediated 
interactions. c, schematic representation of the indirect water (blue) and 
direct (orange) interactions between avilamycin and the LSU. 
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Supplementary Fig. 13 | Interaction of evernimicin on the LSU. a, cryo-
EM density (transparent surface) for drug and nucleotides (not for solvent) 
with molecule model for evernimicin (blue), 23S rRNA nucleotides (grey) 
and water molecules (red spheres). b, same view as (a) without density but 
with dashed lines indicating direct (orange) or indirect (blue) water-mediated 
interactions. c, schematic representation of the indirect water (blue) and 
direct (orange) interactions between evernimicin and the LSU. 
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Supplementary Fig. 14 | Interaction of tiamulin on the LSU. a, cryo-EM 
density (transparent surface) for drug and nucleotides (not for solvent) with 
molecule model for tiamulin (blue), 23S rRNA nucleotides (grey) and water 
molecules (red spheres). b, same view as (a) without density but with dashed 
lines indicating direct (orange) or indirect (blue) water-mediated and 
interactions. c, schematic representation of the indirect water (blue) and 
direct (orange) interactions between tiamulin and the LSU, with water (red 
W) and putative K+ ion (purple K) indicated. The putative K+ ion was 
assigned based on 1. 
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Supplementary Fig. 15 | Interaction of retapamulin on the LSU. a, cryo-
EM density (transparent surface) for drug and nucleotides (not for solvent) 
with molecule model for retapamulin (blue), 23S rRNA nucleotides (grey) 
and water molecules (red spheres). b, same view as (a) without density but 
with dashed lines indicating direct (orange) or indirect (blue) water-mediated 
interactions. c, schematic representation of the indirect water (blue) and 
direct (orange) interactions between retapamulin and the LSU, with water 
(red W) and putative K+ ion (purple K) indicated. The putative K+ ion was 
assigned based on 1. 
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Supplementary Fig. 16 | Interaction of lincomycin on the LSU. a, cryo-
EM density (transparent surface) for drug and nucleotides (not for solvent) 
with molecule model for lincomycin (blue), 23S rRNA nucleotides (grey) 
and water molecules (red spheres). b, same view as (a) without density but 
with dashed lines indicating direct (orange) or indirect (blue) water-mediated 
interactions. c, schematic representation of the indirect water (blue) and 
direct (orange) interactions between lincomycin and the LSU. 
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Supplementary Fig. 17 | Interaction of clindamycin on the LSU. a, cryo-
EM density (transparent surface) for drug and nucleotides (not for solvent) 
with molecule model for clindamycin (blue), 23S rRNA nucleotides (grey) 
and water molecules (red spheres). b, same view as (a) without density but 
with dashed lines indicating direct (orange) or indirect (blue) water-mediated 
interactions. c, schematic representation of the indirect water (blue) and 
direct (orange) interactions between clindamycin and the LSU. 
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Supplementary Fig. 18 | Representative cryo-EM micrographs. a-e, 
Representative cryo-EM micrographs for (a) Datasets 1, (b) Dataset 2, (c) 
Dataset 3, (d) Dataset 4, and (e) Dataset 5. The scale is given in the bottom 
right hand corner for each micrograph. 
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Supplementary Table 1: Summary of antibiotic-ribosome structures 
Antibiotic Particle Organism Resolution PDB ID Reference 
Lincomycin 50S S. aureus 3.66 Å 5HKV 2 
Clindamycin 50S H. marismortui 3.0 Å 1YJN 3 
Clindamycin 70S E. coli 3.29 Å 4V7V 4 
Clindamycin 50S D. radiodurans 3.1 Å 1JZX 5 
Iboxamycin 70S T. thermophilus 2.5 Å 7RQ8 6 
      

Tiamulin 50S D. radiodurans 3.5 Å 1XBP 7 
Tiamulin 50S H. marismortui 3.2 Å 3G4S 8 
Lefamulin 50S S. aureus 3.55 Å 5HL7 9 
Retapamulin 50S D. radiodurans 3.66 Å 2OGO 10 
      

Viomycin 70S E. coli 3.29 Å 6LKQ 11 
Viomycin 70S T. thermophilus 3.0 Å 4V7L 12 
Viomycin 70S E. coli 2.9 Å 4V9O 13 
Viomycin 70S E. coli 3.2 Å 7ST7 14 
Capreomycin 70S T. thermophilus 3.45 Å 4V7M 12 
Capreomycin 70S M. tuberculosis 4.0 Å 5V93 15 
      

Avilamycin 50S D. radiodurans 3.43 Å 5JVG 16 
Avilamycin 70S E. coli 3.9 Å 5KCR 17 
Evernimicin 50S D. radiodurans 3.58 Å 5JVH 16 
Evernimicin 70S E. coli 3.9 Å 5KCS 17 
      

Tetracycline 30S T. thermophilus 4.5 Å 1I97 18 
Tetracycline 30S T. thermophilus 3.4 Å 1HNW 19 
Tetracycline 70S T. thermophilus 3.3 Å 4V9A 20 
Tetracycline 70S E. coli 2.8 Å 5J5B 21 
Tigecycline 30S T. thermophilus 3.4 Å 4YHH 22 
Tigecycline 70S T. thermophilus 3.1 Å 4V9B 20 
Tigecycline 70S T. thermophilus 2.96 Å 5J91 21 
Eravacycline 70S A. baumannii 2.55 Å 7M4W 23 
      

Streptomycin 30S T. thermophilus 3.0 Å 1FJG 24 
Streptomycin 30S T. thermophilus 3.3 Å 4DR6 25 
Streptomycin 30S T. thermophilus 3.35 Å 4JI1 26 
Streptomycin 28S Human mitorib. 2.4 Å 7P2E 27 
      

Spectinomycin 30S T. thermophilus 3.0 Å 1FJG 24 
Spectinomycin 70S E. faecalis 2.9 Å 7P7Q 28 
Spectinomycin 70S E. coli 3.5 Å 4V57 29 
Spectinomycin 70S E. coli 2.54 Å 7N2V 30 
      

Apramycin 70S E. coli 3.5 Å 4AQY 31 
Apramycin 70S E. coli 2.35 Å 7PJS 32 
Apramycin 70S E. coli 3.1 Å 7PJV 32 
Gentamicin 70S E. coli 3.54 Å 4V9C 29 
Gentamicin 30S T. thermophilus 3.28 Å 4LF9 - 
Hygromycin B 30S T. thermophilus 3.3 Å 1HNZ 19 
Hygromycin B 70S E. coli 3.5 Å 4V64 33 
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Hygromycin B 30S T. thermophilus 3.7 Å 4LFA 34 
Kasugamycin 30S T. thermophilus 3.4 Å 2HHH 35 
Kasugamycin 70S E. coli 3.5 Å 4V4H 19 
Paromomycin 30S T. thermophilus 3.0 Å 1FJG 24 
Paromomycin 70S T. thermophilus 2.8 Å 4V51 36 
Paromomycin 70S L. donovani 2.5 Å 6AZ3 37 
Paromomycin 70S E. coli 1.98 Å 7K00 38 
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