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Figure S1: Quality controls for VM single nuclei RNA-seq profiling. (A) Dexmulet genotyping
confirms 100% match by donor by pool against the background of all 95 donors. Y-axis represents the
library pools for 95 individuals. X axis represents the individual, prefix of which denoting the expected
library for each subject. Heat bar, percentage of nuclei for specific individual in the library, as indicated.
(B-D) Violin plots, showing separately for 45 individuals who died by opioid overdose (blue) and 50
controls (red), (B) the distribution of numbers of nuclei per subject (1 sample = 1 subject), (C) the
average number of genes per nucleus for each subject, and (D) the average numbers of reads per
sample (1 sample = 1 subject). (E) UMAP plot for VM from 95 samples (present) study, (F, G) automatic

annotation of major VM cell types from previous study in a smaller reference sample?.
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Figure S2: Distribution of single nuclei with astrocyte, oligodendrocyte (ODC) and neuronal gene
expression. UMAP plots showing (A) separation of astrocyte and ODC nuclei, (B,C) expression of key
(B) ODC marker genes, essentially limited to nuclei in ODC cluster, (C) astrocyte marker genes
essentially limited to nuclei in the astrocyte cluster, (D,E) separation of neuronal nuclei into dopaminergic
and non-dopaminergic subtypes which can be further split into subpopulations of nuclei expressing

gabaergic (GAD1, SLC32A1) and glutamatergic (SLC17A6) neuron marker genes (see text).



Figure S3

OPRK1 OPRM1 OPRK1
54 5 § 1001 55
3=
Q 3- Q g 75+ o i
3 3 'Y s 63 (I
[0} ) It ) ® 3 1s
= = c [ 9
2 24 S 3 & 504 8’2 g
E E ) j: i =
T 11 S 1 T 25- T :
E E ' E £ & |- i
o o o [} ‘L +
=z =z Z =z . 3
0+ - - 0.0 04 - L .
O O L FFE S S O @ L FF LSS O © P FFE PSS
oo R 00*0\ & 009 O & &S 6@ oo R oo\ﬂ*é 009 R s N & K¢ Oo Q.\\ &d 0090@ <5 &@
N <e>° W <b° & & N @9 &
OPRDT1 OPRL1 OPRL1
_53' 5 s S 6 - S 5 -
D o N () A O 4- )
2 | 2 L 2 2 31
& | i S ) %2
% . - |
.-§1' E 4 b E E §
(_U oo (_U (_“ 3 (_“
E T E E : £
) i [} S o
4 4 =4 z 1
0- S - — 0. L
6 O @ @ F @S D ¢ @ F XD DD O O © L FFE S S O ® L FFE DS
S 0090‘\‘\ QUISIOC O S *‘°‘§°° *\\\’\ o 'S 4\&\\00«\9@\ 0y

\s@ @&9 \v‘° o & £ FE R $eE &



Figure S3: Cell type-specific expression of opioid receptor genes in the VM. Violin plots depicting
nuclear RNA levels for each of the 4 opioid receptor genes, OPRM1, OPRK1, OPRD1 and OPRL, for
each of the 10 major VM cell types (x-axes) as indicated (left) at the single nucleus level (Seurat, default
parameters) and (right) as cell type by subject, data shown as at normalized CPM, log2 transformed

(+2).
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Figure S4: Differential gene expression across cohorts and cell types. (A) Z-score (disease control
differential) correlations comparing (y-axis, Miami cohort; x-axis Detroit cohort) cohorts for 4 major glial
populations, as indicated, and non-dopaminergic neurons in the VM. (B) Proportional representation of

DEGs shared between specific pairs of glial subtypes, as indicated on x-axis, based on shared vs.

opposite directionality.
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Figure S5: Opioid exposure affects the transcriptome of multiple subtypes of oligodendrocytes
and microglia. (A, B) UMAP subclusterings for (A) oligodendrocyte and microglial populations. (B) (left)
Differential genes for ODC subclusters ‘0’and ‘1, as indicated, (right) Violin plots summarizing OPALIN,
S100B and RBFOX1 marker gene expression levels by subject (midbrain sample) and oligodendrocyte
subtype, as indicated (C) Correlational matrix for differential gene expression (diseased versus control
individuals) across all glial and neuronal populations, including subtypes (D) population structure of ODC

single nuclei, diseased individuals vs. controls, as indicated.
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Figure S6: Cell-type specific pathway enrichments of differentially expressed genes in
astrocytes and microglia. GO pathway enrichments for Biological Process, shown separately for up-
and down-regulated DEGs, as indicated. See also Figure 3 and Data S5, including gene ratios (Data

S5, column E).



oDC 1

egulation of defense response

egulation of innate immune response

esponse to virus

daptive immune response

ositive regulation of cytokine production
ononuclear cell differentiation

eukocyte differentiation

negative regulation of cysteine—type endopeptidase.
latelet degranulation

at cell differentiation

chaperone—mediated protein folding

rotein folding

response to leukemia inhibitory factor

cellular response to leukemia inhibitory factor
rythrocyte homeostasis

rythrocyte differentiation

yeloid cell homeostasis

ositive regulation of apoptotic process

ositive regulation of programmed cell death

ositive regulation of cell death

canonical glycolysis

NADH regeneration

glucose catabolic process to pyruvate

regulation of steroid metabolic process

regulation of cholesterol metabolic process
holesterol metabolic process

econdary alcohol metabolic process

egulation of lipid metabolic process

egulation of small molecule metabolic process
negative regulation of natural killer cell mediated.
negative regulation of natural killer cell mediated.
negative regulation of leukocyte mediated cytotoxicity
negative regulation of cell killing

negative regulation of innate immune response
antigen processing and presentation of endogenous.
antigen processing and presentation of endogenous.

esponse to interferon—-gamma

ellular response to interferon—gamma
interferon—gamma—-mediated signaling pathway
cellular response to type | interferon

ype | interferon signaling pathway

response to type | interferon

eutrophil activation involved in immune response
eutrophil degranulation

eutrophil activation

ranulocyte activation

eutrophil mediated immunity

eukocyte degranulation

yeloid leukocyte mediated immunity

Non DA neuron 1

.protein K48-linked deubiquitination

.histone H3-K9 modification

-antigen processing and presentation of peptide antigen.

Figure S7

positive
erythrocyte
differentiation
death
number of genes
@ o
@ »
@
@ -~
® -
canonical glucose
catabolic glycolysis p.adjust
0.005
cholesterol alcohol
lipid metabolic 0.010
0.015
presentation
interferon
peptide antigen
neutrophil
granulocyte
activation
involved

Count

p.adjust
0.045
0.050
0.055

0.060

oDC |

--leukemia inhibitory factor signaling pathway

--pentose—phosphate shunt, non—oxidative branch

--glomerulus morphogenesis

--regulation of chloride transport

--negative regulation of T cell cytokine production

‘keratan sulfate metabolic process

-keratan sulfate biosynthetic process
-organelle fission

'nuclear division

-mitotic nuclear division

‘mitotic spindle organization
-regulation of mitotic nuclear division

‘regulation of centrosome cycle

Non DA neuron |

chemical synaptic transmission, postsynaptic
excitatory postsynaptic potential

regulation of membrane potential

regulation of postsynaptic membrane potential
cognition

learning or memory

behavior

regulation of trans—synaptic signaling
modulation of chemical synaptic transmission
-regulation of nervous system process
‘modulation of excitatory postsynaptic potential

regulation of system process

‘postsynaptic specialization organization
‘postsynaptic density organization

‘neuron projection organization

-dendritic spine organization

-dendrite morphogenesis

-long—term synaptic potentiation

-positive regulation of synaptic transmission
regulation of synapse organization

regulation of postsynapse organization
regulation of synapse structure or activity
postsynapse organization

ynapse organization

-regulation of transmembrane transporter activity
-regulation of ion transmembrane transporter activity
regulation of synaptic plasticity

‘learning

-calcium—mediated signaling
second—-messenger—-mediated signaling
-glutamate receptor signaling pathway
-jonotropic glutamate receptor signaling pathway
-excitatory chemical synaptic transmission
-regulation of NMDA receptor activity

‘protein heterooligomerization

-regulation of signaling receptor activity
-regulation of neurotransmitter receptor activity
-positive regulation of neurogenesis

positive regulation of nervous system development
positive regulation of cell projection organization
-cell-cell adhesion via plasma—-membrane adhesion.
taxis

chemotaxis

axon development

axonogenesis

-developmental cell growth

-neuron projection extension

-developmental growth involved in morphogenesis
-dendrite extension

--positive regulation of peptidyl—-serine phosphorylation.

-positive regulation of excitatory postsynaptic potential

glomerulus
inhibitory
factor
branch

regulation
chloride transport

negative

cell peptidyl-
serine
cytokine

keratan
sulfate
biosynthetic
process

mitotic
nuclear
centrosome
division

modulation
membrane
postsynaptic
potential

dendritic
long-term
postsynapse
synapse

glutamate
transmembrane
receptor
pathway

axon
axonogenesis
development
adhesion

developmental
extension
growth involved

number of genes
®
@ o

p.adjust
0.02

number of genes

p.adjust

0.005
0.010
0.015

0.020



Figure S7: Cell-type specific pathway enrichments of differentially expressed genes in
oligodendrocytes (ODC) and non-dopaminergic neurons (Non-DA). GO pathway enrichments for
Biological Process, shown separately for up- and down-regulated, as indicated. See also Figure 3 and

Data S5, including gene ratios (Data S5, column E).
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Figure S8: Correlations between prior bulk RNA-seq study and the current RNA-seq analysis with
single cell resolution. Z-score (disease vs. control differential) correlations comparing (y-axis, bulk

tissue RNA-seq study; x-axis, cell type specific RNA-seq at single nuclei resolution, current study) for 7

cell types, as indicated.
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Figure S9: DEGs linked to TWAS. (A) Percentages representing, for each cell type the normalized
proportion of DEGs overlapping with PhenomeXcan TWAS for substance use and medical or
neurological traits, as indicated. We focused on Substantia Nigra (SN) gene expression and population-
scale SUD phenotypes in PhenomeXcan. We included a total of 1,260 PhenomeXcan genes for a total
of 40 SUD-related traits from the following categories of traits or diseases: alcohol, caffeine, marijuana,
and smoking (Data S6). We also analyzed a recent study? that had called addiction risk genes via
TWAS-guided integration of GTEX and PsychENCODE expression quantitative trait loci (see Data
S7,S8). For GTEX, the study conducted TWAS analyses using MetaXcan via integration of eQTL from
13 brain regions and identified a total of 351 addiction risk factor genes (FDR<10%). For
PsychENCODE, using the frontal and temporal cortex, TWAS analysis using S-PrediXcan
identified a total of 410 addiction risk genes with FDR<10%?. (B) Cell-type specific counts of genes

called as DEG in current study and linked to substance use trait(s) in PhenomeXcan (see Data S7).
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Figure S10: Tissue and demographic variables impacting single nuclei transcriptomes (A) Ventral
midbrain region-of-interest. Drawing from representative coronally cut VM tissue block, showing the
substantia nigra and adjacent portion of ventral tegmental area, the region-of-interest prepared by
dissection and then further processed with the nuclei extraction protocol (see Methods). (B, C) Effects
of tissue quality and demographic variables on single nuclei transcriptomes. (B) Frequency histogram,
showing the fraction of mitochondrial genes/nucleus. Note fraction of <1% for the overwhelming majority,
or 93.7% of nuclei. Note also that there are 1.8% of nuclei with >2% mitochondrial, 0.1% of nuclei with
>10% mitochondrial and 0.025% of nuclei had >20% mitochondrial reads. (C) Linear regression testing
for association of (left to right) nuclei number/donor, number of reads/nuclei, number of genes/nucleus
and fraction of mitochondrial reads/nucleus with (top to bottom) donor age, brain tissue pH, postmortem

interval (PMI), genotype principal component PC1 and PC2, and sex, *(**) P< 0.05, 0.01.



Table S1:

Summary of C:

ase and Control Cohort (Demographics and postmortem

confounds)

Cohort Category N Age (yrs) Sex (M:F) Race (W:AA:H) [PMI (hrs) pH
Opioid 22|143.86 +11.66 |18:4 13:9:0 <20 6.46 £ 0.16
Detroit Control 22|43.55 + 9.39 18:4 13:9:0 <20 6.54 £ 0.20
Opioid 23|36.30+9.04 |20:3 18:3:2 2091 +556 (6.27+0.14
Miami Control 28|37.21 +£12.82 [28:.0 17:9:2 16.44£5.04 |6.34+£0.16
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