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Supplementary Fig. 1: Illustration of the multi-head graph transformer layer in SiGra. a, 

the overall architecture of a graph transformer layer, and the attention module in the graph 

transformer. b, UMAP visualizations of raw data and the enhanced data of all cells. 
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Supplementary Fig. 2: SiGra enhances spatial gene expression data from different 

platforms. a, Comparison of raw and enhanced data with bulk RNA-seq of lung cancer patient 

samples. b, Differences of enhanced-specific and raw-specific L-R pairs from shared L-R pairs 

(Number of L-R pairs in each group: shared: 28; raw-specific: 14; enhanced-specific: 27). In the 

boxplot, the center line, box limits and whiskers denote the median, upper and lower quartiles, 

and 1.5× interquartile range, respectively. c, Spatial visualization of all cell clusters in the single-

cell spatial data from mouse liver tissue. d, Spatial visualization of the raw expressions and the 

enhanced expressions of Vwf. e, Comparison of enhanced data with bulk RNA-seq of mouse 

liver samples. f, Evaluation of DEGs using single-cell RNA-seq data of mouse liver samples. 
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Supplementary Fig. 3: Visualization and evaluation of spatial domains identified by different 

methods in 6 of the total 12 DLPFC slices. 
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Supplementary Fig. 4: Visualization and evaluation of spatial domains identified by different 

methods in the other 6 of the total 12 DLPFC slices. 
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Supplementary Fig. 5: Evaluation and visualization of spatial domains in the NanoString 

CosMx lung cancer slice. 
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Supplementary Fig. 6: Examination of the effects of autofluorescence on SiGra’s 

performance. Number of cropped images: 12 in each case. 
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Supplementary Fig. 7: Grid-based hyper-parameter fine turning. a, Identification of the 

optimal parameters in SiGra’s loss function (8 slices from the NanoString CosMx lung cancer 

dataset and 12 slices from the 10x Visium DLPFC datasets). In the boxplot, the center line, box 

limits and whiskers denote the median, upper and lower quartiles, and 1.5× interquartile range, 

respectively. b, Identify the optimal latent dimensions of SiGra for NanoString CosMx and 10x 

Visium data (20 FOVs from the NanoString CosMx lung cancer dataset and 12 slices from the 10x 

Visium DLPFC datasets). Source data are provided as a Source Data file. 
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Supplementary Fig. 8: Comprehensive benchmarking and ablation studies. a, Comparisons 

of SiGra with current available methods on all 8 NanoString CosMx lung cancer slices and all 12 

DLPFC slices. In the boxplot, the center line, box limits and whiskers denote the median, upper 

and lower quartiles, and 1.5× interquartile range, respectively. b, Ablation studies for evaluating 

the contribution of different components in SiGra model. Boxplot shows the ARI scores of ablated 

models across all the 20 FOVs of lung cancer tissue slice and all 12 DLPFC slices. In the boxplot, 

the center line, box limits and whiskers denote the median, upper and lower quartiles, and 1.5× 

interquartile range, respectively. Source data are provided as a Source Data file. 
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Supplementary Fig. 9: Comparisons with MUSE and STAGATE based on simulation data. 

(a-c), Visualizations of simulation data with different dropout levels. Spatial domains and domain 

clusters identified by different methods (STAGATE, MUSE, and SiGra) are shown. Gene-alone 

and image-alone refer to PCA results based on the single modality data. Different colors refer to 

the ground truth of cell types in simulation data. (d-e), Accuracy of identifying spatial domains 

based on 10 simulation replicates over a range of dropout levels (10 samples for each). Clustering 

accuracy is quantified using ARI. In the boxplot, the center line, box limits and whiskers denote 

the median, upper and lower quartiles, and 1.5× interquartile range, respectively. Source data are 

provided as a Source Data file.   
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SUPPLEMENTARY NOTES 

Supplementary Note 1: SiGra improves the quality of single-cell spatial 

transcriptomics data 

Here we demonstrate that the enhanced data by SiGra provides more information than raw data 

and highlight the necessity of gene expression enhancement for single-cell spatial transcriptomics 

(SCST) data. 

1). NanoString CosMx Lung cancer slice 

Specifically, for the lung cancer NanoString CosMx data in Fig. 2, we compared both enhanced 

data and raw data with existing bulk RNA-seq data. Here we used the bulk RNA-seq data from 

TCGA lung cancer patients. As shown in Supplementary Fig. 2a, the x-axis and y-axis 

represented the total log-transformed counts per gene in lung cancer slices between the two types 

of technologies, i.e., SCST and bulk. Each point represented the RNA count for a single gene, 

averaged across different experimental samples for the corresponding technology. The RNA 

counts between enhanced SCST and bulk sequencing showed better concordance (cor = 0.631) 

than that between raw SCST and bulk data (cor = 0.579). 

In addition, we also evaluated the potential false discoveries in the L-R associations (Fig. 3e) using 

randomized control. Briefly, we assumed that randomly selected gene pairs from the SCST data 

were not likely associated and thus used as negative controls. By comparing with these negative 

controls, the false discovery rate of the selected L-R associations was estimated. Briefly, 10,000 

gene pairs were randomly selected, and the corresponding Pearson correlations were calculated as 

negative control. For each of the L-R pair (Fig. 3e), we estimated the false discovery rate 

accordingly using the FDR values based on the negative controls instead of the Pearson 

correlations. As shown in the Fig. 3e, the y-axis and x-axis referred to the FDR values of each L-

R pair in the enhanced and raw data respectively. Across the total 660 L-R interactions, 55 L-R 

pairs from the enhanced data were statistically significant (FDR < 0.05), whereas 42 L-R pairs 

from the raw data had FDR < 0.05. There were 28 L-R pairs shared between enhanced data and 

raw data, indicating enhanced data preserved useful information of raw data. In addition, 27 

specific L-R interactions were identified from the enhanced data, while 14 specific L-R 

interactions were found in the raw data. In Supplementary Fig. 2b, we further investigated 

whether these specific L-R interactions pairs were similar with the shared L-R pairs. For those 

significant L-R pairs identified from the enhanced data, there were no significant difference 

between the specific and shared L-R pairs, suggesting that both had similar probability of being 

true associated L-R pairs. In contrast, the raw-specific L-R pairs were statistically different from 

the shared L-R pairs, suggesting that the raw-specific pairs were more likely to be false discoveries 

than the shared L-R pairs. These results indicated that the enhanced data not only enabled to detect 

more L-R interactions than the raw data, but also the identified L-R pairs were more likely to be 

true discoveries than those specifically detected in raw data. The data enhancement using SiGra 

not only improved the sensitivity of L-R interaction detection (identifying more L-R pairs), but 

also preserved the specificity (the specifically identified L-R pairs that had similar statistical 

significance as the shared L-R pairs). These results indicated that those raw-specific L-R pairs 

were more likely to be false discoveries, which could result from noises and the low data quality 
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in the raw data. Therefore, SiGra improved both the sensitivity (more identified L-R pairs) and the 

specificity (more true discoveries) for the detection of L-R interactions. 

2). MERSCOPE mouse liver data 

For the MERSCOPE mouse liver data in Fig. 4, we visualized the identified cell clusters and 

enhanced gene expression of Vwf in Supplementary Fig. 2c and Supplementary Fig. 2d, 

accordingly. We also demonstrated the enhanced data quality by comparing with the bulk RNA-

seq data from The Tabula Muris Consortium1. 

Supplementary Fig. 2e shows the comparisons between SCST and bulk data for mouse liver 

MERSCOPE data, where the x-axis and y-axis were the total log-transformed counts. Similarly, 

each point represents the RNA count for a single gene, averaged across different samples for the 

corresponding technology. Again, we observed much higher correlation of RNA counts between 

enhanced SCST and bulk data (cor = 0.854), in contrast with the comparisons between raw SCST 

and bulk data (cor = 0.800). 

In addition, we anticipated that the differential expression analysis also benefited from the 

enhanced data given its improved data quality. To further verify it, regarding Fig. 4e, we used the 

single-cell RNA-seq data from the Tabula Muris Consortium 20202 to identify the differential 

expression genes (DEGs) in the cell clusters of hepatocytes, periportal hepatocytes, hepatic stellate 

cells, and endothelial cells. In this way, we then evaluated the overlaps between the scRNA-seq’s 

DEGs and enhanced data’s DEGs, as well as the overlaps between the scRNA-seq’s DEGs and the 

raw data’s DEGs. As shown in the Supplementary Fig. 2f, we identified the overlapped DEGs 

with scRNA-seq for each cluster. The purple-colored bars represent the number of DEGs shared 

between scRNA-seq and raw data, and the orange-colored bars represented the number of DEGs 

shared between scRNA-seq and enhanced data. We also labeled the number of DEGs on the bar 

plot, for example, for C-1, “12 vs 12” referred to “the shared DEGs between scRNA-seq and raw 

data” vs “the DEGs of raw data”, and “49 vs 59” referred to “the shared DEGs between scRNA-

seq and enhanced data” vs “the DEGs of enhanced data”. Across different clusters, the enhanced 

data was shown to recover more dysregulated genes than the original SCST data. 

Supplementary Note 2: Interrogation of layer enriched gene markers in 

enhanced data 

Based on the results of DLPFC (Fig. 5), we compared the layer-enriched gene markers in our 

enhanced data with the original study3 (Maynard et al., 2021). Specifically, we performed the exact 

statistical analysis in Maynard et al 2021 (“Layer-level gene modeling” and fit ‘Enrichment’ and 

‘Pairwise’ models) using layer-level enhanced data obtained by SiGra. The variations of gene 

expressions across layers were examined by two statistical models: 1) The ‘Enrichment’ model. 

Layer-level summarized gene expression result was first fitted using the lmFit and eBayes function 

from the R package “limma” (version 3.16), after being blocked by the six pairs of spatially 

adjacent replicates and taking this correlation into account as computed by duplicateCorrelation. 

Then the Student’s t-test statistics was used to compare each layer against the other six using the 

layer-level data. This resulted in seven sets of Student’s t-test statistics (one per layer) with double-

sided P values. We focused on genes with positive Student’s t-test statistics (expressed higher in 

one layer against the others) because these are enriched genes rather than depleted genes. 2) The 
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‘Pairwise’ model used the same “limma” functions for data processing and taking into account the 

same correlation structure in addition to using the contrasts.fit function provided by “limma”. Then 

we also computed the Student’s t-test statistics for each pair of layers. The Student’s t-test statistics 

with double-sided P values for both ‘Enrichment’ model and ‘Pairwise’ model were provided in 

Supplementary Table 3. Our results showed that the SiGra enhanced data showed consistent results 

with the original study3. 

Supplementary Note 3: Reveal spatial domains in single-cell spatial profiles 

SiGra can identify spatial domains at various resolutions, depending on the data type and the 

applications. The spot-level spatial data has a low spatial resolution and consists of mixed cells/cell 

types in each spot. For example, the spatial resolution of the 10x Visium data is 100µm, measured 

between the centers of two neighboring spots. For such low-resolution data, SiGra directly and 

accurately reveals the spatial structures such as the anatomic layers in the DLPFC slices (Fig. 5) 

by clustering the latent-represented spots using Leiden. In contrast, the single-cell spatial data has 

significantly higher resolution. For example, the spatial resolution of the NanoString CosMx 

molecular imaging is 52nm, and the summarized gene expression profile based on image 

segmentation provides single-cell level resolution. SiGra thus can reveal spatial regions at the 

cellular level (Fig. 2 and Fig. 3) and microanatomic level (Fig. 4, the identifications of the 

microanatomic regions in the liver). 

Meanwhile, on such high-resolution single-cell spatial data, the regional anatomic spatial 

structures can be revealed by further summarizing the Leiden clustering results (heterogenous cell 

types) with a dimensional moving window agglomeration approach. Such approaches have been 

well-established in spatial data analysis of geographical information systems (GIS) data4,5 and 

have recently been used for revealing spatial domains in single-cell spatial data (for example, 

SSAM6 by Park et al.). Specifically, the SiGra clustering results were summarized by a circular 

window of diameter 𝑑 sliding at both 𝑥 and 𝑦 directions across the whole image with a given stride 

length 𝑠. At each stop 𝐶𝑖,𝑗 with the coordinate (𝑥𝑖 , 𝑦𝑗), a vector 𝑐𝑖,𝑗 ≡ [𝑞1, … , 𝑞𝑡] representing the 

proportions of the SiGra identified clusters (𝑡) covered by the sliding window was calculated. All 

the stops {𝐶𝑖.𝑗}  were recursively merged to 𝑘  groups {𝑎1, … , 𝑎𝑘}  by hierarchical clustering 

according to the cluster proportion vectors {𝑐𝑖.𝑗}. These agglomerated groups were defined as the 

discovered spatial domains. The original slide image was then labeled with the discovered spatial 

domains according to the coordinate of each stop. In this way, we obtained the spatial domains 

based on the heterogenous cells identified on the spatial slice. The window radius 𝑑 used in our 

work was 100μm, which was consistent with the 10x Visium spatial resolution, with the stride 𝑠 

of 10μm. 

The ground truth of the anatomic spatial domains of the NanoString CosMx lung cancer slide was 

provided by a certificated pathologist at Indiana University Health, Dr. Tieying Hou, according to 

the IHC images. As shown in Supplementary Fig. 5, three spatial domains were identified by Dr. 

Hou: the tumor region (green), the desmoplasia region (red), and the adjacent normal region 

(orange). For fair comparisons with other methods, the same spatial moving window 

agglomeration approach was used. Compared with this ground truth, SiGra achieved an ARI of 

0.60, better than other methods including BayesSpace (ARI: 0.25), spaGCN (ARI: 0.10), Seurat 

(ARI: 0.10), stLearn (ARI: 0.10), and scanpy (ARI: 0.17). These results showed that SiGra 

obtained reliable spatial domains based on its identified accurate cell identities. It also indicated 
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that the NanoString CosMx profiled cancer tissue slice was much more challenging given its strong 

cellular heterogeneity, large cell number, and high-resolution, compared with the 10x Visium 

profiled normal DLPFC tissues that had well-organized anatomic structure. 

To further verify the comparison results, we also tested BayesSpace and spaGCN for direct spatial 

domain identification of the three domains, without using the moving window agglomeration 

approach. BayesSpace and spaGCN obtained ARIs of 0.15 and 0.19, respectively. These results 

further demonstrated that, for detecting large-scale anatomic spatial domains from single-cell 

spatial data, it was necessary to agglomerate the high-resolution cellular-level clustering results. 

Supplementary Note 4: Impact of autofluorescence signals on SiGra 

Lipofuscin accumulates in brain tissues during aging or under pathologic conditions, and forms 

plaques of around 10µm7. Such lipofuscin plaques emit autofluorescence signals across major 

florescent channels used in single cell spatial images. To examine if the extend of lipofuscin and 

autofluorescence would affect the performance of SiGra, we randomly overlaid simulated 

autofluorescence signals from plaques of 10µm-by-10µm to all channels in the original image data. 

The autofluorescence signal intensity was simulated by signals following normal distribution with 

mean as 10, 20, and 40, respectively. Supplementary Fig. 6 showed the zoomed-in figures of the 

images with added lipofuscin autofluorescence signals. The simulated lipofuscin autofluorescence 

slightly undermined SiGra’s performance, from the original ARI (ARI: 0.55) to 0.513 and 0.509 

for the added mild (mean signal: 10) or significant (mean signal: 20) autofluorescence signals, 

respectively. Of note, when the autofluorescence signals was overwhelming (mean signal of 40), 

the performance of SiGra dropped to 0.41. This simulation experiment suggested that under 

common experimental conditions, the lipofuscin autofluorescence or other types of 

autofluorescence would not significantly impact the SiGra performance. 

Supplementary Note 5: Hyperparameter tuning of SiGra model 

Fine-tuning of λ1 and λ2 

Regarding the final loss function, we have two hyper-parameters, λ1 and λ2, that are used to weight 

the image-based loss and gene-based loss. The choice of λ1 and λ2 are identified based on a grid-

search approach. Through the grid-based hyper-parameter fine turning, the optimal parameters are 

λ1 = 0.1 and λ2 = 0.1 for single-cell spatial transcriptomics data; and for 10x Visium data, the 

optimal parameters are λ1 = 1 and λ2 = 1. 

The two hyper-parameters, λ1 and λ2, are used to balance the contributions of the three encoder-

decoders through the image-based loss 𝐿𝑀,𝑖 and gene-based loss 𝐿𝑔,𝑖 relative to the hybrid loss 𝐿ℎ,𝑖. 

Since the single-cell spatial transcriptomics data and the 10x Visium data are significantly different 

in terms of the image types (IHC vs H&E images, with different biological meanings of channels), 

spatial resolutions (single-cell level vs spot level), the coverage of the transcriptome (~1,000 genes 

vs the whole transcriptome), and the gene expression identification methods (probe-based spatial 

molecular imaging vs next generation sequencing), we have fine-tuned the two hyper-parameters 

specifically for each data type. 

As shown in Supplementary Fig. 7a, we first performed coarse searches to identify the optimal 

parameter range for each data type, then used a grid-search approach for fine-tuning to determine 
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the optimal values. The best options for the two parameters were chosen based on the loss 

evaluation on the validation set (30% of the overall data). 

For single-cell transcriptomics data, the coarse search suggested that the optimal solution should 

be in the range between 0 and 1 for both parameters. Based on the 20 FOVs across the lung cancer 

tissue, we screened the options for λ1 and λ2, ranging from 0.1 to 0.9 with a 0.2 interval. As shown 

in the figure, the combination of λ1 = 0.1 and λ2 = 0.1 showed the lowest loss (median: 1.23) across 

all FOVs. Meanwhile, the combination of λ1 = 0.5 and λ2 = 0.3 showed the worst loss (median: 

1.42). 

For the 10x Visium data, the coarse searching suggested that the optimal solution should be in the 

range between 0 and 2 for both parameters. We chose the best options for the two parameters based 

on the loss evaluation on the validation set (30% of the overall data). Based on the 12 DLPFC 

slices, we screened the options for λ1 and λ2, ranging from 0 to 2 with a 0.2 interval. As shown in 

Supplementary Fig. 7a, the combination of λ1 = 1 and λ2 = 1 showed slightly lower loss (median: 

0.185) across all slices, while λ1 = 0 and λ2 = 0 showed the highest loss (median: 0.204) for all 

slices. 

The fine-tuning results further suggested that all three encoder-decoders played important roles in 

reconstructing the spatial gene expression. For example, for the NanoString CosMx data, although 

the weights of the losses associated with the image-based encoder-decoder (I-ED) and gene-based 

encoder-decoder (G-ED) were both 0.1, these two encoders boosted the overall ARI from 0.34 (the 

hybrid encoder H-ED alone) to 0.57 (SiGra). 

Dimension tuning 

As shown in Supplementary Fig. 7b, we selected the hyper-parameters including the embedding 

dimensions based on the grid-search approach. Similar to the selection of λ1 and λ2, we fine-tuned 

the dimensions (D1 and D2) of the 1st and 2nd layers respectively, based on the loss obtained from 

the validation set (30% of the overall data). We screened the options for D1 ranging from 128, 256, 

512, 1024, and D2 ranging from 20, 30, 40, and 50. Specifically, for the NanoString lung cancer 

slice, the combination of D1 = 512 and D2 = 30 showed the lowest loss (loss: 1.240). For the 10x 

Visium data, we used the 10x DLPFC slice for screening. The combination of D1 = 512 and D2 = 

30 also showed the lowest loss (loss: 0.190). 

Supplementary Note 6: Comprehensive benchmarking, ablation studies, and 

simulation studies 

1) Performance benchmarking of SiGra with current available methods. 

NanoString CosMx lung cancer slices: 

In Supplementary Fig. 8a, we included all 8 lung cancer slices and evaluated the ARI scores 

achieved by different methods, specifically including STAGATE. Across all slices, SiGra obtained 

higher ARI (median ARI: 0.51) than the other methods, including stLearn (median ARI: 0.42), 

SpaGCN (median ARI: 0.25), and BayesSpace (median ARI: 0.27). STAGATE presented much 

lower ARI scores with median ARI only as 0.22. For the slice of lung-6, STAGATE only obtained 
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ARI around 0.1, whereas SiGra achieved much better ARI (ARI: 0.7). These results showed that 

SiGra outperformed current available methods in recognizing single-cell spatial data. 

10x Visium data: 

As shown in the Supplementary Fig. 8a, we evaluated the ARI scores achieved by different 

methods, specifically including STAGATE and MUSE. Across all 12 DLPFC slices3, SiGra 

obtained higher ARI (median ARI: 0.57) than the other methods, including stLearn (median ARI: 

0.39), SpaGCN (median ARI: 0.40), and BayesSpace (median ARI: 0.44). STAGATE presented 

slightly lower ARI scores with median ARI only as 0.49. On slice 151669, STAGATE obtained 

lowest ARI (ARI: 0.27), where SiGra achieved much better ARI (ARI: 0.49). Meanwhile, MUSE 

also presented lower ARI scores with median value as 0.31. The highest ARI that MUSE obtained 

was 0.43 on slice 151669, and the lowest ARI (ARI: 0.23) was on slice 151576. These results 

showed that MUSE had modest performance for recognizing the spatially organized brain 

structures, and SiGra outperformed current available methods in recognizing the organized brain 

structures. 

2) Ablation studies 

Here we added ablation studies to investigate the contributions of the transcriptomics-based 

encoder-decoder (G-ED), the image-based encoder-decoder (I-ED), and the hybrid encoder-

decoder (H-ED) on both single-cell spatial transcriptomics (NanoString CosMx SMI) and spot 

spatial transcriptomics (10x Visium) data. To further demonstrate why SiGra included an image-

to-gene encoder-decoder (I-ED) instead of an image-to-image auto-encoder (I-AE), we also 

compared the performance of the I-AE-based and the I-ED-based ablated models. 

We presented the performance of four ablated models, with only one encoder-decoder in each 

model. As shown in the Supplementary Fig. 8b: (1) NanoString CosMx SMI. We first evaluated 

the adjusted rand index (ARI) scores achieved by the ablated models on the NanoString profiled 

lung cancer tissue slice (Fig. 2). SiGra obtained the best ARI’s across all 20 field-of-views (FOVs) 

(median ARI: 0.59) than the other ablated models. In contrast, without the other two components, 

the hybrid encoder-decoder (H-ED) alone only achieved a median ARI of 0.34. The G-ED and I-

ED also presented lower ARI scores with median values of 0.40 and 0.24. I-AE obtained a lower 

ARI (median: 0.04) than I-ED (median: 0.24) across different FOVs. (2) 10x Visium. Then we 

evaluated the ARI scores achieved by the ablated models across the 12 dorsolateral prefrontal 

cortex (DLPFC) slices. SiGra obtained the highest ARI in all slices (median ARI: 0.57). In contrast, 

the H-ED presented a lower median ARI score of 0.33. The G-ED and the I-ED achieved median 

ARIs of 0.41 and 0.25, respectively. I-AE also presented a lower ARI (median: 0.14) than I-ED 

(median: 0.25). These ablation study suggested that the general imaging features extracted by an 

image-to-image autoencoder (I-AE) were less relevant to spatial domain detection. The imaging 

features that were relevant to the spatial gene expression patterns, which were extracted by the 

image-to-gene encoder-decoder (I-ED), proved to contribute to spatial domain identification. 

Additionally, the advantage of using an image-to-gene encoder-decoder rather than an image-to-

image autoencoder was more significant for single-cell spatial transcriptomics data. 
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Collectively, these results demonstrate that the superior performance of SiGra is achieved through 

three encoder-decoder components. The ablated models with only the hybrid encoder-decoder H-

ED or the other encoder-decoder alone are not sufficient to achieve comparable performance. 

3) Simulation studies 

To further verify the performance of SiGra, here we performed the simulation comparisons based 

on the simulation design of MUSE8. The only difference between our simulated data and MUSE’s 

design was that, the simulation data were generated with spatial locations for each domain. 

Details of simulation steps were as follows: 

1) First, we generated the ground truth of domain regions 𝑙 ∈ {1, 2, … , 𝐿}, and 𝐾 different cell 

types, where 𝐿 was the number of spatial domains and 𝐾 was the number of cell types (𝐾 ≥

𝐿). Each domain was a spatial rectangle region 𝑅𝑙 = {(𝑟𝑥, 𝑟𝑦); 𝑠𝑥0 < 𝑟𝑥 < 𝑠𝑥1, 𝑠𝑦0 < 𝑟𝑦 <

𝑠𝑦1}. In each domain, we assigned a dominating/major cell type, with several other cell types 

scattered and mixed with the major one in this spatial domain. For each cell, we randomly 

generated its spatial coordinate ( 𝑠𝑥 , 𝑠𝑦 ), where 𝑠𝑥0 < 𝑠𝑥 < 𝑠𝑥1, 𝑠𝑦0 < 𝑠𝑦 < 𝑠𝑦1 . Here we 

simulated four spatial regions:  𝑅1 = {c-1, c-5, c-6}, 𝑅2 = {c-2}, 𝑅3 = {c-3, c-7, c-8}, 𝑅4 = {c-

4, c-9}. The dominating cell types c-1 in 𝑅1, c-2 in 𝑅2, c-3 in 𝑅3, and c-4 in 𝑅4 had more cell 

numbers than the other cell types {c-5, c-6, c-7, c-8, c-9}. For each dominating cell type, we 

generated 1,000 cells in their respective spatial region. For the other mixed cell types, we 

generated 300 cells respectively. 

2) Next, the latent representations of gene expression and morphology images features: 𝑍𝐺 , 𝑍𝐼 

(𝑍𝐺 ∈ 𝑅𝑚,  𝑍𝐼 ∈ 𝑅𝑚), were generated following the design of MUSE, where 𝑚 was the size 

of the latent dimension. That is, for either 𝑍𝐺  or 𝑍𝐼, the latent representations 𝑍𝑖 of the 𝑖-th cell 

was simulated using a multivariable normal distribution: 𝑍𝑖 ~ ∑ 𝜋𝑙,𝑖𝑀𝑉𝑁(𝜇𝑙 , Σ𝑙)𝐿
𝑙 , where 𝐿 

was the total number of the domain regions (𝐿 = 4). If cell 𝑖 belonged to the 𝑙-th domain, then 

𝜋𝑙,𝑖 =1, otherwise 𝜋𝑙,𝑖 =0. 𝜇𝑙 ∈ 𝑅𝑚 was sampled from a uniform distribution with Σ𝑙 ∈ 𝑅𝑚×𝑚 

the identity matrix. Note that the latent gene features 𝑍𝐺  and latent image features 𝑍𝐼  were 

generated separately, that is: 

𝑍𝑖𝐺  ~ ∑ 𝜋𝑙,𝑖𝑀𝑉𝑁(𝜇𝑙𝐺 , Σ𝑙𝐺)𝐿
𝑙   (1) 

𝑍𝑖𝐼 ~ ∑ 𝜋𝑙,𝑖𝑀𝑉𝑁(𝜇𝑙𝐼 , Σ𝑙𝐼)𝐿
𝑙   (2) 

3) The raw gene expression and image features were then generated by a linear transformation 

by 𝑋𝐺 = 𝐴𝐺𝑍𝐺 + 𝛿 and 𝑋𝐼 = 𝐴𝐼𝑍𝐼 + 𝛿, where 𝐴 ∈ 𝑅𝑝×𝑚 was the random projection matrix 

from the uniform distribution between [-0.5, 0.5]. 𝛿  was the gaussian noise sampled from 

𝑁(0, 𝜎2). With additional dropouts added as below, the raw gene expression 𝑋𝐺
′  and image 

features 𝑋𝐼
′ were obtained: 

𝑋𝐺
′ =  𝑋𝐺𝟏[exp(−𝛼𝐺𝑋𝐺) < 𝜂𝐺]  (3) 

𝑋𝐼
′ =  𝑋𝐼𝟏[exp(−𝛼𝐼𝑋𝐼) < 𝜂𝐼] (4) 
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, where 𝟏[. ] was the indicator function, which returned 1 if the argument was true, otherwise 

returned 0. 𝛼 was the decay coefficient that controlled dropout levels and 𝜂 was the random 

value sampled from the uniform distribution between [0,1]. 

With the simulated data 𝑋𝐺
′  and 𝑋𝐼

′ , we used them as input for simulation experiments and 

benchmarking. 

Herein, we generated simulation data including both gene-based and image-based features. We 

chose three settings with different dropout levels for data generation, i.e., 𝛼 as 0.2, 0.3, and 0.4.  

• When 𝛼 = 0.2, the generated data was visualized as below in Supplementary Fig. 9a. As 

described above, the spatial data consisted of four spatial regions, where each of them was 

dominated by one major cell type with other scattered types of cells. Meanwhile, the gene-

based features and image-based features were shown to contribute to spatial domain 

identification at certain levels, with ARI as 0.54 and 0.40 respectively. However, MUSE 

failed to reveal clear spatial domains with ARI only as 0.28. STAGATE revealed the spatial 

domains with ARI as 0.58. In contrast, SiGra achieved the highest ARI (ARI: 0.71) and 

revealed much more accurate spatial domains. 

• When 𝛼 = 0.3, the generated data was visualized in Supplementary Fig. 9b. Consistently, 

four spatial domains were generated, with both gene-based features and image-based 

features contributed to spatial domain identification (ARI: 0.69, 0.60) respectively. 

Nevertheless, MUSE and STGATE only obtained ARI as 0.42 and 0.61, which were lower 

than SiGra (ARI: 0.76). 

• When 𝛼 = 0.4, the generated data was visualized in Supplementary Fig. 9c. Similarly, 

both gene-based features and image-based features contributed to spatial domain 

identification at certain levels (ARI: 0.75, 0.67). SiGra maintained more accurate (ARI: 

0.77) than MUSE (ARI: 0.55) and STAGATE (ARI: 0.63) in revealing spatial domains. 

In addition, for each setting, i.e., the dropout levels 𝛼 was 0.2, 0.3, and 0.4, we generated 10 

replicated simulation data and obtained the boxplot of ARI scores for gene-only, image-only, 

MUSE, STAGATE, and SiGra, respectively. As shown in the Supplementary Fig. 9d, SiGra 

reached much higher ARI scores (median: 0.723) than STAGATE (median: 0.573) and MUSE 

(median: 0.24) when the dropout level 𝛼 = 0.2. When 𝛼 was 0.3 and 0.4, SiGra also presented 

higher ARI (median: 0.77; 0.78) than STAGATE (median: 0.60; 0.62) and MUSE (median: 0.39; 

0.51). These simulation results showed that SiGra achieved more accurate identification of spatial 

regions through leveraging both gene-based information and image-based information. 
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