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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

This manuscript describes a new method, SiGra, for spatial domain detection and gene expression 

enhancement for single-cell spatial transcriptomics data. SiGra utilizes three graph transformer 

autoencoders to integrate the gene expression with image features, then performs spatial 

clustering and gene expression imputation using the joint embeddings. The paper is clearly 

written, and I appreciate the large amount of work devoted to this manuscript. However, I am 

concerned with the ad hoc nature of the method and its effectiveness in practice. In the spatial 

domain detection task, there is no theoretical justifications for almost all steps of the proposed 

model. In addition, the model in SiGra is very similar to a published method, MUSE, 

(https://www.nature.com/articles/s41587-022-01251-z), for the same purpose. In the gene 

expression enhancement task, SiGra does not produce any error control guarantee, either in the 

form of false discovery control or family-wise error rate control, making it hard to use in practice. 

No simulations were provided to help build up intuition and understand the performance of SiGra 

in different settings. My main concerns are: 

1. The proposed method is very ad hoc in nature, with no justifications provided for many key 

steps of the algorithm. The main components of the SiGra are three autoencoders to extract image 

and gene expression embeddings. Why do we need separate imaging-based and transcriptomics-

based autoencoders since the hybrid autoencoder already contains both gene expression and 

image information? The three autoencoders take data from different modalities as input, but why 

all of them are used to reconstruct gene expression? How does the attention mechanism balanced 

outputs from the three autoencoders? Is the final result dominated by embeddings from one 

autoencoder? The final loss function has three components and two hyper-parameters, λ_1 and 

λ_2, are used to weight the gene loss and image loss. Why λ_1 and λ_2 are both set to 0.1? Does 

that mean the final loss is dominated by the hybrid loss only? Ablation study is needed to 

investigate the contribution of different components to the model. 

2. There are so many parameters in the model, how do the authors determine their optimal 

choices? The manuscript descripted the hyper-parameters from line 355 to 362 but did not explain 

how the optimal set was eventually chosen. Did the authors pick up one that gives the best 

results? If so, this clearly would lead to model over-fitting and overly optimistic results. 

3. The proposed model in this paper is very similar to a recently published method, MUSE 

(https://www.nature.com/articles/s41587-022-01251-z). MUSE also used multiple autoencoders to 

integrate the gene expression and image information for spatial domain detection, and they 

performed a detailed ablation study to explain the contribution of each component in their model. 

The authors should cite and compare with MUSE. 

4. The evaluation of spatial domain detection is inappropriate. Spatial domains are regions that 

show coherence in gene expression and biological function. A spatial domain may contain cells 

from multiple cell types. In Figure 2a, the authors performed spatial domain detection using SiGra 

and other methods, then compared the predicted spatial domains with annotated cell types using 

ARI. This is incorrect since the goal of SiGra and other comparing methods is domain detection, 

not cell-type identification. 

5. Another main application of SiGra is to enhance gene expression for imaging-based ST data. 

The authors stated that the rationale of this application is such type of data suffers from “missing 

values, data sparsity, low coverage, and noises”(line 50). However, I cannot agree with this 

statement. Although the processed gene expression data from CosMx and MERSCOPE are 

presented as a cell by gene matrix, the raw gene expression is measured using fluorescence 

imaging with subcellar resolution. The raw data is already very accurate and is in super high 

resolution. Without further evidence, I do not think there is any need for gene expression 

enhancement for such type of data. 

6. Figure 3 shows many ligand-receptor pairs with low correlations in the raw data have much 

stronger correlations in SiGra enhanced data. The authors wanted to use this as evidence to 



support the usefulness of the enhanced data by SiGra. In my experience, many L-R pairs are 

loosely correlated due to their relatively low expression level. I doubt whether the strong 

correlations observed in the enhanced data are true biological interactions or just false discoveries. 

The authors did not provide any solid evidence to support their findings. 

7. Following my above concern, the analysis of the differentially expressed gene using the 

enhanced data suffers from the same problem 

8. No simulations were performed in the study. Simulations would be very helpful in understanding 

some basic properties of SiGra and its performance in different settings as compared to the other 

methods. 

Reviewer #2 (Remarks to the Author):

(Please see attached document.) 

The authors developed Graph Neural Networks based algorithm for spatial domains recovery and 

transcriptomics data denoising. The authors applied the proposed algorithm to several real 

datasets and showed some promising results. This is an very interesting work, but there several 

important issues that need to be addressed. These can be summarized as follows: 

Major concern: 

\begin{itemize} 

\item The terminology of \textit{graph transformer convolutional layer} is misleading. Multi-head 

attention within the neighborhood has been widely used in the graph neural networks research 

area. This kind of approach is called "Graph Attention Networks" or "GAT", instead of "Graph 

Transformer" or " Graph Transformer Convolutional Layer". The crucial difference between these 

two lies in the way to model graph structural information. "GAT" is a very common and popular 

graph neural network model. It propagates the node features to the first-order neighbors via 

attention and gradually extends to high-order neighbors by stacking the graph attentional layers, 

which is similar to other GNNs, e.g. GCN, GraphSAGE. In contrast, "Graph Transformer" is another 

family of models that densely connects all the nodes in the graph and use positional encoding or 

graph neural networks to encode structural information. 

\item For the image layer, the name 'autoencoder' is also misleading. The input here is pixel 

vector and the output is gene expression not the image itself. 

\item Still for the image layer, the authors vectorize the images and concatenate them as input. As 

we know, learning shapes or other topological characters from vectorizing the images is 

suboptimal. Can the authors provides some insights to support their choice? Also, for each cell, 

fixed sized square images are extracted as input. Since different cells vary in their sizes, which 

means many images contain a significant portion of background even info from neighboring cells. I 

am curious why those extra (noisy) part of image information did not significant affect the 

performance of the model? More importantly, I am curious the contribution of image to the model 

performance some ablation studies to illustrate the contribution of image and spatial graph. 

\item In Fig2, the authors used the cell label produced by He et al. as ground truth. However, 

according the the paper, \textit{Cell type was determined by comparing individual cells’ expression 

profiles to reference profiles for different cell types (scRNA-seq and bulk RNA-seq of flow-sorted 

blood and stroma databases), assigning each cell to the cell type under which its profile was most 

likely. The likelihood was defined using a negative binomial distribution, with mean defined by a 

cell type’s reference profile plus expected background, and with a size parameter set at 10 to allow 

for extensive overdispersion.}. Namely, they used an likelihood based method to general cell 

labels. It is not ideal to treat those label as ground truth. Also, there are 8 slides in the CosMX 

website, can the author also include the result for the other 7 slides. 

\item I also notice that the authors did not include STAGATE for performance comparison 

(Deciphering spatial domains from spatially resolved transcriptomics with adaptive graph attention 

auto-encoder.) Can the authors also include STAGATE? 

\item For the L-R results in both Figures 3 and 4, can the authors also include some results to 

evaluate the potential false positive correlations generated by the algorithm using randomly 

selected two genes? Since SiGra integrates information from neighboring cells, I suspect it will also 



create some false correlation results. 

\end{itemize} 

Minor concerns: 

\begin{itemize} 

\item For Fig3 A, why the tumor cells are not included? 

\item In Fig 4, the authors claim 'For example, \textit{Cd34} and \textit{Vwf} show scattered 

false signal \ldots '. Do the authors have any evidence to support this claim that the expression of 

\textit{Cd34} and \textit{Vwf} on those cells are false? 

\end{itemize} 

This is latex code. I have also attached a pdf version. 

Reviewer #3 (Remarks to the Author):

I had the chance to review an interesting manuscript that describes a new technique for the 

improved assessment of spatial transcriptomic data. Single-cell spatial elucidation through image-

augmented GRAph transformer (SiGra) incorporates multi-modal spatial features in a more 

effective manner – using graph transformer autoencoders with attention mechanism – and 

improves the limits that raw data faces to decipher spatial domains. SiGra is reportedly one of the 

first methods to utilize multi-channel images in a highly effective manner (true?). 

SiGra is benchmarked and compared to other methods of analysis, namely Seurat v4, Scanpy, 

stLearn, SpaGCN, and BayesSpaces based on previously published datasets published using 

NanoString CosMx SMI, MERSCOPE, and 10 X Visium. 

While the study appears for the most part rigorously executed and analyzed - personally, I am 

convinced that it is worth trying SiGra – at this point most of the results represent rather indirect 

evidence that SiGra is indeed superior in unraveling new and important biological mechanisms. 

More direct evidence including some experimental validation for their claims is required to justify 

publication. 

1) The results in the DLPFC in this study must be carefully compared to Maynard et al., 2021 – 

who used gene-level statistics from both layer-specific versus cell type-specific expression profiles 

for “spatial registration” in their study. What about HPCAL1, KRT17 and TRABD2A or Lam5, AQP4 

and FREM3 (c.f., Maynard et al., 2021). 

2) SiGra identifies RELN40 in L1– but the cited paper seems to refer to temporal lobe and not 

DLPFC. Experimental validation is mandatory to validate these claims. 

3) The authors show that e.g., BayesSpace misidentifies the neutrophile as lymphocytes, 

meanwhile, it incorrectly identifies some tumor cells as myeloid cells or neutrophile. Seurat fails to 

disentangle epithelial cells from tumor cells... What type of errors is SiGra making when compared 

to ground truth? 

4) Is the extend of lipofuscin and autofluorescence affecting the performance of SiGra? 

5) Incidentally, I wonder whether SiGra could also help addressing inconsistencies in dissections 

(specifically considering gyrification of the human cortex). Could this even be a concern when 

using SiGra? 

6) In figure 6 only 2 of the 12 slices are shown. Please provide criteria for selecting these slices 

out of the 12. 

Some additional minor points: 



- All abbreviations should be explained when used first in the manuscript 

- Reference 2 and 42 are identical 



RESPONSE TO REVIEWERS' COMMENTS 
 

Reviewer #1 (Remarks to the Author): 

This manuscript describes a new method, SiGra, for spatial domain detection and gene expression 

enhancement for single-cell spatial transcriptomics data. SiGra utilizes three graph transformer 

autoencoders to integrate the gene expression with image features, then performs spatial clustering 

and gene expression imputation using the joint embeddings. The paper is clearly written, and I 

appreciate the large amount of work devoted to this manuscript. However, I am concerned with 

the ad hoc nature of the method and its effectiveness in practice. In the spatial domain detection 

task, there is no theoretical justifications for almost all steps of the proposed model. In addition, 

the  model  in  SiGra  is  very  similar  to  a  published  method,  MUSE, 

(https://www.nature.com/articles/s41587-022-01251-z[nature.com]), for the same purpose. In the 

gene expression enhancement task, SiGra does not produce any error control guarantee, either in 

the form of false discovery control or family-wise  error rate  control, making it hard to use  in 

practice. No simulations were provided to help build up intuition and understand the performance 

of SiGra in different settings. My main concerns are: 

 

1. The proposed method is very ad hoc in nature, with no justifications provided for many key 

steps of the algorithm. The main components of the SiGra are three autoencoders to extract image 

and gene expression embeddings. Why do we need separate imaging-based and transcriptomics- 
based autoencoders since the hybrid autoencoder already contains both gene expression and image 

information? The three autoencoders take data from different modalities as input, but why all of 

them are used to reconstruct gene expression? How does the attention mechanism balanced outputs 

from the three autoencoders? Is the final result dominated by embeddings from one autoencoder? 

The final loss function has three components and two hyper-parameters, λ_1 and λ_2, are used to 

weight the gene loss and image loss. Why λ_1 and λ_2 are both set to 0.1? Does that mean the 

final  loss  is  dominated  by  the  hybrid  loss  only?  Ablation  study  is  needed  to  investigate  the 

contribution of different components to the model. 

Response: Thanks. We appreciate the reviewer’s comment. In the revised manuscript, we added 

ablation studies to investigate the contributions of the transcriptomics-based encoder-decoder (G- 
ED), the image-based encoder-decoder (I-ED), and the hybrid encoder-decoder (H-ED) on both 

single-cell spatial transcriptomics (NanoString CosMx SMI) and spot-level spatial transcriptomics 

(10x Visium) data. We also provided the fine-tuning results for λ1 and λ2, which were omitted in 

the original manuscript. We made revisions in our manuscript (page 9) and Supplementary Note 

6. Details are shown below: 

Ablation studies: 

We presented the performance of three ablated models, with only one encoder-decoder in each 

model. As shown in the figure below: 1) NanoString CosMx SMI. We first evaluated the adjusted 

rand index (ARI) scores achieved by the ablated models on the NanoString profiled lung cancer 

tissue slice. SiGra obtained the best ARI across all 20 field-of-views (FOVs) (median ARI: 0.59) 

than the other ablated models. In contrast, without the other two components, the hybrid encoder- 
decoder (H-ED) alone only achieved a median ARI of 0.34. The G-ED and I-ED also presented 



lower ARI scores with median values of 0.40 and 0.24. 2) 10x Visium. Then we evaluated the ARI 

scores achieved by the ablated models across the 12 dorsolateral prefrontal cortex (DLPFC) slices. 

SiGra obtained the highest ARI in all slices (median ARI: 0.57). In contrast, the H-ED presented 

a lower median ARI score of 0.33. The G-ED and the I-ED achieved median ARIs of 0.41 and 

0.25, respectively. 

 

To address the reviewer’s question of why an image-to-gene encoder-decoder (I-ED) instead of an 

image-to-image auto-encoder (I-AE) was used in SiGra, we further compared the performance of 

the I-AE-based and the I-ED-based ablated models. As shown in the figure below: 1) NanoString 

CosMx SMI. Based on the lung cancer tissue slice, I-AE obtained much lower ARI (median: 0.04) 

than I-ED (median: 0.24) across different FOVs. 2) 10x Visium. Based on the 12 DLPFC slices, 

I-AE also presented lower ARI (median: 0.14) than I-ED (median: 0.25). This ablation study 

suggested that the general imaging features extracted by an image-to-image autoencoder (I-AE) 

were less relevant to spatial domain detection. The imaging features that were relevant to the 

spatial gene expression patterns, which were extracted by the image-to-gene encoder-decoder (I-

ED), contributed more to spatial domain identification. Additionally, the advantage of using an 

image-to-gene encoder-decoder rather than an image-to-image autoencoder was more significant 

for single-cell spatial transcriptomics data. 

 



Collectively, these results demonstrated that the superior performance of SiGra was achieved 

through three encoder-decoder components. The ablated models with only the hybrid encoder-

decoder H-ED or the other encoder-decoder alone were not sufficient to achieve comparable 

performance. 

Fine-tuning for λ1 and λ2: 

Regarding the final loss function, we had two hyper-parameters, λ1 and λ2, that were used to weigh 

the image-based loss and gene-based loss. In our manuscript, we identified the choice of λ1 and λ2 

based on a grid-search approach. Through this grid-based hyper-parameter fine turning, we 

identified that: for single-cell spatial transcriptomics data, the optimal parameters are λ1 = 0.1 and 

λ2 = 0.1; for 10x Visium data, the optimal parameters are λ1 = 1 and λ2 = 1. The fine-tuning results 

for these two weighting parameters were added to Supplementary Note 5 and as follows: 

The two hyper-parameters, λ1 and λ2, were used to balance the contributions of the three encoder-

decoders through the image-based loss 𝐿𝑀,𝑖 and gene-based loss 𝐿𝑔,𝑖 relative to the hybrid loss 𝐿ℎ,𝑖. 

Since the single-cell spatial transcriptomics data and the 10x Visium data were significantly 

different in terms of the image types (IHC vs H&E images, with different biological meanings of 

channels), spatial resolutions (single-cell level vs spot level), the coverage of the transcriptome 

(~1,000 genes vs the whole transcriptome), and the gene expression identification methods (probe-

based spatial molecular imaging vs next generation sequencing), we fine-tuned the two hyper-

parameters specifically for each data type. 

We first performed coarse searches to identify the optimal parameter range for each data type, then 

used a grid-search approach for fine-tuning to determine the optimal values. The best options for 

the two parameters were chosen based on the loss evaluation on the validation set (30% of the 

overall data). 

For single-cell transcriptomics data, the coarse search suggested that the optimal solution should 

be in the range between 0 and 1 for both parameters. Based on the 20 FOVs across the lung cancer 

tissue, we screened the options for λ1 and λ2, ranging from 0.1 to 0.9 with a 0.2 interval. As shown 

in the figure below, the combination of λ1 = 0.1 and λ2 = 0.1 showed the lowest loss (median: 1.23) 

across all FOVs. Meanwhile, the combination of λ1 = 0.5 and λ2 = 0.3 showed the worst loss 

(median: 1.42). 

 



For the 10x Visium data, the coarse searching suggested that the optimal solution should be in the 

range between 0 and 2 for both parameters. We chose the best options for the two parameters based 

on the loss evaluation on the validation set (30% of the overall data). Based on the 12 DLPFC 

slices, we screened the options for λ1 and λ2, ranging from 0 to 2 with a 0.2 interval. As shown in 

the figure below, the combination of λ1 = 1 and λ2 = 1 showed lowest loss (median: 0.185) across 

all slices, while λ1 = 0 and λ2 = 0 showed the highest loss (median: 0.204) for all slices. 

 

The fine-tuning results further suggested that all three encoder-decoders played important roles in 

reconstructing the spatial gene expression. For example, for the NanoString CosMx data, although 

the weights of the losses associated with the image-based encoder-decoder (I-ED) and gene-based 

encoder-decoder (G-ED) were both 0.1, these two encoders boosted the overall ARI from 0.34 (the 

hybrid encoder-decoder alone) to 0.57 (SiGra). 

2. There are so many parameters in the model, how do the authors determine their optimal choices? 

The manuscript descripted the hyper-parameters from line 355 to 362 but did not explain how the 

optimal set was eventually chosen. Did the authors pick up one that gives the best results? If so, 

this clearly would lead to model over-fitting and overly optimistic results. 

Response: Thanks for the reviewer’s comment. In our manuscript, we selected the hyper-

parameters including the embedding dimensions based on the grid-search approach. Similar to the 

selection of λ1 and λ2, we fine-tuned the dimensions (D1 and D2) of the 1st and 2nd layers 

respectively, based on the loss obtained from the validation set (30% of the overall data). We 

screened the options for D1 ranging from 128, 256, 512, and 1024, and D2 ranging from 20, 30, 

40, and 50. 

Specifically, for the NanoString lung cancer slice, as shown in the figure below, the combination 

of D1 = 512 and D2 = 30 showed the lowest loss (loss: 1.240). 



 

For the 10x Visium DLPFC slices, as shown in the figure below, the combination of D1 = 512 and 

D2 = 30 also showed the lowest loss (loss: 0.190). 

 

3. The proposed model in this paper is very similar to a recently published method, MUSE 

(https://www.nature.com/articles/s41587-022-01251-z [nature.com]). MUSE also used multiple 

autoencoders to integrate the gene expression and image information for spatial domain detection, 

and they performed a detailed ablation study to explain the contribution of each component in their 

model. The authors should cite and compare with MUSE. 

Response: Thanks for the comment. In the revised manuscript, we added comparisons with MUSE 

and cited it. We made related revisions in the manuscript (page 9) and Supplementary Note 6. 

Details are shown as follows: 

As shown in the figure below, we evaluated the ARI scores achieved by different methods, 

including MUSE. Across all 12 DLPFC slices1, SiGra obtained higher ARI (median ARI: 0.57) 

than the other methods, including stLearn (median ARI: 0.39), SpaGCN (median ARI: 0.40), and 

BayesSpace (median ARI: 0.44). In contrast, MUSE presented lower ARI scores with the median 

ARI of 0.31. The highest ARI that MUSE obtained was 0.43 on slice 151669, and the lowest ARI 

(ARI: 0.23) was on slice 151576. These results showed that MUSE had modest performance in 

recognizing the spatially organized brain structures. 



 
 

Additionally, we included simulation studies to further compare the performance of MUSE with 

SiGra. SiGra also showed better performance than MUSE on simulation data. Full details were 

shown in our response to question #8, as well as our revised manuscript (page 9) and 

Supplementary Note 6. 

 

4. The evaluation of spatial domain detection is inappropriate. Spatial domains are regions that 

show coherence in gene expression and biological function. A spatial domain may contain cells 

from multiple cell types. In Figure 2a, the authors performed spatial domain detection using SiGra 

and other methods, then compared the predicted spatial domains with annotated cell types using 

ARI. This is incorrect since the goal of SiGra and other comparing methods is domain detection, 

not cell-type identification. 

Response: We appreciate the reviewer’s comment. SiGra can identify spatial domains at various 

resolutions, depending on the data type and the applications. The spot-level spatial data has a low 

spatial resolution and consists of mixed cells/cell types in each spot. For example, the spatial 

resolution of the 10x Visium data is 100µm, measured between the centers of two neighboring 

spots. For such low-resolution data, SiGra directly and accurately reveals the spatial structures 

such as the anatomic layers in the DLPFC slices (Fig. 5) by clustering the latent-represented spots 

using Leiden. In contrast, the single-cell spatial data has significantly higher resolution. For 

example, the spatial resolution of the NanoString CosMx molecular imaging is 52nm, and the 

summarized gene expression profile based on image segmentation provides single-cell level 

resolution. SiGra thus can reveal spatial regions at the cellular level (Fig. 2 and 3) and 

microanatomic level (Fig. 4, the identifications of the microanatomic regions in the liver). 

Meanwhile, on such high-resolution single-cell spatial data, the regional anatomic spatial domains 

can be revealed by further summarizing the Leiden clustering results (heterogenous cell types) 

with a dimensional moving window agglomeration approach. Such approaches have been well-



established in spatial data analysis of geographical information systems (GIS) data2,3 and have 

recently been used for revealing spatial domains in single-cell spatial data (for example, SSAM4 

by Park et al.). Specifically, the SiGra clustering results were summarized by a circular window of 

diameter 𝑑 sliding at both 𝑥 and 𝑦 directions across the whole image with a given stride length 𝑠. 

At each stop 𝐶𝑖,𝑗  with the coordinate (𝑥𝑖 , 𝑦𝑗) , a vector 𝑐𝑖,𝑗 ≡ [𝑞1, … , 𝑞𝑡]  representing the 

proportions of the SiGra identified clusters (𝑡) covered by the sliding window was calculated. All 

the stops {𝐶𝑖.𝑗}  were recursively merged to 𝑘  groups {𝑎1, … , 𝑎𝑘}  by hierarchical clustering 

according to the cluster proportion vectors {𝑐𝑖.𝑗}. These agglomerated groups were defined as the 

discovered spatial domains. The original slide image was then labeled with the discovered spatial 

domains according to the coordinate of each stop. In this way, we obtained the spatial domains 

based on the heterogenous cells identified on the spatial slice. The window radius 𝑑 used in our 

work was 100μm, which was consistent with the 10x Visium spatial resolution, with the stride 𝑠 

of 10μm. 

The ground truth of the anatomic spatial domains of the NanoString CosMx lung cancer slide was 

provided by a certificated pathologist at Indiana University Health, Dr. Tieying Hou, according to 

the IHC images. As shown in the figure below, three spatial domains were identified by Dr. Hou: 

the tumor region (green), the desmoplasia region (red), and the adjacent normal region (orange). 

For fair comparisons with other methods, the same moving window agglomeration approach was 

used. Compared with the ground truth, SiGra achieved an ARI of 0.60, better than other methods 

including BayesSpace (ARI: 0.25), spaGCN (ARI: 0.10), Seurat (ARI: 0.10), stLearn (ARI: 0.10), 

and scanpy (ARI: 0.17). These results showed that SiGra obtained reliable spatial domains based 

on its identified accurate cell identities. It also indicated that the NanoString CosMx profiled 

cancer tissue slice was much more challenging given its strong cellular heterogeneity, large cell 

number, and high-resolution, compared with the 10x Visium profiled normal DLPFC tissues which 

have well-organized anatomic structure. 

To further verify the comparison results, we also tested BayesSpace and spaGCN for direct spatial 

domain identification of the three domains, without using the moving window agglomeration 

approach. BayesSpace and spaGCN only obtained ARIs of 0.15 and 0.19, respectively. These 

results further demonstrated that, for detecting large-scale anatomic spatial domains from single-

cell spatial data, it was necessary to agglomerate the high-resolution cellular-level clustering 

results. 

  



 

 

5. Another main application of SiGra is to enhance gene expression for imaging-based ST data. 

The authors stated that the rationale of this application is such type of data suffers from “missing 

values, data sparsity, low coverage, and noises” (line 50). However, I cannot agree with this 

statement. Although the processed gene expression data from CosMx and MERSCOPE are 

presented as a cell by gene matrix, the raw gene expression is measured using fluorescence imaging 

with subcellar resolution. The raw data is already very accurate and is in super high resolution. 

Without further evidence, I do not think there is any need for gene expression enhancement for 

such type of data. 

Response: We appreciate the reviewer’s comment. Here we included the reasons for enhancing 

the single-cell spatial transcriptomics (SCST) data provided by current technologies. Though 

NanoString CosMx5 and MERSCOPE6 mentioned that their captured RNA transcripts had high 

specificity, the major limitations of such SCST data were investigated in the Jonathan L, et.al.6 

study. Specifically, there were several factors resulting in the “missing values, data sparsity, low 

coverage, and noises”, including 1) cell segmentation and 2) RNA molecular overcrowding. 



1)  As shown in the Figure 3A and 3E of Jonathan L, et.al.6, the cell segmentation quality varied. 

Some cells had reliable segmented boundaries while others presented aberrant segmented 

boundaries, which were due to low-quality cell boundary and/or DAPI staining signals. 

Moreover, not all detected RNA transcripts lay inside segmented boundaries. Jonathan L, 

et.al.6 reported that the typical percentage of transcripts assignable to cells was only around 

30-50%. Besides mRNAs that were truly located outside cells (such as those located inside 

exosomes), a significant number of cellular mRNAs could not be attributed to cells. Though a 

minimum cutoff of total RNA transcript count per cell of 20 was established to filter out cells 

with sparse statistics, cells remained in the SCST data also presented extensive sparseness. 

2)  Jonathan L, et.al. 6 also reported that the gene panel used for SCST profiling contained some 

highly abundant genes in certain tissues, such as C1qc and Gpx3 in in mouse liver and kidney 

respectively. For cells containing large numbers of transcripts (i.e., over 1,000 per cell), the 

smFISH spots in the MERFISH images were too dense due to the overcrowding of RNA 

molecules, which prevented the accurate identification of single RNA transcripts. Moreover, 

the MERFISH transcript distributions were shown to be agreed with scRNA-seq data only for 

cells with low overall transcript counts, but not for cells with high overall transcript counts, 

which further indicated the noise and sparseness of SCST data. In addition, Jonathan L, et.al. 
6 examined the dropout rate between MERFISH and scRNA-seq data in their Figure 4, where 

the distribution of dropout rates was slightly shifted to higher dropout rates in MERFISH 

compared to scRNA-seq. It was also due to the molecular crowding effects that led to a high 

density of the fluorescent signal exceeding the diffraction limit, which could not be resolved 

and hence prevented those transcripts from being counted. Even for the detected signals, some 

were technically “dropped out” due to ambiguous signals. The NanoString CosMx protocol5 

also removed detected transcripts according to whether all the four reporter probe-binding 

events happened within a radius of 90nm, and whether the mapping to the gene barcode is 

unique. The dropout rate at this step alone was 3 to 10%. Besides the transcript-level dropout, 

the cellular dropout rate was about 3% for cells containing less than 20 transcripts. 

To further demonstrate that our enhanced data provided more information than raw data and to 

highlight the necessity of gene expression enhancement for such SCST data, inspired by these 

studies5,6, we compared both enhanced data and raw data with existing bulk RNA-seq data. 

Specifically, 1) for the lung cancer NanoString CosMx data in our Fig. 2, we used the bulk RNA-

seq data from TCGA lung cancer patients. 2) For the mouse liver MERSCOPE in our Fig. 3, we 

used the bulk RNA-seq data from The Tabula Muris Consortium7. 

1) As shown in Figure a below, the x-axis and y-axis represented the total log-transformed counts 

per gene in lung cancer slices between the two types of technologies, i.e., SCST and bulk. Each 

point represented the RNA count for a single gene, averaged across different experimental 

samples for the corresponding technology. The RNA counts between enhanced SCST and bulk 

sequencing showed better concordance (cor = 0.631) than that between raw SCST and bulk 

data (cor = 0.579). 

2) Figure b below showed the comparisons between SCST and bulk data for mouse liver 

MERSCOPE data, where the x-axis and y-axis were the total log-transformed counts. Similarly, 

each point represents the RNA count for a single gene, averaged across different samples for 

the corresponding technology. Again, we observed much higher correlation of RNA counts 



between enhanced SCST and bulk data (cor = 0.854), in contrast with the comparisons between 

raw SCST and bulk data (cor = 0.800). 

 

 

The above comparisons supported that our enhanced data provided more information than raw 

data and improved the data quality in SCST profiles. Related revisions were made in the 

manuscript (page 4-5) and Supplementary Note 1. 

6. Figure 3 shows many ligand-receptor pairs with low correlations in the raw data have much 

stronger correlations in SiGra enhanced data. The authors wanted to use this as evidence to support 

the usefulness of the enhanced data by SiGra. In my experience, many L-R pairs are loosely 

correlated due to their relatively low expression level. I doubt whether the strong correlations 

observed in the enhanced data are true biological interactions or just false discoveries. The authors 

did not provide any solid evidence to support their findings. 

Response: Thanks for the reviewer’s comment. In the revised manuscript, we evaluated the 

potential false discoveries in the L-R associations using randomized control. Briefly, we assumed 

that randomly selected gene pairs from the SCST data were not likely associated and thus used as 

negative controls. By comparing with these negative controls, the false discovery rate of the 

selected L-R associations was estimated. Briefly, 10,000 gene pairs were randomly selected, and 

the corresponding Pearson correlations were calculated as negative control. For each of the L-R 

pair examined, we estimated the false discovery rate and updated Fig. 3 accordingly using the FDR 

values based on the negative controls instead of the Pearson correlations. 



For the NanoString CosMx non-small cell lung cancer dataset (Fig. 3), as shown in the Figure a 

below, the y-axis and x-axis referred to the FDR value of each L-R pair in the enhanced and raw 

data respectively. Across the total 660 L-R interactions, 55 L-R pairs from the enhanced data were 

statistically significant (FDR < 0.05), whereas 42 L-R pairs from the raw data had FDR < 0.05. 

There were 28 L-R pairs shared between enhanced data and raw data, indicating enhanced data 

preserved useful information of raw data. In addition, 27 specific L-R interactions were identified 

from the enhanced data, while 14 specific L-R interactions were found in the raw data. We further 

investigated whether these specific L-R interactions pairs were similar with the shared L-R pairs. 

For those significant L-R pairs identified from the enhanced data, there were no significant 

differences between the specific and shared L-R pairs (Figure b), suggesting that both had similar 

probability of being true associated L-R pairs. In contrast, the raw-specific L-R pairs were 

significantly different from the shared L-R pairs (Figure c), suggesting that the raw-specific pairs 

were more likely to be false discoveries than the shared L-R pairs. These results indicated that the 

enhanced data not only enabled to detect more L-R interactions than the raw data, but also the 

identified L-R pairs were more likely to be true discoveries than those specifically detected in raw 

data. The data enhancement using SiGra not only improved the sensitivity of L-R interaction 

detection (identifying more L-R pairs), but also preserved the specificity (the specifically identified 

L-R pairs that had similar statistical significance with the shared L-R pairs). Related revisions were 

made in the manuscript (page 5) and Supplementary Note 1. 

 

 



7. Following my above concern, the analysis of the differentially expressed gene using the 

enhanced data suffers from the same problem. 

Response: Thanks for the reviewer’s comment. Based on our above explanation and results, we 

anticipated that the differential expression analysis could benefit from the enhanced data given its 

improved data quality. To further verify it, regarding our Fig. 4e, we used the single-cell RNA-seq 

data from the Tabula Muris Consortium 20208 to identify the DEGs in the cell clusters of 

hepatocytes, periportal hepatocytes, hepatic stellate cells, and endothelial cells. In this way, we 

then evaluated the overlaps between the scRNA-seq’s DEGs and enhanced data’s DEGs, as well 

as the overlaps between the scRNA-seq’s DEGs and the raw data’s DEGs. 

As shown in the figure below, we identified the overlapped DEGs with scRNA-seq for each cluster. 

The purple-colored bars represent the number of DEGs shared between scRNA-seq and raw data, 

and the orange-colored bars represented the number of DEGs shared between scRNA-seq and 

enhanced data. We also labeled the number of DEGs on the bar plot, for example, for C-1, “12 vs 

12” referred to “the shared DEGs between scRNA-seq and raw data” vs “the DEGs of raw data”, 

and “49 vs 59” referred to “the shared DEGs between scRNA-seq and enhanced data” vs “the 

DEGs of enhanced data”. Across different clusters, the enhanced data was shown to recover more 

dysregulated genes than the raw SCST data. 

 
 

8. No simulations were performed in the study. Simulations would be very helpful in 

understanding some basic properties of SiGra and its performance in different settings as compared 

to the other methods. 

Response: Thanks for the reviewer’s comment. In this revision, we performed the simulation 

comparisons based on the simulation design of MUSE16. The only difference between our 

simulated data and MUSE’s design was that, the simulation data were generated with spatial 

locations for each domain. 

Details of simulation steps were as follows: 



1) First, we generated the ground truth of domain regions 𝑙 ∈ {1, 2, … , 𝐿}, and 𝐾 different cell 

types, where 𝐿 was the number of spatial domains and 𝐾 was the number of cell types (𝐾 ≥

𝐿). Each domain was a spatial rectangle region 𝑅𝑙 = {(𝑟𝑥, 𝑟𝑦); 𝑠𝑥0 < 𝑟𝑥 < 𝑠𝑥1, 𝑠𝑦0 < 𝑟𝑦 <

𝑠𝑦1}. In each domain, we assigned a dominating/major cell type, with several other cell types 

scattered and mixed with the major one in this spatial domain. For each cell, we randomly 

generated its spatial coordinate ( 𝑠𝑥 , 𝑠𝑦 ), where 𝑠𝑥0 < 𝑠𝑥 < 𝑠𝑥1, 𝑠𝑦0 < 𝑠𝑦 < 𝑠𝑦1 . Here we 

simulated four spatial regions:  𝑅1 = {c-1, c-5, c-6}, 𝑅2 = {c-2}, 𝑅3 = {c-3, c-7, c-8}, 𝑅4 = {c-

4, c-9}. The dominating cell types c-1 in 𝑅1, c-2 in 𝑅2, c-3 in 𝑅3, and c-4 in 𝑅4 had more cell 

numbers than the other cell types {c-5, c-6, c-7, c-8, c-9}. For each dominating cell type, we 

generated 1,000 cells in their respective spatial region. For the other mixed cell types, we 

generated 300 cells respectively. 

2) Next, the latent representations of gene expression and morphology images features: 𝑍𝐺 , 𝑍𝐼 

(𝑍𝐺 ∈ 𝑅𝑚,  𝑍𝐼 ∈ 𝑅𝑚), were generated following the design of MUSE, where 𝑚 was the size 

of the latent dimension. That is, for either 𝑍𝐺  or 𝑍𝐼, the latent representations 𝑍𝑖 of the 𝑖-th cell 

was simulated using a multivariable normal distribution: 𝑍𝑖 ~ ∑ 𝜋𝑙,𝑖𝑀𝑉𝑁(𝜇𝑙 , Σ𝑙)𝐿
𝑙 , where 𝐿 

was the total number of the domain regions (𝐿 = 4). If cell 𝑖 belonged to the 𝑙-th domain, then 

𝜋𝑙,𝑖 =1, otherwise 𝜋𝑙,𝑖 =0. 𝜇𝑙 ∈ 𝑅𝑚 was sampled from a uniform distribution with Σ𝑙 ∈ 𝑅𝑚×𝑚 

the identity matrix. Note that the latent gene features 𝑍𝐺  and latent image features 𝑍𝐼  were 

generated separately, that is: 

𝑍𝑖𝐺  ~ ∑ 𝜋𝑙,𝑖𝑀𝑉𝑁(𝜇𝑙𝐺 , Σ𝑙𝐺)𝐿
𝑙 ; 𝑍𝑖𝐼  ~ ∑ 𝜋𝑙,𝑖𝑀𝑉𝑁(𝜇𝑙𝐼 , Σ𝑙𝐼)𝐿

𝑙  

3) The raw gene expression and image features were then generated by a linear transformation 

by 𝑋𝐺 = 𝐴𝐺𝑍𝐺 + 𝛿 and 𝑋𝐼 = 𝐴𝐼𝑍𝐼 + 𝛿, where 𝐴 ∈ 𝑅𝑝×𝑚 was the random projection matrix 

from the uniform distribution between [-0.5, 0.5]. 𝛿  was the gaussian noise sampled from 

𝑁(0, 𝜎2). With additional dropouts added as below, the raw gene expression 𝑋𝐺
′  and image 

features 𝑋𝐼
′ were obtained: 

𝑋𝐺
′ =  𝑋𝐺𝟏[exp(−𝛼𝐺𝑋𝐺) < 𝜂𝐺]; 𝑋𝐼

′ =  𝑋𝐼𝟏[exp(−𝛼𝐼𝑋𝐼) < 𝜂𝐼] 

, where 𝟏[. ] was the indicator function, which returned 1 if the argument was true, otherwise 

returned 0. 𝛼 was the decay coefficient that controlled dropout levels and 𝜂 was the random 

value sampled from the uniform distribution between [0,1]. 

With the simulated data 𝑋𝐺
′  and 𝑋𝐼

′ , we used them as input for simulation experiments and 

benchmarking. 

Herein, we generated simulation data including both gene-based and image-based features. We 

chose three settings with different dropout levels for simulation data, i.e., 𝛼 as 0.2, 0.3, and 0.4.  

• When 𝛼 = 0.2, the generated data was visualized as below in Figure a. As described above, 

the spatial data consisted of four spatial regions, where each of them was dominated by 

one major cell type with other scattered types of cells. Meanwhile, the gene-based features 

and image-based features were shown to contribute to spatial domain identification at 

certain levels, with ARI as 0.54 and 0.40 respectively. However, MUSE failed to reveal 



clear spatial domains with ARI only as 0.28. In contrast, SiGra achieved higher ARI (ARI: 

0.71) revealing much more accurate spatial domains. 

• When 𝛼 = 0.3, the generated data was visualized in Figure b. Consistently, four spatial 

domains were generated, with both gene-based features and image-based features 

contributed to spatial domain identification (ARI: 0.69, 0.60) respectively. Nevertheless, 

MUSE only obtained ARI as 0.42, which was much lower than SiGra (ARI: 0.76). 

• When 𝛼 = 0.4, the generated data was visualized in Figure c. Similarly, both gene-based 

features and image-based features contributed to spatial domain identification at certain 

levels (ARI: 0.75, 0.67). SiGra maintained more accurate (ARI: 0.77) than MUSE (ARI: 

0.55) in revealing spatial domains. 

 



In addition, for each setting, i.e., the dropout levels 𝛼 was 0.2, 0.3, and 0.4, we generated 10 

replicated simulation data and obtained the boxplot of ARI scores for gene-only, image-only, 

MUSE, and SiGra, respectively. As shown in the figure below, SiGra reached much higher ARI 

scores (median: 0.723) than MUSE (median: 0.24) when the dropout levels 𝛼 = 0.2. For 𝛼 was 0.3 

and 0.4, SiGra also presented higher ARI (median: 0.77; 0.78) than MUSE (median: 0.39; 0.51). 

These simulation results showed that SiGra achieved more accurate identification of spatial 

regions through leveraging both gene-based and image-based features. Related revisions were 

made in the manuscript (page 9) and Supplementary Note 6. 

 
 

  



Reviewer #2 (Remarks to the Author): 
(Please see attached document.) 

 

The authors developed Graph Neural Networks based algorithm for spatial domains recovery and 

transcriptomics data denoising. The authors applied the proposed algorithm to several real datasets 

and showed some promising results. This is an very interesting work, but there several important 

issues that need to be addressed. These can be summarized as follows: 

 

Major concern: 
 

• The terminology of graph transformer convolutional layer is misleading. Multi-head attention 

within the neighborhood has been widely used in the graph neural networks research area. This 

kind of approach is called "Graph Attention Networks" or "GAT", instead of "Graph 

Transformer" or " Graph Transformer Convolutional Layer". The crucial difference between 

these two lies in the way to model graph structural information. "GAT" is a very common and 

popular graph neural network model. It propagates the node features to the first-order 

neighbors via attention and gradually extends to high-order neighbors by stacking the graph 

attentional layers, which is similar to other GNNs, e.g. GCN, GraphSAGE. In contrast, "Graph 

Transformer" is another family of models that densely connects all the nodes in the graph and 

use positional encoding or graph neural networks to encode structural information. 

Response: Thanks for the reviewer’s comment. The definition of “Graph Transformer” is fast 

evolving, reflecting the exciting and active advances in this field. Here we reviewed recently 

published graph transformers that were similar to SiGra in the three perspectives: using a fully 

connected subgraph instead of the whole graph, omitting positional encoding, or using a multiple 

layer convolution strategy. We summarized the hallmark characteristics of a transformer model 

(self-attention and fully connected nodes in a subgraph or a graph) and showed that SiGra has all 

such characteristics. We also showed that other features are optional. We concluded that SiGra 

was qualified as graph transformer-based model. We further explained that the architecture of 

SiGra was common in graph transformer field. 

In the original transformer paper9, Vaswani et al defined the two hallmark characteristics of a 

transformer as self-attention and the full connections of all positions in both encoders and 

decoders. When adapting the original transformer in large graph-structured data with sub-million-

level to billion-level nodes, it was computationally forbidden to include the whole graph and build 

full-connection layers among all nodes. In such scenarios, node-specific subgraphs and 

convolution across all nodes were often used in graph transformer models. Among options of 

subgraphs, the nearest neighbor network was the most common choice, with other sampling 

approaches such as top-k intimacy sampling (Graph-BERT10). For example, in the graph 

transformer networks developed by Yun et al11, at each Graph Transformer Layer, only attentions 

from the nearest neighbors for the corresponding edge type was considered, and a convolution was 

performed across all nodes to learn the shared weights. In the point transformer model12 developed 

by Zhao et al for point-cloud data, the k-nearest neighbor network was used as the subgraph for 

attention learning. Dwivedi et al13 in the work for generalizing transformer networks to graphs, 

regarding large graphs, only local neighbors were used as subgraphs for attention learning. In the 

Unified Message Passaging Model (UniMP), Shi et al14 used a graph transformer layer with only 

nearest neighbors as the subgraph for attention learning. Besides the adaptation of Vaswani’s 



vanilla transformer, the UniMP model also used a convolution architecture similar to GCN and 

GAT, with the convolution across all nodes in a graph transformer layer, and with multiple 

transformer layers to gradually propagate node labels from distant nodes to the node of interest. 

SiGra can be considered as a typical graph transformer, as it uses similar architecture with the 

above graph transformer models. It qualifies the two hallmark characteristics: self-attention and 

the full connection of all nodes in each subgraph. The use of the nearest neighbor-based subgraphs 

in SiGra is also common in such transformer models as we discussed above. Moreover, positional 

encoding is optional but not necessary in transformers. Positional encoding is not a hallmark that 

distinguish transformers from GNNs. For example, Dwivedi et al15 used positional encoding in 

graph neural network models. As a graph transformer model, the other practical difference between 

SiGra and GAT is that SiGra uses the typical query-key-value structure for attentions, which is 

similar to most transformer models and different to GAT’s attention mechanism. 

 
• For the image layer, the name 'autoencoder' is also misleading. The input here is pixel vector 

and the output is gene expression not the image itself. 

Response: Thanks for the reviewer’s comment. We revised the name “autoencoder” to specific 

encoder-decoders, i.e., the imaging-based encoder-decoder (I-ED), the hybrid encoder-decoder 

(H-ED), and the transcriptomics-based encoder-decoder (G-ED). Related revisions were made in 

the manuscript (page 3, page 8). 

• Still for the image layer, the authors vectorize the images and concatenate them as input. As 

we know, learning shapes or other topological characters from vectorizing the images is 

suboptimal. Can the authors provide some insights to support their choice? Also, for each cell, 

fixed sized square images are extracted as input. Since different cells vary in their sizes, which 

means many images contain a significant portion of background even info from neighboring 

cells. I am curious why those extra (noisy) part of image information did not significant affect 

the performance of the model? More importantly, I am curious the contribution of image to the 

model performance some ablation studies to illustrate the contribution of image and spatial 

graph. 

Response: Thanks for the reviewer’s comment. 

The choice of vectorizing the multichannel images is a trade-off for generalizability, scalability, 

and computing time. SiGra trains the Image-Gene encoder-decoder for each new dataset instead 

of using a pre-trained image feature extractor. This makes SiGra generalizable to data generated 

from new tissue types and imaging data generated from samples staining by different protocols. 

Furthermore, single-cell spatial omics data fast evolves with large cell size, thus we prefer to use 

an Image-Gene encoder-decoder that can be trained efficiently. Besides our current choice, another 

option is to use a Visual Geometry Group (VGG) model. However, training a new VGG model for 

new datasets is computationally challenging and not practical for general users. Using pre-trained 

VGG models is also suboptimal, since such VGG models are pre-trained for natural object 

classification and are not optimized for extracting cell morphology features from IHC images. 

Therefore, we have decided to use a simpler image feature extractor via vectorization of each 

image and concatenation of images from multiple channels so that the Image-Gene encoder-

decoder can be trained tailored and efficiently for new datasets. 



The size of the square images is intentionally selected to cover the boundary regions of neighboring 

cells. The rationale is that the morphologies of both the cell of interest and its neighbors at the cell-

cell interaction areas provide important biological information of both cell types and cell functions, 

and thus should be extracted into the SiGra model. For example, for a tumor-associated fibroblast 

infiltrating into the tumor region, the morphology of a neighboring tumor cell at the boundary 

region provides biological clues of the fibroblast-tumor interaction. Another option, as what 

MUSE does, is to use a cell mask to only include image contents within the identified cell body. 

We did not use this solution as it missed the important morphology information described above. 

Another concern is, using a cell mask will make the model very sensitive to cell segmentation 

results. This concern is even more noteworthy for cells with irregular boundary outlines, such as 

elongated fibroblasts, and in this case, cell segmentation is not accurate and challenging. 

Therefore, SiGra directly uses fixed sized square images that are not affected by the accuracy of 

cell segmentations. In summary, including the boundary regions of neighboring cells captures 

crucial biological information, as well as the direct use of the image information without relying 

on cell segmentations, allows SiGra obtaining robust and superior performance. 

In the revised manuscript, we added ablation study to investigate the contributions of 

transcriptomics-based encoder-decoder (G-ED), imaging-based encoder-decoder (I-ED), as well 

as the hybrid encoder-decoder (H-ED), respectively. Here we presented the performance of three 

ablated models, with only one encoder-decoder in each model. As shown in the figure below: 

1) NanoString CosMx SMI. We first evaluated the adjusted rand index (ARI) scores achieved by 

the ablated models on the NanoString profiled lung cancer tissue slice. SiGra obtained the best 

ARI’s across all 20 field-of-views (FOVs) (median ARI: 0.59) than the other ablated models. The 

hybrid encoder-decoder (H-ED) and the I-ED presented lower ARI scores with median values as 

0.34 and 0.24. Specifically, for FOV 9, I-ED reached comparable ARI (ARI: 0.41) with G-ED 

(ARI: 0.40). 2) 10x Visium. Then we evaluated the ARI scores achieved by the ablated models 

across the 12 dorsolateral prefrontal cortex (DLPFC) slices. SiGra obtained the highest ARI in all 

slices (median ARI: 0.57). The H-ED and I-ED presented lower median ARI scores of 0.33 and 

0.25. Specifically, in slice 151675, I-ED obtained comparable ARI (ARI: 0.34) with G-ED (ARI: 

0.38). In the other slices including 151509 and 151510, I-AE and G-AE also obtained similar ARIs. 

These results show that the image-based encoder-decoder (I-ED) indeed contributes to the SiGra 

model. Related revisions were made in the manuscript (page 9) and Supplementary Note 6. 

 



• In Fig2, the authors used the cell label produced by He et al. as ground truth. However, 

according the paper, Cell type was determined by comparing individual cells' expression 

profiles to reference profiles for different cell types (scRNA-seq and bulk RNA-seq of  sorted 

blood and stroma databases), assigning each cell to the cell type under which its profile was 

most likely. The likelihood was defined using a negative binomial distribution, with mean 

defined by a cell type's reference profile plus expected background, and with a size parameter 

set at 10 to allow for extensive overdispersion. Namely, they used an likelihood based method 

to general cell labels. It is not ideal to treat those label as ground truth. Also, there are 8 slides 

in the CosMX website, can the author also include the result for the other 7 slides. 

Response: Thanks for the reviewer’s comment. 

1) We did agree that the likelihood-based inference of cell types was not ideal as ground truth. 

Though some cells might be mistakenly labeled, it still provided reasonable and mostly likely 

cell identities on the spatial slide. For instance, tumor cells would not possibly be mistakenly 

identified as immune cells, or vice versa. As shown in our Fig. 2, SiGra provided very clear 

and accurate separation of tumor and immune cells, whereas other methods even failed to 

clearly distinguish such cell types. 

2) Moreover, considering the likelihood-based inference of cell types might not be accurate for 

the identity of each individual cell, here we used the domain-based strategy to evaluate each 

method’s performance. That is, given the heterogenous cells existing in the lung cancer spatial 

slice, we tried to interrogate the spatial domains that consisted of mixed cell types. Such spatial 

domains would provide a macro perspective focusing on the major cell population rather than 

delving into individual cell, which made it minimally affected by the accuracy of the identities 

of a few individual cells. 

To reveal the spatial domains in the single-cell spatial data, we used a sliding circular window 

approach to summarize the heterogenous cells. This approach has been well-established in 

spatial data analysis of geographical information systems (GIS) data2,3 and has recently been 

used for revealing spatial domains in single-cell spatial data (for example, SSAM4 by Park et 

al.). Specifically, the SiGra clustering results (cell types) were summarized by a circular 

window of diameter 𝑑 sliding at both 𝑥 and 𝑦 directions across the whole image with a given 

stride length 𝑠 . At each stop 𝐶𝑖,𝑗  with the coordinate (𝑥𝑖 , 𝑦𝑗) , a vector 𝑐𝑖,𝑗 ≡ [𝑞1, … , 𝑞𝑡] 

representing the proportions of the SiGra identified clusters (𝑡) covered by the sliding window 

was calculated. All the stops {𝐶𝑖.𝑗}  were recursively merged to 𝑘  groups {𝑎1, … , 𝑎𝑘}  by 

hierarchical clustering according to the cluster proportion vectors {𝑐𝑖.𝑗}. These agglomerated 

groups were defined as the discovered spatial domains. The original slide image was then 

labeled with the discovered spatial domains according to the coordinate of each stop. In this 

way, we obtained the spatial domains based on the heterogenous cells identified on the spatial 

slice. The window radius 𝑑 used in our work was 100μm, which was consistent with the 10x 

Visium spatial resolution, with the stride 𝑠 as 10μm. 

As shown in the figure below, the ground truth of the anatomic spatial domains of the 

NanoString CosMx lung cancer slide was provided by a certificated pathologist at Indiana 

University Health, Dr. Tieying Hou, according to the IHC images. Specifically, three spatial 



domains were identified by Dr. Hou: the tumor region (green), the desmoplasia region (red), 

and the adjacent normal region (orange). For fair comparisons with other methods, the same 

sliding window agglomeration approach was used. Compared with this ground truth, SiGra 

achieved an ARI of 0.60, better than other methods including BayesSpace (ARI: 0.25), 

spaGCN (ARI: 0.10), Seurat (ARI: 0.10), stLearn (ARI: 0.10), and scanpy (ARI: 0.17). These 

results showed that SiGra outperformed current existing methods in obtaining reliable spatial 

regions. 

 
 

3) Here we also provided the results for the other 7 slides.  

We included all 8 lung cancer slices and evaluated the ARI scores achieved by different 

methods. As shown in the figure below, across all slides, SiGra obtained higher ARI (median 

ARI: 0.51) than the other methods, including stLearn (median ARI: 0.42), SpaGCN (median 



ARI: 0.25), and BayesSpace (median ARI: 0.27). In the slice of lung-6 patient, SiGra achieved 

much better ARI (ARI = 0.7) than competitors. These results showed that SiGra outperformed 

the other methods in accurately recognizing cells in single-cell spatial data. In addition, we 

also visualized the spatial figures of SiGra based on the three slices of lung-5 patients. Related 

revisions were made in the manuscript (page 9) and Supplementary Note 6. 

 

 



• I also notice that the authors did not include STAGATE for performance comparison 

(Deciphering spatial domains from spatially resolved transcriptomics with adaptive graph 

attention auto-encoder.) Can the authors also include STAGATE? 

Response: Thanks for the reviewer’s comment. We included STAGATE and compared with it 

comprehensively, including using 1) simulation data, 2) 10x Visium data, and 3) the 8 NanoString 

CosMx lung cancer slices. Related revisions were made in the manuscript (page 9) and 

Supplementary Note 6. 

1) Simulation data 

Here we performed the simulation comparisons based on the simulation design of MUSE16. The 

simulation data were generated with spatial locations for each domain. 

Details of simulation steps were as follows: 

i. First, we generated the ground truth of domain regions 𝑙 ∈ {1, 2, … , 𝐿}, and 𝐾 different cell 

types, where 𝐿 was the number of domain layers and 𝐾 was the number of cell types (𝐾 ≥ 𝐿). 

Each domain was a spatial rectangle region 𝑅𝑙 = {(𝑟𝑥, 𝑟𝑦); 𝑠𝑥0 < 𝑟𝑥 < 𝑠𝑥1, 𝑠𝑦0 < 𝑟𝑦 < 𝑠𝑦1}. 

In each domain, we assigned a dominating/major cell type and several other cell types scattered 

and mixed with the major one in this spatial region. For each cell, we randomly generated its 

spatial coordinate (𝑠𝑥, 𝑠𝑦 ), where 𝑠𝑥0 < 𝑠𝑥 < 𝑠𝑥1, 𝑠𝑦0 < 𝑠𝑦 < 𝑠𝑦1 . Here we simulated four 

spatial regions:  𝑅1 = {c-1, c-5, c-6}, 𝑅2 = {c-2}, 𝑅3 = {c-3, c-7, c-8}, 𝑅4 = {c-4, c-9}. The 

dominating cell types c-1 in 𝑅1, c-2 in 𝑅2, c-3 in 𝑅3, and c-4 in 𝑅4 had more cell numbers than 

the other cell types {c-5, c-6, c-7, c-8, c-9}. For each dominating cell type, we generated 1,000 

cells in their respective spatial region. For the other mixed cell types, we generated 300 cells 

respectively. 

ii. Next, the latent representations of gene expression and morphology images features: 𝑍𝐺 , 𝑍𝐼 

(𝑍𝐺 ∈ 𝑅𝑚,  𝑍𝐼 ∈ 𝑅𝑚), were generated following the design of MUSE, where 𝑚 was the size 

of the latent dimension. That is, for either 𝑍𝐺  or 𝑍𝐼, the latent representations 𝑍𝑖, of the 𝑖-th cell 

was simulated using a multivariable normal distribution: 𝑍𝑖 ~ ∑ 𝜋𝑙,𝑖𝑀𝑉𝑁(𝜇𝑙 , Σ𝑙)𝐿
𝑙 , where 𝐿 

was the total number of the domain regions (𝐿 = 4). If cell 𝑖 belonged to the 𝑙-th domain, then 

𝜋𝑙,𝑖 =1, otherwise 𝜋𝑙,𝑖 =0. 𝜇𝑙 ∈ 𝑅𝑚 was sampled from a uniform distribution with Σ𝑙 ∈ 𝑅𝑚×𝑚 

the identity matrix. Note that the latent gene features 𝑍𝐺  and latent image features 𝑍𝐼  were 

generated separately, that is: 

𝑍𝑖𝐺  ~ ∑ 𝜋𝑙,𝑖𝑀𝑉𝑁(𝜇𝑙𝐺 , Σ𝑙𝐺)𝐿
𝑙 ; 𝑍𝑖𝐼  ~ ∑ 𝜋𝑙,𝑖𝑀𝑉𝑁(𝜇𝑙𝐼 , Σ𝑙𝐼)𝐿

𝑙  

iii. The raw gene expression and image features were then generated by a linear transformation by 

𝑋𝐺 = 𝐴𝐺𝑍𝐺 + 𝛿 and 𝑋𝐼 = 𝐴𝐼𝑍𝐼 + 𝛿, where 𝐴 ∈ 𝑅𝑝×𝑚 was the random projection matrix from 

the uniform distribution between [-0.5, 0.5]. 𝛿 was the gaussian noise sampled from 𝑁(0, 𝜎2). 

With additional dropouts added as below, the input/raw gene expression 𝑋𝐺
′  and image features 

𝑋𝐼
′ were obtained: 

𝑋𝐺
′ =  𝑋𝐺𝟏[exp(−𝛼𝐺𝑋𝐺) < 𝜂𝐺]; 𝑋𝐼

′ =  𝑋𝐼𝟏[exp(−𝛼𝐼𝑋𝐼) < 𝜂𝐼] 



, where 𝟏[. ] was the indicator function, which returned 1 if the argument was true, otherwise 

returns 0. 𝛼 was the decay coefficient that controlled dropout levels and 𝜂 was the random 

value sampled from the uniform distribution between [0,1]. 

With the simulated data 𝑋𝐺
′  and 𝑋𝐼

′ , we used them as input for simulation experiments and 

benchmarking. For fair comparisons, we follow the default settings in STAGATE. Herein, we 

generated simulation data including both gene-based and image-based features. We chose three 

settings with different dropout levels for data generation, i.e., 𝛼 as 0.2, 0.3, and 0.4. 

 
 



As shown in the figure above, when 𝛼 = 0.2, the generated data was visualized in Figure a. As 

described above, the spatial data consists of four spatial regions, where each of them was 

dominated by one major cell type and mixed with other cell types. Meanwhile, the gene-based 

features and image-based features were shown to contribute to spatial domain identification at 

certain levels, with ARI as 0.54 and 0.40 respectively. SiGra achieved higher ARI (ARI: 0.71) 

with much more accurate spatial domains than STAGATE (ARI: 0.58). For 𝛼 = 0.3 (Figure b), 

similarly four spatial domains were generated, with both gene-based features and image-based 

features contributed to spatial domain identification (ARI: 0.69, 0.60) respectively. Nevertheless, 

STAGATE only obtained ARI as 0.61, which was lower than SiGra (ARI: 0.76). When 𝛼 = 0.4 

(Figure c), SiGra maintained more accurate (ARI: 0.77) than STAGATE (ARI: 0.63) in revealing 

spatial domains. 

 

In addition, for each setting, i.e., the dropout levels 𝛼  is 0.2, 0.3, and 0.4, we generated 10 

replicated simulation data and obtained the boxplot of ARI scores for gene-only, image-only, 

STAGATE, and SiGra, respectively. As shown in the figure below, SiGra reached much higher 

ARI scores (median: 0.723) than STAGATE (median: 0.573) when the dropout levels 𝛼 = 0.2. 

When 𝛼 was 0.3 and 0.4, SiGra also presented higher ARI (median: 0.77; 0.78) than STAGATE 

(median: 0.60; 0.62). These simulation results showed that SiGra achieved more accurate 

identification of spatial regions through leveraging both gene-based information and image-based 

information. 

  

 

2) 10x Visium data 

As shown in the figure below, we evaluated the ARI scores achieved by different methods, 

specifically including STAGATE. Across all 12 DLPFC slices1, SiGra obtained higher ARI 

(median ARI: 0.57) than the other methods, including stLearn (median ARI: 0.39), SpaGCN 

(median ARI: 0.40), and BayesSpace (median ARI: 0.44). In contrast, STAGATE presented 

slightly lower ARI scores with median ARI as 0.49. On slice 151669, STAGATE obtained lowest 

ARI (ARI: 0.27), where SiGra achieved much better ARI (ARI: 0.49). These results showed that 

SiGra outperformed STAGATE in recognizing the organized brain structures. 



 

3) NanoString CosMx lung cancer slices 

We included all 8 lung cancer slices and evaluated the ARI scores achieved by different methods, 

specifically including STAGATE. As shown in the figure below, across all slices, SiGra obtained 

higher ARI (median ARI: 0.51) than the other methods, including stLearn (median ARI: 0.42), 

SpaGCN (median ARI: 0.25), and BayesSpace (median ARI: 0.27). In contrast, STAGATE 

presented much lower ARI scores with median ARI only as 0.22. For the slice of lung-6, 

STAGATE only obtained ARI around 0.1, whereas SiGra achieved much better ARI (ARI: 0.7). 

These results showed that SiGra outperformed STAGATE in recognizing single-cell spatial data. 

 



• For the L-R results in both Figures 3 and 4, can the authors also include some results to evaluate 

the potential false positive correlations generated by the algorithm using randomly selected 

two genes? Since SiGra integrates information from neighboring cells, I suspect it will also 

create some false correlation results. 

Response: Thanks for the reviewer’s comment. In the revised manuscript, we evaluated the 

potential false discoveries in the L-R associations using randomized control as suggested by the 

reviewer. Briefly, we assumed that randomly selected gene pairs from the SCST data were not 

likely associated and thus used as negative controls. By comparing with these negative controls, 

the false discovery rate of the selected L-R associations was estimated. Briefly, 10,000 gene pairs 

were randomly selected, and the corresponding Pearson correlations were calculated as negative 

control. For each of the L-R pair examined, we estimated the false discovery rate and updated Fig. 

3 and Fig. 4 accordingly using the FDR values based on the negative controls instead of the Pearson 

correlations. 

For the NanoString CosMx non-small cell lung cancer dataset (Fig. 3), as shown in the Figure a 

below, the y-axis and x-axis referred to the FDR values of each L-R pair in the enhanced and raw 

data respectively. Across the total 660 L-R interactions, 55 L-R pairs from the enhanced data were 

statistically significant (FDR < 0.05), whereas 42 L-R pairs from the raw data had FDR < 0.05. 

There were 28 L-R pairs shared between enhanced data and raw data, indicating enhanced data 

preserved useful information of raw data. In addition, 27 specific L-R interactions were identified 

from the enhanced data, while 14 specific L-R interactions were found in the raw data. We further 

investigated whether these specific L-R interactions pairs were similar with the shared L-R pairs. 

For those significant L-R pairs identified from the enhanced data, there were no significant 

difference between the specific and shared L-R pairs (Figure b), suggesting that both had similar 

probability of being true associated L-R pairs. In contrast, the raw-specific L-R pairs were 

statistically different from the shared L-R pairs (Figure c), suggesting that the raw-specific pairs 

were more likely to be false discoveries than the shared L-R pairs. These results indicated that the 

enhanced data not only enabled to detect more L-R interactions than the raw data, but also the 

identified L-R pairs were more likely to be true discoveries than those specifically detected in raw 

data. The data enhancement using SiGra not only improved the sensitivity of L-R interaction 

detection (identifying more L-R pairs), but also preserved the specificity (the specifically identified 

L-R pairs that had similar statistical significance as the shared L-R pairs). 



 

For the Vizgen MERSCOPE mouse liver dataset (Fig. 4), as shown in the figure below, the y-axis 

and x-axis referred to the FDR values of each L-R pair in the enhanced and raw data respectively. 

Among the 64 L-R pairs identified in this dataset, 13 L-R pairs from the enhanced data were 

statistically significant (FDR < 0.05), whereas 12 L-R pairs from the raw data had FDR < 0.05. 

There were 9 L-R pairs shared between the enhanced and the raw data, indicating the enhanced 

data preserved useful information of the raw data. In addition, enhanced data had 4 specific L-R 

interactions, while raw data had 3 specific L-R interactions. We further examined the L-R 

interactions specifically identified from the enhanced and the raw data, respectively, using the bulk 

RNA-seq data from the Tabula Muris Consortium7 as the validation dataset. The 4 L-R pairs 

specifically identified from the enhanced data also presented strong correlations in the validation 

dataset (Wnt2-Fzd4: 0.581; Pkm-Cd44: 0.885; Col1a2-Itga2b: 0.641; Dll1-Notch2: 0.798). 

However, the raw-specific L-R pairs showed low correlations in bulk data (Fgf1-Egfr: 0.386; 

Timp3-Kdr: 0.498; Jag1-Notch1: 0.115). These results indicated that those raw-specific L-R pairs 

were more likely to be false discoveries, which could result from noises and the low data quality 

in the raw data. Therefore, SiGra improved both the sensitivity (more identified L-R pairs) and the 

specificity (more true discoveries) for the detection of L-R interactions. 

 



 

Minor concerns: 

 

• For Fig3 A, why the tumor cells are not included? 

Response: Thanks for the reviewer’s comment. For visualization clarity, tumor cells were not 

shown in Fig. 3a. We have the tumor cells included in the UMAP at the Supplementary Fig. 1b. 

 

• In Fig 4, the authors claim 'For example, Cd34 and Vwf show scattered false signal....'. Do 

the authors have any evidence to support this claim that the expression of Cd34 and Vwf on 

those cells are false? 

Response: Thanks for the reviewer’s comment. In the liver tissue, Vwf is restrictively expressed 

in endothelia cells and megakaryocytes, but not in other cell types17,18. Mature megakaryocytes are 

located near blood vessels in the liver tissue19. Therefore, the expression pattern of Vwf in the liver 

tissue (Supplementary Fig. 2d) should be aligned with the blood vessels. Cd34 expression in 

healthy liver tissue mainly expressed in the liver sinusoidal endothelial cells20 and also aligned 

well with blood vessels in healthy livers. Cd34 is more likely to show in the other regions during 

the pathologic capillarization in cirrhosis and other cases. Therefore, the Vwf expression outside 

the vessel regions in the liver tissue is likely to be the false signals. The expression of Cd34 away 

from the vessel regions in healthy liver tissue is also questionable. 

 

 

  



Reviewer #3 (Remarks to the Author): 
 

I had the chance to review an interesting manuscript that describes a new technique for the 

improved assessment of spatial transcriptomic data. Single-cell spatial elucidation through image-

augmented GRAph transformer (SiGra) incorporates multi-modal spatial features in a more 

effective manner – using graph transformer autoencoders with attention mechanism – and 

improves the limits that raw data faces to decipher spatial domains. SiGra is reportedly one of the 

first methods to utilize multi-channel images in a highly effective manner (true?). 

 

SiGra is benchmarked and compared to other methods of analysis, namely Seurat v4, Scanpy, 

stLearn, SpaGCN, and BayesSpaces based on previously published datasets published using 

NanoString CosMx SMI, MERSCOPE, and 10X Visium. 

 

While the study appears for the most part rigorously executed and analyzed - personally, I am 

convinced that it is worth trying SiGra – at this point most of the results represent rather indirect 

evidence that SiGra is indeed superior in unraveling new and important biological mechanisms. 

 

More direct evidence including some experimental validation for their claims is required to justify 

publication. 
 

1) The results in the DLPFC in this study must be carefully compared to Maynard et al., 2021 – 

who used gene-level statistics from both layer-specific versus cell type-specific expression profiles 

for “spatial registration” in their study. What about HPCAL1, KRT17 and TRABD2A or Lam5, 

AQP4 and FREM3 (c.f., Maynard et al., 2021). 

Response: Thanks for the reviewer’s comment. Based on the results of DLPFC in our study, here 

we carefully compared the layer-enriched gene markers (HPCAL1, KRT17, TRABD2A, LAMP5, 

AQP4, FREM3) in our enhanced data with the original study1 (Maynard et al., 2021). Specifically, 

we performed the exact statistical analysis in Maynard et al 2021 (“Layer-level gene modeling” 

and fit ‘Enrichment’ and ‘Pairwise’ models) using the enhanced data obtained by SiGra. The 

variations of gene expressions across layers were examined by two statistical models: 1) The 

‘Enrichment’ model. Layer-level summarized gene expression result was first fitted using the 

lmFit and eBayes function from the R package “limma” (version 3.16), after being blocked by the 

six pairs of spatially adjacent replicates and taking this correlation into account as computed by 

duplicateCorrelation. Then the Student’s t-test statistics was used to compare each layer against 

the other six using the layer-level data. This resulted in seven sets of Student’s t-test statistics (one 

per layer) with double-sided P values. We focused on genes with positive Student’s t-test statistics 

(expressed higher in one layer against the others) because these are enriched genes rather than 

depleted genes. 2) The ‘Pairwise’ model used the same “limma” functions for data processing and 

taking into account the same correlation structure in addition to using the contrasts.fit function 

provided by “limma”. Then we also computed the Student’s t-test statistics for each pair of layers. 

The Student’s t-test statistics with double-sided P values for both ‘Enrichment’ model and 

‘Pairwise’ model were provided in Supplementary Table 3.  

Below we showed the layer level differential expression statistics based on the ‘enrichment’ model. 

Our analysis showed that the SiGra enhanced data showed consistent results with the original 

study1 (Maynard et al., 2021). Full details were provided in Supplementary Table 3. 



 

 
 

 

2) SiGra identifies RELN40 in L1– but the cited paper seems to refer to temporal lobe and not 

DLPFC. Experimental validation is mandatory to validate these claims. 

Response: Thanks for the reviewer’s comment. In the Maynard et al., 2021 (Extended Data Fig. 

7), smFISH was used for validation of L1-marker gene RELN. We copied the figure here for the 

convenience of the reviewer. In the panel a, RELN was highly expressed in L1 in the 10x Visium 

data. In the second column in panel c, expression of RELN in L1 was validated by smFISH.  

 

We also carefully compared the RELN gene in our enhanced data with the original study1 

(Maynard et al., 2021), which showed that RELN was strongly enriched in the Layer 1 in the 

enhanced data (Supplementary Table 3). Below was the layer level differential expression statistics 

of RELN based on the ‘enrichment’ model. 

 

Based on enhanced data

t_stat_WM t_stat_Layer1 t_stat_Layer2 t_stat_Layer3 t_stat_Layer4 t_stat_Layer5 t_stat_Layer6

HPCAL1 -2.515415588 0.763348864 10.80973528 3.068050458 -2.740346896 -3.342613857 -1.006971103

KRT17 1.816446153 -2.616930966 -2.250056669 -3.502730791 -2.286232486 1.243251049 9.282056344

TRABD2A -2.755949326 -1.582496736 -1.974004787 -2.089077109 1.065539817 13.09728313 -0.750503267

LAMP5 -3.676577066 1.353341098 7.26752965 2.67446215 -0.581769987 -2.015316293 -2.46167612

AQP4 3.9241445 5.809015348 -0.502858256 -2.228436465 -2.713284886 -1.93252492 -0.533701576

FREM3 -2.554736235 -0.429435062 4.048191737 6.161544982 -0.796887497 -1.810476872 -2.842155662

Based on raw data (from Table S4 in Maynard et al., 2021)

t_stat_WM t_stat_Layer1 t_stat_Layer2 t_stat_Layer3 t_stat_Layer4 t_stat_Layer5 t_stat_Layer6

HPCAL1 -0.53214124 2.405065728 7.493447127 2.683311804 -4.081521288 -4.75055217 -0.845880986

KRT17 3.772136374 -2.453251903 -3.680479024 -4.132595657 -1.748237198 0.818820557 8.163120915

TRABD2A -2.64674483 -1.02426376 -2.48564806 -1.32784384 1.636915534 8.198143596 -0.909222759

LAMP5 -3.995902629 2.932309431 6.740330171 2.926794549 0.253117241 -3.213691777 -3.376587143

AQP4 4.656646017 7.400647951 -1.009003858 -2.35501217 -3.696268588 -2.265381578 -0.115625687

FREM3 -5.132015759 1.190078713 3.637180776 5.369101063 0.20354803 -1.477185956 -2.815199561

Based on enhanced data

t_stat_WM t_stat_Layer1 t_stat_Layer2 t_stat_Layer3 t_stat_Layer4 t_stat_Layer5 t_stat_Layer6

RELN -2.110680649 10.89659487 3.500784037 -0.501608148 -1.640299621 -1.759342543 -2.554834864

Based on raw data (from Table S4 in Maynard et al., 2021)

t_stat_WM t_stat_Layer1 t_stat_Layer2 t_stat_Layer3 t_stat_Layer4 t_stat_Layer5 t_stat_Layer6

RELN -2.636294906 9.62252324 3.096709323 0.381993222 -1.107599463 -1.774237554 -3.021050124



3) The authors show that e.g., BayesSpace misidentifies the neutrophile as lymphocytes, 

meanwhile, it incorrectly identifies some tumor cells as myeloid cells or neutrophile. Seurat fails 

to disentangle epithelial cells from tumor cells... What type of errors is SiGra making when 

compared to ground truth? 

Response: Thanks for the reviewer’s comment. When comparing with the provider-labeled cell 

types, the major difference is that some cells labeled as myeloid cells (Mcell) are in SiGra’s 

neutrophil cluster. This is possibly due to that neutrophils belong to the myeloid cell lineage and 

thus the gene expression patterns of some myeloid cells are similar to neutrophils. 

 

4) Is the extend of lipofuscin and autofluorescence affecting the performance of SiGra? 

Response: Thanks for the reviewer’s comment. Lipofuscin accumulates in brain tissues during 

aging or under pathologic conditions, and forms plaques of around 10µm21. Such lipofuscin 

plaques emit autofluorescence signals across major florescent channels used in single cell spatial 

images. To examine if the extend of lipofuscin and autofluorescence would affect the performance 

of SiGra, we randomly overlaid simulated autofluorescence signals from plaques of 10µm-by-

10µm to all channels in the original image data. The autofluorescence signal intensity was 

simulated by signals following normal distribution with mean as 10, 20, and 40, respectively. The 

figure below showed the zoomed-in figures of the images with added lipofuscin autofluorescence 

signals. The simulated lipofuscin autofluorescence slightly undermined SiGra’s performance, 

from the original ARI (ARI: 0.55) to 0.513 and 0.509, with the added mild (mean signal: 10) or 

significant (mean signal: 20) autofluorescence signals, respectively. Of note, when the 

autofluorescence signals was overwhelming (mean signal of 40), the performance of SiGra 

dropped to 0.41. This simulation experiment suggested that under common experimental 

conditions, the lipofuscin autofluorescence or other types of autofluorescence would not 

significantly affect the SiGra performance. 

Related revisions were made in our revised manuscript (page 7) and Supplementary Note 4. 



 
 

5) Incidentally, I wonder whether SiGra could also help addressing inconsistencies in dissections 

(specifically considering gyrification of the human cortex). Could this even be a concern when 

using SiGra? 

Response: Thanks for the reviewer’s comment. The performance of SiGra is examined at different 

regions of the brain cortex gyrification. The 12 DLPFC slices spanned different gyrus regions. 

Specifically, the slices 151673, 151674, 151675, and 151676 represent both the gyrus and the 

sulcus regions, slides 151507, 151508, 151509, and 151510 represent the bottom of the sulcus 

region. SiGra achieves better performance than other methods in identifying the spatial domains 

across different dissections of the brain cortex gyrification. 

 

6) In figure 6 only 2 of the 12 slices are shown. Please provide criteria for selecting these slices 

out of the 12. 

Response: We appreciate the reviewer’s comment. We provided all slices with their results below 

and also in our Supplementary Fig. 3. 





 
 

 

Some additional minor points: 

- All abbreviations should be explained when used first in the manuscript. 

Response: Thanks for the reviewer’s comment. We added full names and explained every 

abbreviation when first used in the manuscript. 

 

- Reference 2 and 42 are identical 

Response: Thanks for the reviewer’s comment. We have revised the references accordingly. 
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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author)

This revised version is improved with additional evaluations as compared to the original one. 

However, some main concerns still need to be addressed with satisfaction. 

1. Regarding my previous comment 1, the authors provided an additional ablation study to test 

how different model structures affect the performance of SiGra. The ablation study is superficial as 

it only focuses on finding one setting that achieves the highest ARI for the benchmarking dataset. 

No insight into the model structure is provided. Since three autoencoders are used, how does the 

attention mechanism balance outputs from the three autoencoders? Is there any detected spatial 

domain defined by gene expression or image, or both? 

Is there any spatial domain that can only be revealed by combining gene expression and image? 

These questions are essential for users to understand the pros and cons of SiGra, but remain 

unanswered. 

The ablation study focuses on selecting the model structure that has the highest ARI on the 

benchmarking data, which is problematic. Over-finetuning on a single dataset may lead to 

inaccurate conclusions. For example, when comparing the image-to-image autoencoder and 

image-to-gene autoencoder, the authors analyzed human dorsolateral prefrontal cortex data, and 

they concluded that the image-to-gene autoencoder is more informative than the image-to-gene 

autoencoder in spatial domain detection. I was not surprised to see that the image features play a 

less important role than gene expression in this dataset as the histology image in this dataset is 

not informative as other datasets - the brain layers cannot be a clearly distinguished on the image. 

However, this conclusion does not necessarily hold for other datasets complemented by 

informative histology images, and the author may find image features more informative than gene 

expression. 

2. Regarding my previous comment 2, the authors showed that the value of many parameters in 

SiGra (λ1, λ2, D1, D2) are determined by a grid search approach. Different parameters are 

selected for data generated using different techniques to ensure the best performance in 

benchmarking. This approach limits the usefulness of SiGra as its parameter search requires the 

ground truth label for supervision. In addition, one set of parameters that achieves the highest ARI 

in the benchmarking dataset does not guarantee good performance on the others. The robustness 

of SiGra is a concern. 

My overall feeling is that SiGra is a complex but ad hoc model with a number of changeable 

parameters. The model's performance is sensitive to the choice of these parameters, and the 

values of these parameters are determined by a cherry-picking strategy using the benchmarking 

dataset with limited scientific consideration. This limitation makes SiGra hard to use in practice. 

3. Regarding my previous comment 4, the response is not satisfactory and dismissive. "Cell type" 

and "spatial region" are two distinct concepts. It is incorrect and misleading to call "cell types" 

"spatial regions at the cellular level." I insist that comparing the predicted spatial domains from 

SiGra and other methods using annotated cell types as the ground truth is incorrect. 

The authors also used a moving window to transform SiGra's cell type prediction into spatial 

regions and compared it with other methods for spatial region detection. This is an unfair 

comparison because 1) other methods are developed for spot-level ST data while single-cell data 

are provided as input; 2) the moving window agglomeration approach is only used in SiGra while 

other methods are not. I do not think this NanoString dataset is suitable for evaluating spatial 

region detection. 

4. Regarding my previous comment 6, the evaluation of L-R is still not convincing. No concrete 

evidence is provided to show whether the L-R association detected from SiGra-enhanced data are 

true biological interactions or not. The authors only showed more L-R can be identified using 

enhanced data, and the enhanced-specific LR has slightly smaller FDRs than the raw-specific L-R, 



although they are all significant. However, smaller FED does not necessarily mean the SiGra-

enhanced data can better identify true biological interactions. More is not always better, and this is 

the core of my criticism: a "biased" method can amplify a signal in a biased way under the hood, 

leading to any number of downstream discoveries. 

Reviewer #2 (Remarks to the Author)

The authors have addressed most of my concerns, but there are still some minor concerns as 

follows: 

1. Regarding the terminology of \textit{graph transformer convolutional layer}, I respect the 

authors interpretation. However, based on our understanding, the main difference between Sigra's 

"graph transformer" and graph attention networks lies in the attention mechanism. Sigra uses 

multiplicative attention, while GAT uses concat attention, which is a variant of additive attention. 

However, as mentioned in a survey \cite{niu2021review}, concat attention has been shown to be 

more effective than multiplicative attention in several studies, despite its higher computational 

cost. However, GAT chooses concat attention because the sparse structure of graphs allows for a 

performance-computation trade-off. Therefore, it is reasonable to conclude that GAT is a highly 

specialized model for graph data and is extremely similar to Sigra. Due to the similarity and 

complete of literature, I will recommend to cite GAT. 

2. The claim of ulitizing 'multi-channel images of cell morphology...' is kind of overstated, because 

vectorizing the image with fixed size containing multiple cells and possible some holes will not 

guarantee to learn and capture the morphology information. More evidences, such as the shape or 

other related morphology features, need to be shown to support this claim. 

Reviewer #3 (Remarks to the Author)

The authors have made great effort in answering my questions and concerns from the previous 

round of review. My questions have been well resolved.



RESPONSE TO REVIEWERS' COMMENTS 

 

Reviewer #1 

 

This revised version is improved with additional evaluations as compared to the original one. 

However, some main concerns still need to be addressed with satisfaction. 

 

1. Regarding my previous comment 1, the authors provided an additional ablation study to test 

how  different  model  structures  affect  the  performance  of  SiGra.  The  ablation  study  is 

superficial  as  it  only  focuses  on  finding  one  setting  that  achieves  the  highest  ARI  for  the 

benchmarking  dataset.  No  insight  into  the  model  structure  is  provided.  Since  three 

autoencoders  are  used,  how  does  the  attention  mechanism  balance  outputs  from  the  three 

autoencoders? Is there any detected spatial domain defined by gene expression or image, or 

both?  

Is there any spatial domain that can only be revealed by combining gene expression and image? 

These questions are essential for users to understand the pros and cons of SiGra, but remain 

unanswered. 

Response:  Thanks  for  the  reviewer’s  suggestions.  In  our  revision,  we  performed  structural 

ablation analysis and visualized the results (Supplementary Fig. 7b).  These results provide 

compelling  evidence  that  our  model's  architecture  is  well  designed,  with  each  component 

serving a crucial role and exhibiting a synergistic effect. Notably, removing any component 

from  the  model  leads  to  a  significant  decline  in  performance,  further  emphasizing  the 

indispensability of each element. 

Besides the ARI score, we further illustrate the contributions of the three encoder-decoders to 

the detected spatial domain using slice 151507 (Fig. 5b). As demonstrated in the following 

figure: 

 

 

• The image-to-image auto-encoder (I-AE) alone can only partially identify the Layer 1 

and the White Matter region. The Layer 2/3,4,5,6 region is false detected as two major 

regions (left: purple; right: green). 

• The image-to-gene encoder-decoder (I-ED) provides more accurate detection in Layer 

1 and White Matter region. However, the two falsely detected regions by the I-AE 

model also appear here. 

• The gene-to-gene encoder-decoder (G-ED) model detects most layers, with the Layer 

4 and the Layer 6 missing. 



• The hybrid encoder-decoder (H-ED) model partially identifies the Layer 2, but still 

missed the Layer 4 and the Layer 6. However, H-ED falsely detects three regions 

(labeled as two thin red regions adjacent to Layer 1). Meanwhile, the Layer 2 region is 

detected without clear boundaries. 

• The SiGra model successfully identifies all regions except a small Layer3 region on the 

top-right corner. Moreover, the regions Layer 4 and Layer 6 can only be detected in 

SiGra. 

These results suggest that the superior performance of the SiGra model is not due to the linear 

addition of the contributions of the image-based models (I-ED) and the gene-based models (G-

ED). The simple integration of the image and the gene information by the H-ED model does 

not achieve better performance. Meanwhile, in the SiGra model, the image information and the 

gene expression information demonstrate strong synergy: spatial domains (Layer 4 and Layer 

6) that are not identified in either the image-based model (I-AE and I-ED), or the gene-based 

models (G-ED), or the hybrid model (I-ED) can be identified by the SiGra model. 

These results further confirm the structure and architecture of the SiGra model is carefully 

designed. Missing any component (such as I-ED, G-ED, or H-ED) will dramatically undermine 

the performance of the SiGra model. 

The ablation study focuses on selecting the model structure that has the highest ARI on the 

benchmarking data, which is problematic. Over-finetuning on a single dataset may lead to 

inaccurate conclusions. For example, when comparing the image-to-image autoencoder and 

image-to-gene autoencoder, the authors analyzed human dorsolateral prefrontal cortex data, 

and they concluded that the image-to-gene autoencoder is more informative than the image to-

gene autoencoder in spatial domain detection. I was not surprised to see that the image features 

play a less important role than gene expression in this dataset as the histology image in this 

dataset is not informative as other datasets - the brain layers cannot be a clearly distinguished 

on the image. However, this conclusion does not necessarily hold for other datasets 

complemented by informative histology images, and the author may find image features more 

informative than gene expression. 

Response: Thanks for the reviewer’s comments. Here we provide the ablation results on 

additional new datasets. 

To investigate whether the model structure is over finetuned on DLPFC tissues, we further 

perform ablation analysis on additional datasets. Three 10x Visium datasets from cancer tissues 

are used, with pathologist’s annotation as ground truth. These datasets are: one prostate cancer 

(https://www.10xgenomics.com/resources/datasets/human-prostate-cancer-adenocarcinoma-

with-invasive-carcinoma-ffpe-1-standard-1-3-0) and two breast cancer tissue slices (BRCA-1, 

https://www.10xgenomics.com/resources/datasets/human-breast-cancer-ductal-carcinoma-in-

situ-invasive-carcinoma-ffpe-1-standard-1-3-0; BRCA-2, 

https://www.10xgenomics.com/resources/datasets/human-breast-cancer-block-a-section-1-1-

standard-1-0-0). In these tumor slices, the histology images may be more informative for 

spatial domains than DLPFC. Our results below further suggest that the SiGra model 

outperforms other designs on cancer datasets. 

• Prostate cancer 10x Visium dataset 

 

https://www.10xgenomics.com/resources/datasets/human-prostate-cancer-adenocarcinoma-with-invasive-carcinoma-ffpe-1-standard-1-3-0
https://www.10xgenomics.com/resources/datasets/human-prostate-cancer-adenocarcinoma-with-invasive-carcinoma-ffpe-1-standard-1-3-0
https://www.10xgenomics.com/resources/datasets/human-breast-cancer-block-a-section-1-1-standard-1-0-0
https://www.10xgenomics.com/resources/datasets/human-breast-cancer-block-a-section-1-1-standard-1-0-0


 
 

• BRCA-1 10x Visium dataset 

 

 

 

 

• BRCA-2 10x Visium dataset 



 
 

Our results indicate that the SiGra model remains the optimal and robust design on these cancer 

datasets. In contrast, the performance of ablated models is dataset specific. Specifically, for 

prostate cancer and BRCA-2, as the reviewer expected, images are more informative. 

Comparing with the gene-only models (G-ED, with ARIs of 0.38 and 0.16, respectively), the 

models that involve both image and gene show better performance (H-ED: 0.49 and 0.32; I-

ED: 0.44 and 0.31). For the BRAC-2 dataset, the image autoencoder (I-AE: ARI 0.28) 

outperforms the gene autoencoder (G-ED: ARI: 0.16). Meanwhile, on the BRAC-1 dataset, 

genes (G-ED: 0.35) contribute more than images (I-AE: 0.05, I-ED: 0.32) or the hybrid models 

(H-ED: 0.23). 

In summary, the SiGra model is a robust design that outperforms ablated models. The 

contribution of images and genes as well as the performance of other ablated models is dataset 

specific. These ablation results further support the generalizability of the SiGra model in 

identifying spatial domains. 

2. Regarding my previous comment 2, the authors showed that the value of many parameters 

in SiGra (λ1, λ2, D1, D2) are determined by a grid search approach. Different parameters are 

selected for data generated using different techniques to ensure the best performance in 

benchmarking. This approach limits the usefulness of SiGra as its parameter search requires 

the ground truth label for supervision. In addition, one set of parameters that achieves the 

highest ARI in the benchmarking dataset does not guarantee good performance on the others. 

The robustness of SiGra is a concern. 

My overall feeling is that SiGra is a complex but ad hoc model with a number of changeable 

parameters. The model's performance is sensitive to the choice of these parameters, and the 

values of these parameters are determined by a cherry-picking strategy using the benchmarking 

dataset with limited scientific consideration. This limitation makes SiGra hard to use in practice. 

Response: Thanks. We would like to address the reviewer’s comments in four aspects below. 

1) Generalizability and robustness of SiGra on additional datasets. 



We further demonstrated the robustness of the SiGra model on additional datasets with default 

hyperparameters. That is, users do not need to finetune the hyperparameters for their own 

datasets. 

Three 10x Visium datasets from prostate cancer 

(https://www.10xgenomics.com/resources/datasets/human-prostate-cancer-adenocarcinoma-

with-invasive-carcinoma-ffpe-1-standard-1-3-0) and breast cancer tissue slices (BRCA1, 

https://www.10xgenomics.com/resources/datasets/human-breast-cancer-ductal-carcinoma-in-

situ-invasive-carcinoma-ffpe-1-standard-1-3-0; BRCA2, 

https://www.10xgenomics.com/resources/datasets/human-breast-cancer-block-a-section-1-1-

standard-1-0-0) obtained from 10x Genomics website, are used to benchmark the performance 

of SiGra and competitors, with pathologist’s annotation as ground truth. 

 

• Prostate cancer 10x Visium dataset 

 

 

Three regions (tumor tissue, prostate tissue, and prostatic stroma) are identified and annotated 

by pathologist. Sigra (ARI: 0.70) outperforms the other four methods (Scanpy: 0.36, SpaGCN: 

0.40, stLearn: 0.52, Seurat: 0.48, and BayesSpace: 0.38). 

 

• BRCA-1 10x Visium dataset 

https://www.10xgenomics.com/resources/datasets/human-breast-cancer-block-a-section-1-1-standard-1-0-0
https://www.10xgenomics.com/resources/datasets/human-breast-cancer-block-a-section-1-1-standard-1-0-0


 

Four regions (tumor tissue, desmoplastic region, lymphocyte-enriched region, and the necrosis 

and hemorrhage region) are identified and annotated by pathologist. Sigra (ARI: 0.59) 

outperforms the other four methods (Scanpy: 0.55, SpaGCN: 0.48, stLearn: 0.38, Seurat: 0.57, 

and BayesSpace: 0.37). 

 

• BRCA-2 10x Visium dataset 

 



Three regions (tumor region, desmoplastic region, and lymphocyte-enriched region) are 

identified and annotated by pathologist. Sigra (ARI: 0.42) outperforms the other four methods 

(Scanpy: -0.10, SpaGCN: 0.15, stLearn: 0.29, Seurat: -0.09, and BayesSpace: -0.09). Codes 

for reproducing the results are available as Jupyter notebook at https://github.com/QSong-

github/SiGra/tree/main/Tutorials. 

Our results demonstrate that the SiGra model can be directly used on new datasets with default 

hyperparameters, and the performance is superior to competitors. Meanwhile, the SiGra model 

supports dataset-specific finetuning of the hyperparameters. This function is optional. 

2) Hyperparameter tuning does not use ground truth labels and does not use supervision.  

We would like to re-emphasize that the ground truth labels are not used in the hyperparameter 

search. Instead, the loss on the validation set (30% of the overall data) is used for choosing the 

hyperparameters (Supplementary Note 5). Here we re-post the text from the previous Response 

Letter with the corresponding contents highlighted: 

… 

We first performed coarse searches to identify the optimal parameter range for each 

data type, then used a grid-search approach for fine-tuning to determine the optimal 

values. The best options for the two parameters were chosen based on the loss 

evaluation on the validation set (30% of the overall data). 

… 

Similar to the selection of λ1 and λ2, we fine-tuned the dimensions (D1 and D2) of the 

1st and 2nd layers respectively, based on the loss obtained from the validation set (30% 

of the overall data). 

… 

3) The number of hyperparameters of SiGra model is modest.  

The complexity of SiGra is modest. Below we have compared the number of hyperparameters 

of SiGra with other state-of-art deep learning models for analyzing spatial and single-cell data. 

The comparisons are summarized in the following table: 

Model Number of 

hyperparameters 

Hyperparameters Journal and 

Years 

SiGra 4 λ1, λ2, D1, D2 N/A 

STAGATE1 4 Encoder layer number, Decoder layer 

number, latent dimension, the weight 

of cell type aware SNN 

Nature 

Communications, 

2022  

SpaGCN2 4  Scaling parameter s, characteristic 

length scale l, area of each spot b, 

percentage of contribution from 

neighborhoods p 

Nature Methods, 

2021 

scGNN3 10 Weights in loss: 𝛼, 𝛽,𝛾1, 𝛾2; k-

neighbors, LTMG intensity, type of 
LTMG, graph embedding type, 

Nature 

Communications, 

2021 



clustering methods, use of 
autoencoder 

MUSE4 5 𝜆𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 , 𝜆𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒 , latent 

dimension, cluster update interval, n 

neighbors     

Nature 

Biotechnology, 

2022 

4) Justifications of the model structure. 

The final architecture of the SiGra model was built through thoughtful designs and thorough 

testing of other optional architectures. In our original manuscript, we did not include the testing 

results that justify the current architecture, as well as the results for hyperparameters tuning. 

We would like to express our gratitude to the reviewer for highlighting the importance of 

presenting technical results. It is indeed crucial for the audience to comprehend the process of 

determining the final architecture and selecting the appropriate hyperparameters. After our 1st 

and 2nd revision, we hope that we have provided sufficient technical results to demonstrate that 

1) the model architecture is not ad hoc designed but is built through thorough and holistic 

testing; 2) each component significantly improves the model performance and thus necessary; 

3) SiGra outperforms competitors on the other additional datasets with hyperparameters 

determined by the previous benchmarking datasets, therefore, users do not necessarily have to 

further tune hyperparameters when applying SiGra to their new datasets; 4) both the SiGra 

architecture and hyperparameters are examined on new datasets, which demonstrate robust 

outperformance. 

3. Regarding my previous comment 4, the response is not satisfactory and dismissive. "Cell 

type" and "spatial region" are two distinct concepts. It is incorrect and misleading to call "cell 

types" "spatial regions at the cellular level." I insist that comparing the predicted spatial 

domains from SiGra and other methods using annotated cell types as the ground truth is 

incorrect. 

Response: Thanks. We would like to address the reviewer’s comments in three aspects below. 

1) Benchmarking methods for cell identity identification 

Most methods we chose for comparison have officially claimed that they can be used for 

detecting cell identities from single-cell ST data. Therefore, comparing SiGra with other 

methods using annotated cell types as the ground truth is fair. Specifically, 

Seurat pipeline was not initially developed for spot-level ST data, but for single-cell RNA-seq 

data. They have officially claimed that their pipeline can be used for both spot-level ST data 

(https://satijalab.org/seurat/articles/spatial_vignette.html) and single-cell ST data 

(https://satijalab.org/seurat/articles/spatial_vignette_2.html). The following figures are from 

Seurat’s vignette. 

https://satijalab.org/seurat/articles/spatial_vignette.html
https://satijalab.org/seurat/articles/spatial_vignette_2.html


 

 

SpaGCN claimed that it can be used for single-cell ST data too (MERFISH data, 

https://github.com/jianhuupenn/SpaGCN).  

“SpaGCN is applicable to both in-situ transcriptomics with single-cell resolution 

(seqFISH, seqFISH+, MERFISH, STARmap, and FISSEQ) and spatial barcoding-

based transcriptomics (Spatial Transcriptomics, SLIDE-seq, SLIDE-seqV2, HDST, 

10x Visium, DBiT-seq, Stero-seq, and PIXEL-seq) data.”  

 

stLearn also made such claim and was applied to the 10x Xenium data 

(https://stlearn.readthedocs.io/en/latest/tutorials/Xenium_PSTS.html). The follow figures are 

from its tutorial: 

 

 

 

Scanpy also released their official example for single-cell ST data (MERFISH data, 

https://scanpy-tutorials.readthedocs.io/en/latest/spatial/basic-analysis.html#MERFISH-

example). 

Cell Identities MarkersSpatial distribution of cell Identities

Spatial distributions of cell identities

https://stlearn.readthedocs.io/en/latest/tutorials/Xenium_PSTS.html
https://scanpy-tutorials.readthedocs.io/en/latest/spatial/basic-analysis.html#MERFISH-example
https://scanpy-tutorials.readthedocs.io/en/latest/spatial/basic-analysis.html#MERFISH-example


 

2) Clarification on spatial domain detection 

We respect the reviewer’s opinion and have modified our descriptions accordingly to avoid 

potential controversies or confusions. Specifically, we added the following in Materials and 

Methods (page 9): 

“Spatial domain detection 

1) For the spot-level spatial data that has a low spatial resolution and consists of mixed 

cells/cell types in each spot, SiGra directly detects the spatial domains by clustering the 

latent-represented spots using Leiden. 2) For single-cell spatial data, SiGra first 

identifies the cell types for each individual cell by clustering the latent-representation 

using Leiden, and then reveals spatial domains via a dimensional moving window 

agglomeration approach5. Specifically, the spatially distributed cells are summarized 

by a circular window of diameter 𝑑 sliding at both 𝑥 and 𝑦 directions across the whole 

image with a given stride length 𝑠. At each stop 𝐶𝑖,𝑗  with the coordinate (𝑥𝑖 , 𝑦𝑗), a 

vector 𝑐𝑖,𝑗 ≡ [𝑞1, … , 𝑞𝑡] representing the proportions of the SiGra identified clusters (𝑡) 

covered by the sliding window is calculated. All the stops {𝐶𝑖.𝑗} are recursively merged 

to 𝑘 groups {𝑎1, … , 𝑎𝑘} by hierarchical clustering according to the cluster proportion 

vectors {𝑐𝑖.𝑗}. These agglomerated groups are defined as spatial domains. The window 

radius 𝑑 used in Supplementary Fig. 4 is 100μm, which is consistent with the 10x 

Visium spatial resolution, with the stride 𝑠 of 10μm. For fair comparisons, the same 

moving window agglomeration approach is used in benchmarking methods 

(Supplementary Fig. 4). The ground truth of the anatomic spatial domains for the 

DLPFC slices and lung cancer slices is obtained from the original study6 and the 

certificated pathologist at Indiana University Health (T.H.).” 

3) Comparisons with benchmarking methods using spatial domain 

Cell Identities

Markers

UMAP Spatial Location



Moreover, since the reviewer does not agree on utilizing cell types as the evaluation criterion, 

we also compared the performance based on pathologist’s annotation. Based on our previous 

1st revision, as shown in Supplementary Fig. 4, three spatial domains were identified by 

pathologist: the tumor region (green), the desmoplasia region (red), and the adjacent normal 

region (orange). For fair comparisons with other methods, the same moving window 

agglomeration approach was used. Compared with the ground truth, SiGra achieved an ARI of 

0.60, better than other methods including BayesSpace (ARI: 0.25), SpaGCN (ARI: 0.10), 

Seurat (ARI: 0.10), stLearn (ARI: 0.10), and Scanpy (ARI: 0.17). These results showed that 

SiGra obtained reliable spatial domains based on its identified accurate cell identities. It also 

indicated that the NanoString CosMx profiled cancer tissue slice was much more challenging 

given its strong cellular heterogeneity, large cell number, and high-resolution, compared with 

the 10x Visium profiled normal DLPFC tissues which have well-organized anatomic structure. 

To further verify the comparison results, in our previous 1st revision, we also tested BayesSpace 

and SpaGCN for direct spatial domain identification of the three domains, without using the 

moving window agglomeration approach. BayesSpace and SpaGCN only obtained ARIs of 

0.15 and 0.19, respectively. These results supported that, when detecting large-scale anatomic 

spatial domains from single-cell spatial data, it was necessary to agglomerate the high-

resolution cellular-level clustering results. 

The authors also used a moving window to transform SiGra's cell type prediction into spatial 

regions and compared it with other methods for spatial region detection. This is an unfair 

comparison because 1) other methods are developed for spot-level ST data while single-cell 

data are provided as input; 2) the moving window agglomeration approach is only used in 

SiGra while other methods are not. I do not think this NanoString dataset is suitable for 

evaluating spatial region detection. 

Response: Thanks. We would like to address the reviewer’s comments in three aspects as 

below. 

1) Fairness in comparing with methods that were originally developed for spot-level ST 

data. 

Most methods we chose for comparison have recently and officially claimed that they can be 

used for single cell ST data. For example, Seurat pipeline has  officially claimed that their 

pipeline can be used for both spot-level ST data 

(https://satijalab.org/seurat/articles/spatial_vignette.html) and the single-cell ST data 

(https://satijalab.org/seurat/articles/spatial_vignette_2.html). SpaGCN claimed that it can be 

used for single-cell ST data too (MERFISH data, https://github.com/jianhuupenn/SpaGCN), 

and claims that: 

“SpaGCN is applicable to both in-situ transcriptomics with single-cell resolution 

(seqFISH, seqFISH+, MERFISH, STARmap, and FISSEQ) and spatial barcoding- 

based transcriptomics (Spatial Transcriptomics, SLIDE-seq, SLIDE-seqV2, HDST, 

10x Visium, DBiT-seq, Stero-seq, and PIXEL-seq) data.”. 

stLearn also made such claim 

(https://stlearn.readthedocs.io/en/latest/tutorials/Xenium_PSTS.html). Scanpy released the 

official example for single-cell ST data (MERFISH data, https://scanpy-

tutorials.readthedocs.io/en/latest/spatial/basic-analysis.html#MERFISH-example). Only 

BayesSpace has not yet release such claim. Therefore, the comparisons between SiGra and 

these chosen methods are fair. 

https://satijalab.org/seurat/articles/spatial_vignette.html
https://satijalab.org/seurat/articles/spatial_vignette_2.html
https://github.com/jianhuupenn/SpaGCN
https://stlearn.readthedocs.io/en/latest/tutorials/Xenium_PSTS.html
https://scanpy-tutorials.readthedocs.io/en/latest/spatial/basic-analysis.html#MERFISH-example
https://scanpy-tutorials.readthedocs.io/en/latest/spatial/basic-analysis.html#MERFISH-example


2) Moving window was used for other methods too. 

In our previous 1st revision, we stated that the moving window agglomeration was used for 

other methods too. When using moving window for the other methods, Supplementary Fig. 4 

shows that SiGra outperformed competitors. 

Meanwhile, we also tested BayesSpace and SpaGCN for direct spatial domain identification of 

the three domains, without using the moving window agglomeration approach. BayesSpace 

and SpaGCN only obtained ARIs of 0.15 and 0.19, respectively, comparing with the ARI of 

0.25 and 0.10 (with moving window approach). These results further demonstrated that, for 

detecting large-scale anatomic spatial domains from single-cell spatial data, it was necessary 

to agglomerate the high-resolution cellular-level clustering results. 

3) SiGra achieves consistent results with pathological annotations on single-cell ST data. 

We respect the opinion of the reviewer that single-cell ST data such as the NanoString CosMx 

SMI data is not suitable for evaluating spatial region detection. However, we have different 

opinions. First, single-cell ST data provides gene expression information at a higher spatial 

resolution than spot-level ST data. Therefore, if spatial regions can be detected in low-

resolution data, they should also be detected in high-resolution data. Second, there are real-

world needs in identifying spatial regions on single-cell ST data too, and SiGra provides such 

functionality. Therefore, evaluating the performance of SiGra on such data can provide 

meaningful information to end users. Third, our results on NanoString CosMx SMI data show 

that the spatial regions identified by SiGra are accurate based on the pathologist’s annotation 

(ARI: 0.60), which demonstrates its capability to identify spatial regions on single-cell ST data. 

In summary, single-cell ST data with sufficient information can also be used for spatial region 

detection. 

4. Regarding my previous comment 6, the evaluation of L-R is still not convincing. No concrete 

evidence is provided to show whether the L-R association detected from SiGra-enhanced data 

are true biological interactions or not. The authors only showed more L-R can be identified 

using enhanced data, and the enhanced-specific LR has slightly smaller FDRs than the raw-

specific L-R, although they are all significant. However, smaller FED does not necessarily 

mean the SiGra-enhanced data can better identify true biological interactions. More is not 

always better, and this is the core of my criticism: a "biased" method can amplify a signal in a 

biased way under the hood, leading to any number of downstream discoveries. 

 

Response: Thanks for the reviewer’s comments. 

We agree with the reviewer that more is not always better, due to the potential false discoveries 

(false positive L-R associations). Therefore, we perform false discovery analysis to address 

this concern. The goal is to examine whether L-R associations can be more reliably identified 

from the enhanced data. The goal is not to experimentally check all possible L-R associations, 

generate the ground truth of positive and negative L-R associations, and then estimate how 

many true L-R associations are missed (type-II error) and how many false L-R associations are 

mistakenly detected as true associations (type-I error). Practically, this is difficult for most labs.  

When there is no such ideal ground truth available, model performance can still be reliably 

compared by permutation tests, since the permutated data can be generated to estimate the 

distribution of the false L-R associations. This statistical approach has been widely used in 

bioinformatics7,8. The false discovery analysis suggests that SiGra-enhanced data allows 

detecting L-R associations at a lower false discovery rate. 



Moreover, we also show that the L-R associations detected from SiGra-enhanced data are also 

observed in additional dataset of the same tissue type. 

Specifically, for the Vizgen MERSCOPE mouse liver dataset, as shown in Fig. 4, the y-axis 

and x-axis refer to the FDR values of each L-R pair in the enhanced and raw data respectively. 

Among the 64 L-R pairs identified in this dataset, 13 L-R pairs from the enhanced data are 

statistically significant (FDR < 0.05), whereas 12 L-R pairs from the raw data have FDR < 

0.05. There are 9 L-R pairs shared between the enhanced and the raw data, indicating the 

enhanced data preserves useful information of the raw data. In addition, enhanced data has 4 

specific L-R interactions, while raw data has 3 specific L-R interactions. We further examine 

the L-R interactions specifically identified from the enhanced and the raw data, respectively, 

using the bulk RNA-seq data from the Tabula Muris Consortium9 as the validation dataset. The 

4 L-R pairs specifically identified from the SiGra’s enhanced data also present strong 

correlations in the validation dataset (Wnt2-Fzd4: 0.581; Pkm-Cd44: 0.885; Col1a2-Itga2b: 

0.641; Dll1-Notch2: 0.798). However, the raw-specific L-R pairs show low correlations in bulk 

data (Fgf1-Egfr: 0.386; Timp3-Kdr: 0.498; Jag1-Notch1: 0.115). These results suggest that the 

enhanced data specific L-R pairs are more likely to be true discoveries. 

Moreover, to show the SiGra’s enhanced data provide useful rather than bias information, 

based on the results of DLPFC (Fig. 5), we have carefully compared the layer-enriched gene 

markers (HPCAL1, KRT17, TRABD2A, LAMP5, AQP4, FREM3) in our enhanced data with 

the original study6 (Maynard et al., 2021). That is, we perform the exact statistical analysis in 

Maynard et al 2021 (“Layer-level gene modeling” and fit ‘Enrichment’ and ‘Pairwise’ models) 

using the enhanced data obtained by SiGra. The variations of gene expressions across layers 

are examined by two statistical models: 1) The ‘Enrichment’ model. Layer-level summarized 

gene expression result is first fitted using the lmFit and eBayes function from the R package 

“limma” (version 3.16), after being blocked by the six pairs of spatially adjacent replicates and 

taking this correlation into account as computed by duplicateCorrelation. Then the Student’s t-

test statistics is used to compare each layer against the other six using the layer-level data. This 

result in seven sets of Student’s t-test statistics (one per layer) with double-sided P values. We 

focus on genes with positive Student’s t-test statistics (expressed higher in one layer against 

the others) because these are enriched genes rather than depleted genes. 2) The ‘Pairwise’ 

model used the same “limma” functions for data processing and taking into account the same 

correlation structure in addition to using the contrasts.fit function provided by “limma”. Then 

we also compute the Student’s t-test statistics for each pair of layers. The Student’s t-test 

statistics with double-sided P values for both ‘Enrichment’ model and ‘Pairwise’ model are 

provided in Supplementary Table 3. 

Below is the layer level differential expression statistics based on the ‘enrichment’ model. Our 

analysis shows that the SiGra enhanced data highlights the layer-enriched markers for each 

brain layer, which is also consistent with the original study6 (Maynard et al., 2021). 

 



 

 

Collectively, from the aspects of L-R pairs and DEG analysis, the SiGra-enhanced data 

provides more biological meaningful information than raw data. 

  

Based on enhanced data

t_stat_WM t_stat_Layer1 t_stat_Layer2 t_stat_Layer3 t_stat_Layer4 t_stat_Layer5 t_stat_Layer6

HPCAL1 -2.515415588 0.763348864 10.80973528 3.068050458 -2.740346896 -3.342613857 -1.006971103

KRT17 1.816446153 -2.616930966 -2.250056669 -3.502730791 -2.286232486 1.243251049 9.282056344

TRABD2A -2.755949326 -1.582496736 -1.974004787 -2.089077109 1.065539817 13.09728313 -0.750503267

LAMP5 -3.676577066 1.353341098 7.26752965 2.67446215 -0.581769987 -2.015316293 -2.46167612

AQP4 3.9241445 5.809015348 -0.502858256 -2.228436465 -2.713284886 -1.93252492 -0.533701576

FREM3 -2.554736235 -0.429435062 4.048191737 6.161544982 -0.796887497 -1.810476872 -2.842155662

Based on raw data (from Table S4 in Maynard et al., 2021)

t_stat_WM t_stat_Layer1 t_stat_Layer2 t_stat_Layer3 t_stat_Layer4 t_stat_Layer5 t_stat_Layer6

HPCAL1 -0.53214124 2.405065728 7.493447127 2.683311804 -4.081521288 -4.75055217 -0.845880986

KRT17 3.772136374 -2.453251903 -3.680479024 -4.132595657 -1.748237198 0.818820557 8.163120915

TRABD2A -2.64674483 -1.02426376 -2.48564806 -1.32784384 1.636915534 8.198143596 -0.909222759

LAMP5 -3.995902629 2.932309431 6.740330171 2.926794549 0.253117241 -3.213691777 -3.376587143

AQP4 4.656646017 7.400647951 -1.009003858 -2.35501217 -3.696268588 -2.265381578 -0.115625687

FREM3 -5.132015759 1.190078713 3.637180776 5.369101063 0.20354803 -1.477185956 -2.815199561



Reviewer #2 

The authors have addressed most of my concerns, but there are still some minor concerns as 

follows: 

 

1. Regarding the terminology of \textit{graph transformer convolutional layer}, I respect the 

authors interpretation. However, based on our understanding, the main difference between 

Sigra's "graph transformer" and graph attention networks lies in the attention mechanism. Sigra 

uses multiplicative attention, while GAT uses concat attention, which is a variant of additive 

attention. However, as mentioned in a survey \cite{niu2021review}, concat attention has been 

shown to be more effective than multiplicative attention in several studies, despite its higher 

computational cost. However, GAT chooses concat attention because the sparse structure of 

graphs allows for a performance-computation trade-off. Therefore, it is reasonable to conclude 

that GAT is a highly specialized model for graph data and is extremely similar to Sigra. Due 

to the similarity and complete of literature, I will recommend to cite GAT. 

Response: Thanks for the reviewer’s comments. We agree with the reviewer’s opinion and 

have cited the GAT paper in our revised version. We copied the revised text (page 2) here for 

the reviewer’s convenience. 

“In addition to domain recognition, the enhancement of spatial gene expression data 

also presents a significant challenge. Though great progress has been made in spatial 

technologies, the major problems such as missing values, data sparsity, low coverage, 

and noises2,15 encountered in spatial transcriptomics profiles are impeding the effective 

use and the elucidation of biology insights. Meanwhile, the multi-channel spatial 

images in single-cell spatial data consist of high-resolution, high-content features 

detected in the tissue, such as cell types, functions, and morphologies of cellular 

compartments, as well as the spatial distributions of cells. Incorporating such imaging 

features with cell-level transcriptomics data will help address the challenges of missing 

values and data noise. Moreover, as the spatial relations between an individual cell and 

its neighboring cells can be naturally represented as a spatial adjacency graph, graph-

based artificial intelligence is promising for spatial data modeling. Notably, graph-

based models enhanced with attention mechanisms10, such as the Graph Attention 

Network (GAT) and the graph convolutional transformer models11,12, have 

demonstrated remarkable advancements and yielded significantly improved outcomes.” 

2. The claim of ulitizing 'multi-channel images of cell morphology...' is kind of overstated, 

because vectorizing the image with fixed size containing multiple cells and possible some holes 

will not guarantee to learn and capture the morphology information. More evidences, such as 

the shape or other related morphology features, need to be shown to support this claim. 

Response: Thanks for the reviewer’s comments. We agree that our claim of utilizing 'multi-

channel images of cell morphology' is overstated. In our revised manuscript (page 2 and page 

7), we modified the specific text as “'multi-channel images of cells and their niches”. 

 

 

  



Reviewer #3 

The authors have made great effort in answering my questions and concerns from the previous 

round of review. My questions have been well resolved. 

Response: Thanks. We appreciate the reviewer’s comments. 
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

My questions have been well addressed. 



RESPONSE TO REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

My questions have been well addressed. 

 

Response: Thanks. We appreciate the reviewer’s comment.  
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