Oxidatively stressed extracellular microenvironment drives fibroblast activation and kidney fibrosis

i

Li Li^{a1*}, Meizhi Lu^{a1}, Yiling Peng^{a1}, Junxin Huang^a, Xiaoman Tang^a, Jian Chen^c, Jing Li^b, Xue Hong^a, Meizhi He^a, Haiyan Fu^a, Ruiyuan Liu^c, Fan Fan Hou^a, Lili Zhou^{a*} and Youhua Liu^{a*}

Fig. S1. AOPPs induces NADPH oxidase expression in renal interstitial fibroblasts in vitro. (A-E) qRT-PCR analyses show mRNA levels of NOX1, NOX2, NOX4, DUOX1 and DUOX2 in different groups as indicated. *P < 0.05 versus controls, †P < 0.05 versus AOPP 6 h, #P < 0.05 versus AOPP 12 h (n = 3).

Fig. S2. AOPPs increased ROS production in renal fibroblasts and promotes cell proliferation. NRK-49F cells were treated with AOPPs (50 µg/ml) for various periods of time as indicated. The fluorescence intensity of superoxide radical anion ($O_2^{\bullet-}$) (A), hydroxyl radical (•OH) (B) and singlet oxygen (1O_2) (C) in cell supernatants were measured by a fluorescence spectrophotometer. **P*< 0.05 versus controls, **P* < 0.05 versus AOPP 24 h (n = 3). (D) Quantitative colorimetric MTT assay shows that AOPPs promoted NRK-49F cells proliferation in a time-dependent manner. OD, optical density. NRK-49F cells were treated with AOPPs (50 µg/ml) for various periods of time as indicated. **P* < 0.05 versus controls.

Fig. S3. Activation of NOX4 by AOPPs activates PKCα/MAPK/STAT3/NOX4 signal cascade in vitro. (A-C) Quantitative data of Western blot analyses show that AOPPs activated PKCα/MAPK signal cascade. NRK-49F cells were treated with AOPPs (50 µg/ml) for various periods of time as indicated. Cell lysates were subjected to Western blot analyses for p-PKCα, PKCα, p-p38, p38, p-ERK1/2, ERK1/2 and α-tubulin. **P* < 0.05 versus controls (n=3). (D, E) Quantitative data of Western blot analyses show that blockade of p-p38 suppressed p-STAT3 expression in NRK-49F cells. NRK-49F cells were pretreated with p38 inhibitor SB230580 (10 µM) for 1 h, then treated with AOPPs (50 µg/ml) for 30 min. **P* < 0.05 versus controls. (I, J) Quantitative data of Western blot analyses show that overexpression of STAT3 induced the expression of NOX4 in NRK-49F cells. **P* < 0.05 versus controls. (I, J) Quantitative data of Western blot analyses show that blockade of p-STAT3 suppressed AOPP-induced NOX4 expression in NRK-49F cells. **P* < 0.05 versus AOPPs (50 µg/ml) (n=3). (K, L) Quantitative data of Western blot analyses show that blockade of p-STAT3 suppressed AOPP-induced NOX4 expression in NRK-49F cells. NRK-49F cells. NRK-49F cells were pretreated with STAT3 inhibitor Niclosamide (5 µM) overnight, then treated with AOPPs (50 µg/ml) (n=3). (50 µg/ml) for 24 h. **P* < 0.05 versus controls, †*P* < 0.05 versus AOPPs (50 µg/ml) (n=3). (5 µM) overnight, then treated with AOPPs (50 µg/ml) for 24 h. **P* < 0.05 versus controls, †*P* < 0.05 versus AOPPs (50 µg/ml) (n=3).

Fig. S4. Knockdown of NOX4 reduces ROS production in renal fibroblasts. NRK-49F cells were transfected with either control siRNA or NOX4-siRNA for 24 h, and then cells were treated with AOPPs (50 µg/ml) for additional 24 h. The fluorescence intensity of superoxide radical anion ($O_2^{\bullet-}$) (A), hydroxyl radical (•OH) (B) and singlet oxygen (1O_2) (C) in cell supernatants were measured by a fluorescence spectrophotometer. **P* < 0.05 versus controls, [†]*P* < 0.05 versus AOPPs (50 µg/ml) (n = 3).

Fig.S5. Knockdown of NOX4 ameliorates fibrosis-related gene expression induced by AOPPs in vivo. (A-D) qRT-PCR analyses show mRNA levels of NOX4, GPX3, FN and α -SMA in different groups as indicated. **P* < 0.05 versus sham; †*P* <0.05 versus UIRI; #*P* < 0.05 versus UIRI+AOPPs (n=5). (E-I) Graphic presentation shows the semi-quantitative determination of renal NOX4⁺, GPX3⁺, FN⁺ and α -SMA⁺ area and fibrotic lesions in different groups. At least 10 randomly selected fields were assessed, and results averaged for each kidney. **P* < 0.05 versus sham; †*P* < 0.05 versus uIRI; #*P* < 0.05 versus UIRI; #

Fig. S6. Overexpression of NOX4 inhibits GPX3 mRNA expression and knockdown of NOX4 restores GPX3 mRNA expression in HK-2 cells. (A, B) qRT-PCR analyses show that overexpression of NOX4 inhibited GPX3 mRNA in HK-2 cells. HK-2 cells were transfected with pcDNA3 or pCMV-NOX4 plasmids for 24 h. *P < 0.05 versus controls. (C, D) qRT-PCR analyses show that knockdown of NOX4 restored GPX3 gene expression after AOPPs treatment in HK-2 cells. HK-2 cells were transfected with either control siRNA or NOX4-siRNA for 24 h, and then cells were treated with AOPPs (50 µg/ml) for additional 24 h. *P < 0.05 versus controls, †P < 0.05 versus AOPPs (50 µg/ml) (n=3).

Fig. S7. Primary fibroblasts from the fibrotic kidney express high-level mRNA of fibrosis-related genes. (A-F) qRT-PCR analyses show mRNA levels of FN, α -SMA, PCNA, cyclin D1, NOX2 and NOX4 in different groups as indicated. Primary fibroblasts were extracted from sham and UIRI mice and then were cultured for 24 h. **P* < 0.05; ***P* < 0.01; ****P* < 0.001 versus sham (n=3). (G) Representative micrographs show the expression and localization of α -SMA and NOX4 in UIRI primary fibroblasts by co- immunofluorescence staining. Arrows indicate positive staining.

Antibodies	Catalogue number	Company	Location
Primary antibodies			
anti-Gpx3	Ab256470	Abcam	Cambridge, MA
anti-NOX4	BA2813	Boster Biological Technology	Wuhan, China
anti-PCNA	sc-56	Santa Cruz Biotechnology	Santa Cruz, CA
anti-Cyclin D1	sc-8396	Santa Cruz Biotechnology	Santa Cruz, CA
anti-fibronectin	F3648	Sigma-Aldrich	St. Louis, MO
anti-a-SMA	A2547	Sigma-Aldrich	St. Louis, MO
anti-c-fos	BA0207-2	Boster Biological Technology	Wuhan, China
anti-p-p38	9211S	Cell Signaling Technology	Danvers, MA
anti-p38	9212S	Cell Signaling Technology	Danvers, MA
anti-p-PKCa	sc-377565	Santa Cruz Biotechnology	Santa Cruz, CA
anti-PKCa	59754	Cell Signaling Technology	Danvers, MA
anti-p-ERK1/2	9101S	Cell Signaling Technology	Danvers, MA
anti-ERK1/2	4695S	Cell Signaling Technology	Danvers, MA
anti-p-STAT3	9145S	Cell Signaling Technology	Danvers, MA
anti-STAT3	9139S	Cell Signaling Technology	Danvers, MA
anti-Vimentin	5741s	Cell Signaling Technology	Danvers, MA
anti-PDGFR-β	sc-432	Santa Cruz Biotechnology	Santa Cruz, CA
anti-E-cadherin	3195s	Cell Signaling Technology	Danvers, MA
anti-α-Tubulin	RM2007	Ray Antibody Biotech	Peachtree Corners, GA
Secondary antibodies			
Goat anti-mouse	BA1050	Boster Biological Technology	Wuhan, China
Goat anti-rabbit	BA1054	Boster Biological Technology	Wuhan, China

Supplementary Table S1. The sources of antibodies used in this study

Mouse	Prim	Primer Sequence 5' to 3'				
gene	Forward	Reverse				
Fibronectin	GATGAGCTTCCCCAACTGGT	CTGGGTTGTTGGTGGGATGT				
α -SMA	CATCGTGTTGGATTCTGGGG	GTCACGAAGGAATAGCCACG				
Gpx3	CATCCTGCCTTCTGTCCCTG	CGATGGTGAGGGCTCCATAC				
NOX4	TGTCTGCATGGTGGTGGTAT	CTTCAACAAGCCACCCGAAA				
NOXI	CGAAGTGGCTGTACTGGTTG	AAAGGCACCCGTCTCTCTAC				
NOX2	TGCACATCTGTTCAACGTGG	AACCGAGTCACAGCCACATA				
Duoxl	TGTGTACCAGCCCTTGAGAG	TGTTTCCACACTCACCAGGT				
Duox2	CTGCGGTTTGGGTCATATGG	TACAATCAGCCAAGCCCAGA				
PCNA	AAGTTTTCTGCGAGTGGGGA	ACAGTGGAGTGGCTTTTGTGA				
CyclinD1	TCAAGTGTGACCCGGACTG	GACCAGCTTCTTCCTCCACTT				
β -actin	AAGATCAAGATCATTGCTCCTCCTC	G CGCAGCTCAGTAACAGTCCG				

\mathcal{A}	Supplementary	v Table S2.	Nucleotide sec	quences of the	primers u	ised for a	PC
---------------	---------------	-------------	----------------	----------------	-----------	------------	----

ii