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Supporting Information

Computational results

Table |S1| presents the performance of four expansion algorithms on six 100-SMILES bench-
marks extracted from the ChEMBL database using a maximum of 5K, 10K, 25K, and 50K
generated reactions. An integer number in a cell indicates the number of SMILES, among
100, for which at least one route was found for one algorithm, one benchmark, and one max-
imum number of generated reactions. The best-first reaction algorithm is systematically the

best performer across all the benchmarks for all maximum number of generated reactions.



Table S1: Performances of four expansion algorithms when generating reactions from tem-

plates.

Algorithm AiZynth Bench 1 Bench 2

Breadth-first ~ |49(57|62|63]  |50(60(66|67|  |65|68|70|71]
Depth-first |54|61|67|71|  |47|61]|66|67|  |70|72|79|81|
Best-first cpd  |61]64]68|72|  |57|61|65|69]  |68|68|72|76]
Best-first rxn  |72|76|85|86| [66|70|73|77| |76|79|82|87]
Algorithm Bench 3 Bench 4 Bench 5

Breadth-first  |59|65|65|65|  |61|63|68|68|  |64|69|70|72]
Depth-first 160|64|70|71|  |58|64|71|73|  |65|70|73|78|
Best-first cpd  |63]66|68|70|  |65]69|73|74|  |67|68|73|78]
Best-first rxn  |71|73|77|78| [69|72|79|79| |76|79|85|90|

Algorithm Averages for 5K, 10K, 25K, 50K
Breadth-first |58.0/63.6|66.8]67.6|
Depth-first 159.0/65.3|71.0[73.5|

Best-first cpd
Best-first rxn

Experimental results

Itraconazole Synthesis

163.5/66.0]69.8|73.1]
71.6/74.8|80.1|82.8|

The itraconazole synthesis was done on the AutoSyn platform. Here we present some of the

details of this synthesis.

Step 1) Alkylation to synthesize itr-3 (see Figure.

Table S2: Run results of the first step to synthesize itr-3.

Amount recovered 286 mg
Production rate 343 mg / h
Yield 31%
Flow composition (NMR) 82% itr-3,

13% over-alkylation product
Time to product elution 1.5h
Product collection window 50 min

A solution 2,4-dichlorophenacyl chloride itr-1 (2.0 g, 9 mmol, 0.6 M) in NMP (15 mL)

reacted with a solution of 1,2,4-triazole itr-2 (3.1 g, 45 mmol, 3 M, 5 equiv.) in NMP
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Figure S1: SynRoute route for synthesis of intraconazole triazolone intermediate.

(15 mL) at a total flow rate of 0.22 mL/min into a preheated Hastelloy reactor at 160 °C.
Fractions containing itr-3 were combined, concentrated to dryness, and purified by flash
chromatography to afford itr-3 ( Figure and Table. 1H-NMR (400 MHz, CDCI3) ¢:
5.62 (s,2H); 7.38 (dd, J=4.0,8.0, 1H); 7.49 (d, J=4.0, 1H); 7.64 (d, J=8.0, 1H); 7.97 (s, 1H);
8.23 (s, 1H).

Step 2) Ketalization to synthesize itr-7 (see Figure [S3).

TfOH (1.4 mL, 16 mmol) was added to a solution of itr-4 (1.08 g, 4.4 mmol, 1.1 equiv.)
and triazolyl acetophenone itr-3 (1 g, 3.9 mmol) in toluene (8 mL). Then the reaction
mixture was stirred at room temperature for 60 h. The reaction was quenched by adding
K5COj solution (5.2 g in 40.3 mL water) at 0 °C. The crude mixture was extracted with
EtOAc (3x30 mL), washed with brine, and dried over NaySO,. The solvent was removed and
the residue was re-dissolved in EtOAc (2 mL). p-Toluenesulfonic acid monohydrate (834 mg,
4.4 mmol) in EtOAc (8 mL) was added dropwise to precipitate itr-5 as a white solid (1.39 g,
74%) (Figure|S3).
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Figure S3: Ketalization to synthesize itr-5.

Step 3) Triazolidinone formation and alkylation to synthesize itr-7 (Figure.

Table S3: Run results of triazolidinone formation and alkylation to synthesize itr-7.

Amount recovered 244 mg
Production rate 122mg / h
Yield 30%
Flow composition (NMR) 52% itr-7, 27% itr-6,

21% unalkylated intermediate
Time to product elution 2.6 h
Product collection window 2h

A solution of aniline itr-6 (680 mg, 2.4 mmol, 0.3 M) and pTsOH (46 mg, 0.24 mmol,
10 mol%) in NMP (8 mL) was pumped into AutoSyn and met with a solution of methyl
carbazate (1.5 g, 16.7 mmol, 2.1 M, 7.0 equiv.) and trimethyl orthoformate (0.92 mL,
8.4 mmol, 1.05 M, 3.5 equiv.) in NMP (7 mL) for a total flow rate of 0.166 mL/min. The
combined streams were pumped through a preheated Hastelloy reactor (5 mL) at 140 °C. To

the resulting mixture was added solution of NaOMe in MeOH (5.8 mL , 1.8 M, 6.0 equiv.)
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Figure S4: Triazolidinone formation and alkylation to synthesize itr-7 on the AutoSyn
platform.

in MeOH (9.2 mL) and a solution of 2-bromobutane (3 mL, 8.4 mmol, 6.0 equiv.) in NMP
(12 mL) at total flow rate of 0.32 mL/min. The combined mixture was pumped through a
preheated PFA reactor (10 mL) at 120 °C. Fractions of effluent from AutoSyn containing
itr-7 were concentrated to dryness and purified by flash chromatography (Figure and
Table . 1H-NMR (400 MHz, d6DMSO) ¢: 0.73 (t, J=6.8, 3H); 1.01 (m, 1H); 1.24 (d,
J=6.8, 2H); 3.09 (m, 4H); 3.25 (m, 4H); 3.64 (s, 3H); 6.46 (d, J=8.0, 2H); 6.68-6.85 (m, 4H);
7.0 (d, J=7.6, 2H); 7.42 (d, J=7.6, 2H); 8.26 (s, 1H).

Step 4) Demethylation to synthesize itr-8 (see Figure )

N
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Figure S5: Demethylation to synthesize itr-8 on the AutoSyn platform.

Compound itr-7 (244 mg, 0.6 mmol) was suspended in 48% HBr (25 mL) and was
heated to 120 °C for 12 h. After the reaction was completed, the mixture was cooled and
neutralized with 1 M NaOH under 0 °C. It was extracted with chloroform (3 X 10 mL). The
organic layer was washed with water (3 X 15 mL), sat. aqueous NaCl (2 x 15 mL), and dried

with NasSOy. The crude was purified by flash chromatography to give itr-8 (151 mg, 62%)



(see Figure[SH).

Step 5) O-Alkylation to synthesize itraconazole (see Figure .
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Figure S6: Last step to synthesize itraconazole on the AutoSyn platform.

Table S4: Run results of step 5 to synthesize itraconazole.

Amount recovered 50 mg
Production rate 50 mg / h
Yield 30%
Flow composition (NMR) 60% itraconazole,

40% starting materials
Time to product elution 26 h
Product collection window 2h

A solution of itr-5 (0.04 M) and itr-8 (0.04 M) in DMSO was pumped into AutoSyn
and through two successive packed bed reactors containing 9:1 Csy,COj5:Celite. Fractions of
effluent from AutoSyn containing itraconazole were diluted with brine (50 mL) and extracted
with CH5Cly (3x50 mL). The combined organic extracts were dried over NaySQy, filtered,

and concentrated. The residue was purified by flash chromatography to give itraconazole

(see Figure[S6|and Table [S4).



Table S5: Detailed comparison of SynRoute recommended reaction conditions and the con-
ditions used in the laboratory to synthesize itraconazole via the AutoSyn automated flow
chemistry platform.

Product Reaction Data SynRoute Experimental Rational for
formed in Source Recommended Conditions Modfications
reaction Conditions
itr-3 US9095589 itr-1 (1M, 1 eq.) Performed on AutoSyn | Increase imidazole
itr-2 (2M, 2 eq.) flow chemistry equivalents to
NaHCO3 (1M, 1 eq.) platform eliminate need for solid
toluene itr-1 (0.6M, 1 eq.) base.
100G, 3 h itr-2 (3M, 5 eq.) Higher heat and
53% yield NMP shorter reaction time
160C, 0.75 h for higher production
31% yield rate.
itr-5 US9095589 itr-3 (0.4M, 1 eq.) itr-3 (0.5M, 1 eq.) Identical conditions to
(S)-1-tosyloxy-2,3- (S)-1-tosyloxy-2,3- literature
propanediol (0.4M, 1 | propanediol (0.5M, 1
eq.) eq.)
TfOH (1.6M, 4.1eq.) | TFOH (2M, 4.1 eq.)
toluene toluene
rt, 60 h rt, 60 h
55% yield 74% yield
itr-7 SynRoute triazolone (1 eq.) Performed on AutoSyn | Switched base from
Computer 2-bromobutate (1 flow chemistry NaH to NaOMe for
Generated eq.) platform homogeneity.
Reaction NaH (1 eq.) triazolone (1 eq.) Increased 2-
“Heteroaryl N- DMF 2-bromobutate (6 eq.) | bromobutate
alkylation” 53C, 4.3h NaOMe in Methanol equivalents for faster
80% (1.8M, 6 eq.) production rate.
NMP
120C, 45 min
itr-8 Different Switched to methoxy
protecting group protecting group rather
than benzyl
itraconazole | US9095589 itr-5(0.21M, 1.1 eq.) | Performed on AutoSyn | Decreased
itr-8 (0.2M, 1 eq.) flow chemistry concentrations for
KOH (0.78M, 3.9 eq.) | platform greater reactant
DMF itr-5 (0.04M, 1 eq.) solubility.R
50C, overnightHi itr-8 (0.04M, 1 eq.)
45% Cs2C03 (packed bed
cartridge)
DMSO
30% yield




Bortezomib Synthesis

The bortezomib synthesis was done on the AutoSyn platform. We present some of the details
of this synthesis.

Steps 1 and 2) 1st amide coupling and deprotection on the AutoSyn platform to synthesize
dipeptide carboxylic acid bor-2 (see Figure .
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Figure S7: 1st amide coupling and deprotection on the AutoSyn platform to synthesize
dipeptide carboxylic acid bor-2.

Table S6: Run results of 1st amide coupling and deprotection to synthesize dipeptide car-
boxylic acid bor-2.

Amount recovered 324 mg
Production rate 177 mg / h
Yield 97%
Purity (NMR) 97%
Time to product elution 2h
Product collection window 110 min

Pump MX-05 was primed with a solution of 2-pyrazinecarboxylic acid (0.2 M in 1,4-
dioxane) and DIPEA (0.4 M in 1,4-dioxane), and pump MX-06 was primed with a solution
of pivaloyl chloride (0.2 M in 1,4-dioxane). These solutions were connected via a T-mixer,
pumped into inlet 5 at 0.08 mL/min each into a Hastelloy reactor (R4, 5 mL, 31 min

residence time) heated at 60 °C. After 20 minutes, pump MX-04 primed and delivered



L-phenylalanine tert-butyl ester (0.07 M in 1,4-dioxane) to the system at inlet 6 at 0.16
mL/min. L-Phenylalanine tert-butyl ester met the flow of pivalic pyrazine-2-carboxylic an-
hydride before entering a Hastelloy reactor (R5, 2 mL) and PFA reactor (4 mL, between
V11 and V18) at room temperature for a total of 18 min residence time. Pump M1-04,
primed with TFA (0.86 M, aqueous), began flowing 47 min after initiation of pump MX-05
(2-pyrazinecarboxylic acid). TFA was introduced (0.33 mL/min) into the system at inlet 10
and met with dipeptide tert-butyl ester before entering a Hastelloy reactor (R7, 10 mL, 15.4
min residence time) heated to 170 °C. Reactor effluent was directed to LC-MS for online
analysis. Fractions containing pyrazinylcarbonyl-L-phenylalanine were collected over 110
min and subjected to aqueous work-up. Extracted with EtOAc, washed with water (2x) and
brine. The organic layer was dried with sodium sulfate, filtered, and concentrated to afford
dipeptide carboxylic acid bor-2 (324 mg, 97% yield). 1H-NMR(400 MHz, CDCI3) §: 3.78
(s, 2H); 5.07 (m, 1H); 7.1-7.3 (m, 5H); 8.28 (d, J=8.0, 1H); 8.69 (d, J=2.7, 1H); 8.79 (d,
J=2.7, 1H): 9.31 (s, 1H).

Step 3) 2nd amide coupling step on the AutoSyn platform to synthesize bortezomib
pinanediol bor-4 (see Figure.
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Figure S8: 2nd amide coupling reaction on the AutoSyn platform to synthesize bortezomib
pinanediol bor-4.

Pump MX-05 was primed with a solution of pyrazinylcarbonyl-L-phenylalanine (0.1 M
in DMF) and (R)-boroleucine-(15,25,3R,55)-(+)-pinanediol ester trifluoroacetate (0.1 M in



Table S7: Run results of 2nd amide coupling reaction to synthesize bortezomib pinanediol
bor-4.

Amount recovered 324 mg
Production rate 486 mg / h
Yield 51%
Purity (NMR) 100%
Time to product elution 20 min
Product collection window 40 min

DMF) and pump MX-06 was primed with a solution of HATU (0.12 M in DMF) and DIPEA
(0.22 M in DMF). These solutions were connected via a T-mixer, pumped into inlet 10 at
0.5 mL/min each into a Hastelloy reactor (R7, 10 mL, 10 min residence time) at room
temperature. Fractions containing bortezomib pinanediol bor-4 were collected over 40 min
and subjected to aqueous workup. All fractions were combined and citric acid was added
(10%, aq) with EtOAc (3x). Combined organic layer and washed with water (2x) and brine.
The organic layer was dried with sodium sulfate. Filtration and solvent evaporation gave red-
orange oil, which was chromatographed with 40% EtOAc in hexanes to obtain bortezomib
pinanediol bor-4 (345 mg, 51% yield). 1H-NMR(400 MHz, CDCI3) §: 0.81 (t, J=8.0, 9H);
1.25 (m, 6H); 1.36 (m, 4H); 1.89 (m, 2H); 2.04 (s, 3H); 2.16 (m, 1H); 2.31 (m, 1H); 3.15 (m,
6H); 4.12 (q, J=8.0, 2H); 4.29 (d, J=8.0, 1H); 4.80 (q, J=8.0, 1H); 5.91 (d, J=8.0, 1H);7.1-7.3
(m, 5H); 8.34 (d, J=8.0, 1H); 8.52 (d, J=2.4, 1H); 8.74 (d, J=2.4, 1H); 9.34 (s, 1H).

Step 4) 2nd deprotection on the AutoSyn platform to synthesize bortezomib (see Fig-

ure .

Table S8: Run results of 2nd deprotection to synthesize bortezomib.

Amount recovered 135 mg
Production rate 68 mg / h
Yield 70%
Purity (NMR) 90%
Time to product elution 60 min
Product collection window 80 min

Pump MX-01 was primed with a solution of isobutylboronic acid (0.4 M in 1,4-dioxane),

pump MX-02 was primed with a solution of HCI (0.3 M, aq), and pump MX-06 was primed
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Figure S9: 2nd deprotection on the AutoSyn platform to synthesize bortezomib.

with bortezomib pinanediol bor-4 (0.1 M in 1,4-dioxane). These solutions were connected
via a T-mixer and pumped into inlet 10 at 0.11 mL/min each into a Hastelloy reactor
(R7, 10 mL, 30 min residence time) at 80 °C. Reactor effluent was directed to LC-MS for
online analysis. Fractions containing bortezomib were collected over 80 min and subjected
to aqueous workup. The combined fractions were washed with hexanes (2x). The bottom
layer contained bortezomib in 1,4-dioxane was concentrate to dryness. Then the reaction
mixture was extracted with DCM, washed with NaHCOj (sat’d, aq) and brine. The organic
layer was dried with sodium sulfate. Filtration and solvent evaporation gave bortezomib

(135 mg, 70% yield).
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Template examples implemented in SynRoute

The Table lists some examples of reaction names and their templates, as SMARTS,
implemented in SynRoute to generate reactions retrosynthetically. These name reactions
are part of the 263 name reactions implemented in SynRoute. Some reaction names require
several SMARTS. These SMARTS have been designed to work in the forward and backward

(retrosynthetically) directions.

Table S9: Examples of templates implemented in SynRoute

Reaction Name Templates as one or more SMARTS

Nitro reduction to [C,c:1][N+:2](=0)[0-]1>>[C,c:1] [NH2+0;D1:2]
amine
Nitrile to acid hydrol- [C,c:1][C:2]#N>>[C,c:1] [C:2] (=0) [0H]
ysis
Boronic acid forma- [CX3,cX3:1]Br>>[CX3,cX3:1]1B([0H]) [0H]
tion
Ketone or aldehydere- [C,c:3] [CX3H1:1](=[0:2])>>[C,c:3] [CX4H2:1] ([OH:2])
duction
[C,c:3][CX3:1](=[0:2])[C,c:4]1>>[C,c:3] [CX4H:1] ([OH:2]) [C,c:4]
Electrophilic [ch:1]1[c,n:2][c,n:3][c,n:4] [c,n:5]1>>
Aromatic nitration [NX3+] (=0) ([0-1) [c:1]1[c,n:2] [c,n:3] [c,n:4] [c,n:5]1
[ch:1]1[c,n:2][c,n:3][c,n:4][c,n:5] [c,n:6]1>>
[NX3+] (=0) ([0-]1) [c:1]1[c,n:2] [c,n:3] [c,n:4] [c,n:5][c,n:6]1

Imine reduction [*:2] [N:1]=[C:3] ([*:4]) [*:5]>>[*:2] [NH:1] [CH:3] ([*:4]) [*:5]
Epoxidation [C,c:3][C:1]=[C:2]>>[C,c:3][C:1]1[C:2]01

Ester reduction [C:4] [#6:2] (=[0:1]) [0:3] [C]>>[C:4] [#6H2:2] ([0H:1])

to alcohol [C:4] [#6:2] (=[0:1]) [0H:3]1>>[C:4] [#6H2:2] ([0H:1])

Ketone epoxidation [C:1]([C,c:3])([C,c:4])=[0:2]>>
[C:1]1([C,c:3])([C,c:4])[0:2] [CH2]1

Nitrile to imine [C,c:3][C:2]#[N:1]1>>[C,c:3][CH:2]=[NH:1]

Alkyne to alkane [C,c:3][C:1]#;1@[C:2] [C,c:4]>>[C,c:3][CH2:1]-;!@[CH2:2] [C,c:4]
Alcohol to acid [C,c:3][CH2:1]1[0H:2]>>[C,c:3] [C:1](=0) [0H:2]

Acid to acid chloride [C,c:1][C:2]1(=[0:3])[0H:4]1>>[C,c:1]1[C:2](=[0:3])[C1:4]

Amide to imidoyl (#6;$([#6]1-[#6,#1]) :1]1 (=0) [#7;$([#7]1-[#6,#1]) :2]>>

chloride [(#6:1] (C1)=[#7:2]

Allylic oxidation [Ch;X4:1] [CX3:2]=[CX3:3]>>[0H] [CX4:1] [CX3:2]=[CX3:3]

12



Screenshots of SynRoute’s Graphical User Interface
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The display on the Route Page of one route selected from the Strategy Page.
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Figure S13: The display on the left-side panel shows data about a compound selected from
the Route Page.
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Figure S14: The buttons keep and avoid selected on two compounds on the Route Page.
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Examples of SynRoute Routes to Complex Medically-

Relevant Targets
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Figure S15: Example of a top route for a BRD 7/9 inhibitor.
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Figure S17:
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Example of a top route for an ATR kinase inhibitor.



SynRoute
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Figure S18:
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Figure S19: Example of a top route for (S)-4-hydroxyduloxetine.
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Figure S20: Example of a top route for 5-beta/6-beta-hydroxyurasidone.
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Figure S21: Example of a top route for dronedarone.
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Figure S22: Example of a top route for engelheptanoxide.
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Figure S23: Example of a top route for the synthesis of the natural product dauricine.
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